JPS6073628A - Photoconductive member - Google Patents

Photoconductive member

Info

Publication number
JPS6073628A
JPS6073628A JP18263683A JP18263683A JPS6073628A JP S6073628 A JPS6073628 A JP S6073628A JP 18263683 A JP18263683 A JP 18263683A JP 18263683 A JP18263683 A JP 18263683A JP S6073628 A JPS6073628 A JP S6073628A
Authority
JP
Japan
Prior art keywords
layer
support
photoconductive
blocking layer
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18263683A
Other languages
Japanese (ja)
Other versions
JPH0535425B2 (en
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18263683A priority Critical patent/JPS6073628A/en
Publication of JPS6073628A publication Critical patent/JPS6073628A/en
Publication of JPH0535425B2 publication Critical patent/JPH0535425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Abstract

PURPOSE:To improve the electrostatic chargeability and retentivity and to prevent interlaminar stripping by successively forming blocking layers and a photoconductive layer contg. Si and a IIIA or VA group element in common as constituent elements on a support. CONSTITUTION:An electrically conductive support 1 is put in a vacuum reactor, and the reactor is evacuated to 10<-3>-10<-4>Torr with a mechanical booster pump. At this time, the support is kept at 100-400 deg.C. A gas contg. Si such as SiH4 or Si2H6 and a doping gas contg. a IIIA or VA group element are introduced into the reactor in a desired mixing ratio, and the exhaust speed of an exhaust system is regulated. High frequency power of 13.56MHz is then applied between electrodes in the reactor to form blocking layers 2, 3, a photoconductive layer 4 and a surface coating layer 5 on the support 1 in succession.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光(紫外から可視、赤外bXWIA* γ線な
どの電磁波)に感受性をもつ先導A材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a leading material A that is sensitive to light (electromagnetic waves such as ultraviolet to visible and infrared bXWIA* gamma rays).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

固体撮像素子、電子写真感光体等の光導電性層を構成す
る光導電性材料は、その使用上の目的から暗所での比抵
抗が高く(通常101mΩ眞以上)、かつ光照射によシ
比抵抗が小さくなる性質を有することが必要である。
Photoconductive materials constituting the photoconductive layer of solid-state imaging devices, electrophotographic photoreceptors, etc. have a high specific resistance in the dark (usually 101 mΩ or more) and are sensitive to light irradiation due to the purpose of use. It is necessary to have the property of reducing specific resistance.

電子写真を例にしてその除煙を説明すると。Let's explain smoke removal using electronic photography as an example.

まず感光体表面にコロナ放電により電荷全付与して帯電
させる。つづいて、感光体に光を照射すると電子と正孔
の対ができ、そのいずれか一方により表面の電荷が中和
されている。例えば。
First, the surface of the photoreceptor is fully charged by corona discharge. Next, when the photoreceptor is irradiated with light, pairs of electrons and holes are created, and one of them neutralizes the charge on the surface. for example.

正に帯電させた場合は光照射によシ生じた対のうち電子
によって中和され、感光体表面に正電荷の潜像が形成さ
れる。次いで、感光体表面の電荷と逆極性に帯電したト
ナーを感光体表面にクーロン力によって吸引させること
によシ可視化がなされる。この時、電荷がなくとも、ト
ナーの電荷で感光体に引きつけられるのを回避するため
に、感光体と現像器の間に電荷による電場と逆方向の電
場が生じるように現像器の電位を高くする。いわゆる現
像バイアスの処理がなされる。
When positively charged, it is neutralized by electrons among the pairs generated by light irradiation, and a positively charged latent image is formed on the surface of the photoreceptor. Next, visualization is performed by attracting toner charged to the opposite polarity to the surface of the photoreceptor by Coulomb force. At this time, in order to avoid toner being attracted to the photoconductor due to the toner charge even if there is no charge, the potential of the developer is set high so that an electric field in the opposite direction to the electric field due to the charge is generated between the photoconductor and the developer. do. A so-called developing bias process is performed.

上述した電子写真においてFi、その感光体として次の
ような条件を満足することが要求される。即ち、第1に
コロナ放電により帯電した電荷が光照射まで保持される
こと、第2に光照射により生成した電子と正孔の対が再
結合することなく、一方が表面の電荷を中和し、更に他
方が感光体の支持体まで瞬時に達すること1等が要求さ
れる。
In the electrophotography described above, Fi and its photoreceptor are required to satisfy the following conditions. That is, firstly, the charge generated by corona discharge is retained until light irradiation, and secondly, the electron-hole pair generated by light irradiation does not recombine and one neutralizes the surface charge. Furthermore, it is required that the other side instantly reach the support of the photoreceptor.

ところで、従来、光導電性材料としては非晶質カルコダ
ナイド系のものが用いられている。
By the way, amorphous chalcodanide-based materials have conventionally been used as photoconductive materials.

非晶質カルコグナイドは大面積化が容易であり。Amorphous chalcognide can be easily made into a large area.

かつ光導電性が優れる等の特徴を有する。しかしながら
、かかる非晶質カルコrナイrは光の吸収帯が可視から
紫外に近い所にあυ、実用上。
It also has characteristics such as excellent photoconductivity. However, the absorption band of such amorphous chlorine is from the visible to near the ultraviolet range, making it difficult to use in practice.

可視域の光に対する感度が低く、シがも破開が低く1w
電子写真応用した場合、寿命が短い等の種々の問題があ
った。
Sensitivity to visible light is low, and rupture is low at 1w.
When applied to electrophotography, there were various problems such as short life.

このようなことから、最近、光導電性材料としてアモル
ファスシリコン(以下、a−84と称す)を用いること
が注目されている。a −Sムは吸収波長域が広く、・
母ンクロマティックであり、感度も高い。また、硬度も
高く、電子写真感光体に応用した場合は従来のものより
10倍以上の寿命をもっことか期待されている。
For these reasons, the use of amorphous silicon (hereinafter referred to as a-84) as a photoconductive material has recently attracted attention. a-S has a wide absorption wavelength range,
It is maternally chromatic and highly sensitive. In addition, it has high hardness, and when applied to electrophotographic photoreceptors, it is expected to have a lifespan more than 10 times longer than conventional ones.

更に1人体に無害であり、単結晶シリコンと比較した場
合、安価で容易に大面積のものが得られる等多くの利点
を有する。しかしながら。
Furthermore, it is harmless to the human body, and has many advantages when compared to single crystal silicon, such as being inexpensive and easily obtainable over a large area. however.

a−81は暗所での比抵抗(以下、暗抵抗と称す)が低
く1通常10 ” Qa−10” Q(jlib−程f
il テs電子写真感光体のような静電潜像を形成する
ものでは1表面に帯電させた電荷を保持するととができ
ない。
A-81 has a low specific resistance in the dark (hereinafter referred to as dark resistance) and has a low specific resistance (hereinafter referred to as dark resistance).
In a device that forms an electrostatic latent image, such as an electrophotographic photoreceptor, it is impossible to retain a charge on one surface.

そこで、a−81を電子写真に応用した例では、感光層
と支持体との間にN、C,Oなどを添加した比抵抗の高
いa−81層或いはp型。
Therefore, in an example in which a-81 is applied to electrophotography, an a-81 layer with high resistivity or a p-type layer in which N, C, O, etc. are added between the photosensitive layer and the support is used.

n型のa−81層を設け、支持体からのキャリアの注入
を阻止することが試みられている。但し、後者のa−8
層層を用いる際は、正帯電の場合には電子をブロックし
、正孔を通過させうるp型のa−81層を、負帯電の場
合にはn型のa−8層層ft、使用する。こうした構造
の感光体では帯電能力を高くすることが可能である。
Attempts have been made to provide an n-type a-81 layer to prevent carrier injection from the support. However, the latter a-8
When using layers, use a p-type a-81 layer that blocks electrons and allows holes to pass in the case of a positive charge, and use an n-type a-8 layer ft in the case of a negative charge. do. A photoreceptor having such a structure can have a high charging ability.

しかしながら、前者の構造ではN、C,0を添加したa
 −8i層を厚くすると、感光層から支持体へ流れるキ
ャリアの通過をも阻止し、その結果、残留電位が高くな
るという問題が生じる。
However, in the former structure, a with added N, C, and 0
If the -8i layer is made thicker, it also blocks the passage of carriers flowing from the photosensitive layer to the support, resulting in a problem of higher residual potential.

一方、該a−8i層を薄くすると、現像バイアスによる
絶縁破壊を招く。後者の構造ではp型、n型のa 、−
81層を厚くしても前者のような問題は生じない。しか
しながら、a−81層は第1A族元素の添加によpp型
に1第VA族元素の添加によりn型に、夫々なるが、こ
れらの不純物の添加によって層中に歪が生じる。こうし
九a−8i層をブロッキング層として用い。
On the other hand, when the a-8i layer is made thinner, dielectric breakdown occurs due to development bias. In the latter structure, p-type, n-type a, -
Even if the 81 layer is made thicker, the former problem does not occur. However, the a-81 layer becomes pp type by adding the first group A element and becomes n type by adding the first group VA element, but the addition of these impurities causes strain in the layer. The Koushi 9a-8i layer was used as a blocking layer.

この上に光導電性層を積層した場合、各層の歪が異なる
ため1層間剥離の原因になる等の不都合さが生じる。ま
た、光導電性層に積層される表面被覆層に関しても同様
な問題が生じる。
When a photoconductive layer is laminated on top of the photoconductive layer, the strain of each layer is different, resulting in inconveniences such as delamination between layers. A similar problem also occurs with regard to the surface coating layer laminated on the photoconductive layer.

更に、上述し九a−8i層の両方を組合せた構造の光導
電性部材も提案されている(特開昭57−177156
号)。即ち、この光導電性部材は支持体上にp型又はn
型のa−81層及びN、C,0などを添加したa−81
層を順次積し、更にこの上に感光層を積層したものであ
る。しかしながら、かかる光導電性部材にあっては、N
、C,Oなど全添加したa−8層層を厚くすると、当然
、残留電位が高くなり、かといって残留電位が高くなら
ないようにa−8層層を薄くすると、絶縁破壊等を招く
Furthermore, a photoconductive member having a structure combining both of the above-mentioned 9a-8i layers has also been proposed (Japanese Patent Laid-Open No. 57-177156).
issue). That is, this photoconductive member is a p-type or an n-type photoconductive member on a support.
type a-81 layer and a-81 added with N, C, 0, etc.
The layers are laminated one after another, and a photosensitive layer is further laminated on top of the layers. However, in such a photoconductive member, N
, C, O, and the like will naturally increase the residual potential.On the other hand, if the a-8 layer is made thin so as not to increase the residual potential, dielectric breakdown or the like will occur.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に随みなされたもので、帯電能及び保
持能を従来と同等乃至それ以上向上できると共に、S間
の剥離を防止した長寿命の光導電性部材を提供しようと
するものである。
The present invention has been made in view of the above circumstances, and aims to provide a long-life photoconductive member that can improve chargeability and retention ability to the same level or even higher than conventional ones, and prevents peeling between S layers. be.

〔発明の概要〕[Summary of the invention]

本発明は支持体上にブロッキング層及び光導電性層を順
次有してなる光導電性部材において。
The present invention relates to a photoconductive member comprising a blocking layer and a photoconductive layer sequentially on a support.

前記ブロッキング層及び光導電性層の全ての層が少なく
ともSiと第1A族ヌは第VA族との構成元素を共通に
含み、かつ各層の界面近傍で前記S1以外の構成元素の
比が連続的に変化している部分が存在することを特徴と
するものである。
All the layers of the blocking layer and the photoconductive layer commonly contain at least Si and the constituent elements of Group 1A and Group VA, and the ratio of the constituent elements other than S1 is continuous near the interface of each layer. It is characterized by the presence of parts that change.

上記全ての層の構成元素は8iと第1A族又は第VA族
の元素の他にC及びH父はハロダンを用いてもよい。
In addition to 8i and elements of group 1A or group VA as the constituent elements of all the layers, C and H may be halodane.

上記ブロッキング層は単層でもよいか、よシ好ましくは
2層にすることが望ましい。この場合、第1fロツキン
グ層(支持体側)と第2ブロッキング層の中の第1A族
又は第VA族元累の濃度は第2ブロッキング層を第1プ
ロツキンダ層に比べて光学的バンドギャップを少し広く
することが帯1、能、保持能を向上させる点で有オUで
あることから、第2ブロッキング層よシ第1ブロッキン
グ層の方か高くなるように設定することが好ましい。
The blocking layer may be a single layer, or more preferably two layers. In this case, the concentration of Group 1A or Group VA elements in the 1F locking layer (support side) and the 2nd blocking layer makes the optical bandgap of the 2nd blocking layer a little wider than that of the 1st blocking layer. It is preferable to set the first blocking layer to be higher than the second blocking layer because it is advantageous in terms of improving band 1, performance, and retention ability.

次に1本発明の光導電性部材の一製造方法を説明する。Next, a method for manufacturing the photoconductive member of the present invention will be explained.

まず、導電性の支持体を真空反応各器に入れ。First, place a conductive support into a vacuum reactor.

反応容器内をメカニカルブースターポンブト油拡散ポン
プによシ101〜10−4iorr の真空にする。こ
の時、支持体は100〜400℃、の温度に保持する。
The inside of the reaction vessel is evacuated to 101 to 10<-4 >iorr using a mechanical booster pump and an oil diffusion pump. At this time, the support is maintained at a temperature of 100 to 400°C.

つづいて1反応容器内に81原子を含むガス、例えば8
1H,,81!H6,SIF。
Next, a gas containing 81 atoms in one reaction vessel, e.g.
1H,,81! H6, SIF.

等と第1A族元素又は第VA族元紫を含むドーピングガ
ス、及び必要に応じてCH,などのC原子を含むガス等
を目的とする混合比率で導入し、0.1〜l torr
 程度の圧力になるように排気系の排気速度を調整し、
定常状態になるまで待つ。次いで1反応容器内の電極間
に13.56MHz の高周波電力を印加して支持体上
にブロンキング層、光導電性層及び表面被覆層を順次成
膜する。この際、ドーピングガスの比率、或いは必要に
応じてC原子を含むガスの比率を逐次調整することによ
り、各層の界面近傍で構成元素の比を連続的に変化させ
ることができる。
A doping gas containing a Group 1A element or a Group VA element, and if necessary, a gas containing a C atom such as CH, etc. are introduced at a desired mixing ratio, and the mixture is heated to a temperature of 0.1 to 1 torr.
Adjust the exhaust speed of the exhaust system to achieve a pressure of
Wait until steady state is achieved. Next, a 13.56 MHz high frequency power is applied between the electrodes in one reaction vessel to sequentially form a bronking layer, a photoconductive layer and a surface coating layer on the support. At this time, by sequentially adjusting the ratio of the doping gas or the ratio of the gas containing C atoms as necessary, it is possible to continuously change the ratio of the constituent elements near the interface of each layer.

なお、ドーピングガスをフィクロ波等の電磁波で予め励
起することによシ、ドーピング効率の向上、成膜速度の
向上を達成できる。
Note that by exciting the doping gas in advance with electromagnetic waves such as fibrous waves, it is possible to improve doping efficiency and film formation speed.

・ しかして2本発明に係る光導電性部材は支持体上に
少なくともStと第1A族、第VA族の共通の構成元素
を含むブロッキング層、光導電性層及び表面被覆層全順
次積層し、かつ各層の界面近傍で前記構成元素の比が連
続的に変化している部分が存在する構造であるため、各
層間の歪差を減少でき1層間剥離を防止して高寿命化を
達成できる。また、層構成を支持体側より81と第1A
族、第VA族を少なくとも共通に含むブロッキング層、
光導電性層及び表面被覆層とすることによって、従来と
同等の帯電能並びに保持能を有する光導電性部材を得る
ことができる。
- Therefore, the photoconductive member according to the second invention includes a blocking layer containing common constituent elements of at least St, Group 1A, and Group VA, a photoconductive layer, and a surface coating layer all sequentially laminated on a support, In addition, since the structure has a portion where the ratio of the constituent elements continuously changes near the interface of each layer, it is possible to reduce the strain difference between each layer, prevent delamination between layers, and achieve a long life. In addition, the layer structure is changed from the support side to 81 and 1A.
a blocking layer that includes at least a group VA in common;
By forming the photoconductive layer and the surface coating layer, it is possible to obtain a photoconductive member having the same charging ability and holding ability as conventional ones.

なお、ブロッキング層を2層に分け、かつ第2ブロッキ
ング層を第1ブロツキングよシも光学的バンドギツプが
少しなるように導電性不純物V含有割合をρN整すると
共に、それら氾l。
The blocking layer is divided into two layers, and the conductive impurity V content ratio is adjusted to ρN so that the second blocking layer has a smaller optical band gap than the first blocking layer.

第2のプロンキング層をCを含ムアモルファス炭化シリ
コンとすることによって、従来に比べて帯電能並びに保
持能が著しく高い光導電性部材を得ることができる。ま
た、光導電性層を。
By using C-containing amorphous silicon carbide as the second pronging layer, it is possible to obtain a photoconductive member that has significantly higher chargeability and retention ability than conventional photoconductive members. Also, the photoconductive layer.

第1A族父は第VA族とCを含むp型又はn型のアモル
ファス炭化シリコンとすることによって、比抵抗が1O
11〜、1011Ω―、と高く、かつ移動度も通常のア
モルファスシリコンと比較して同程度p優れた特性をも
つものとなる。つ!、す。
By using p-type or n-type amorphous silicon carbide containing Group VA and C as the parent material of Group 1A, the resistivity can be reduced to 1O.
It has a high mobility of 11 to 10 11 Ω, and the same mobility is superior to that of ordinary amorphous silicon. One! ,vinegar.

アモルファス炭化シリコンをアンドープの真性半導体に
すると、比抵抗が低い場合が多く、ブロッキング層を設
けても、1!光により生成したキャリアが厚さ方向だけ
でなく、横方向にも走シ易く1画像のほやけの原因とな
る。なお、アモルファス炭化シリコンはSlとCの結合
が0 Siと81或いはSlとHの結合に比べて極めて少ない
ような材料である。
When amorphous silicon carbide is made into an undoped intrinsic semiconductor, the specific resistance is often low, and even if a blocking layer is provided, the resistivity is 1! Carriers generated by light tend to travel not only in the thickness direction but also in the lateral direction, causing blur in an image. Note that amorphous silicon carbide is a material in which the number of bonds between Sl and C is extremely small compared to the number of bonds between 0 Si and 81 or Sl and H.

〔発明の実施例〕[Embodiments of the invention]

次に1本発明の実施例を図面を参照して説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

まず、Al製の導電性支持体1を真空反応容器に入れ1
反応容器内をメカニカルブースターポンプと油回転ポン
プによシ10−3〜l O−’ torrの真空にした
。この時、支持体1を100〜400℃、の温度に保持
した。つづいて1反応容器内にB、H,/811(、の
流量割合がlXl0−”。
First, a conductive support 1 made of Al is placed in a vacuum reaction container.
The inside of the reaction vessel was brought to a vacuum of 10-3 to 1 O-' torr using a mechanical booster pump and an oil rotary pump. At this time, the support 1 was maintained at a temperature of 100 to 400°C. Subsequently, in one reaction vessel, the flow rate of B, H, /811 (, is 1X10-'').

CH4/ 81 H4の流量割合が8%となるように8
 、I H4HBt Ha1 及びCH,の混合ガスを
導入し。
CH4/ 81 8 so that the flow rate ratio of H4 is 8%
, I H4HBt Ha1 and CH, were introduced.

反応圧がQ、5torrとなるように排気系の排気速度
を調整した。ひきつづき1反応圧が定常状態になったら
1反応容器の電極間に13.56 MHzの高周波電力
200Wを投入し、この状態を5分間保持した後、5分
間で町Hs / 8 l Ha が5X10−’ の流
量割合まで減少するように混合ブスを逐次調整して導入
し支持体J上に厚さ1 7 fi m 、 B/B十s i の層最大値が5X
10−”atan%、 c/C十s tが1.0ato
m%のアモルファス炭化シリコンからなる第1ブロッキ
ング層2を成膜した。
The exhaust speed of the exhaust system was adjusted so that the reaction pressure was Q, 5 torr. Continuing, when the reaction pressure reached a steady state, 200 W of high frequency power of 13.56 MHz was applied between the electrodes of one reaction container, and this state was maintained for 5 minutes. In 5 minutes, Hs / 8 l Ha increased to 5X10- The mixing bus is successively adjusted and introduced so that the flow rate decreases to the flow rate ratio of
10-”atan%, c/C s t is 1.0ato
A first blocking layer 2 made of m% amorphous silicon carbide was formed.

次いで、同一高周波電力、同一反応圧の状態で賜Hs 
/ 81 Ha s CHa/81 I(a の流量割
合を変えずに5分間保持した後、5分間でCH,/81
 H,を約0.01%にまで減少するように8 i H
4m Bt Ha及びCH4の混合ガスを逐次幽整して
導入し。
Next, Hs was given under the same high frequency power and the same reaction pressure.
/ 81 Has CHa / 81 I (a After holding for 5 minutes without changing the flow rate, CH, / 81 in 5 minutes
8 i H to reduce H, to about 0.01%
A mixed gas of 4 m Bt Ha and CH4 was gradually regulated and introduced.

第1プロンキング層z上に厚さ2μm。2 μm thick on the first pronking layer z.

B/B+8 +の層最高値がlXl0−’ atom%
B/B+8 + layer maximum value is lXl0-' atom%
.

C/C+81の層最高値が1.0mtom%のアモルフ
ァスシリコンからなる第2ブロツキングl1i13を連
続的に成膜した。
A second blocking film 11i13 made of amorphous silicon having a maximum layer value of 1.0 mtom% of C/C+81 was continuously formed.

次いで、同一高周波電力、同一反応圧の状態で、B、H
,/5ir−14,CH,/8目(、の流量割合を天々
5X10”、約0.01%と変化させずに81H。
Next, under the same high frequency power and the same reaction pressure, B, H
, /5ir-14, CH, /8th (, 81H without changing the flow rate ratio of 5x10", about 0.01%.

s BtH@及びCH,の混合ガスを2時間導入し。s A mixed gas of BtH@ and CH was introduced for 2 hours.

泥2ブロッキング#3上に厚さ15μmSB/B十s 
1=lX10” atom%、C/C+81=2 Q、Qlatom%のアモルファス炭化シリコンからB
、I(、/81H,の流量割合カIX1.O−’ 、 
CD4/81H,の流量割合が約300%とに天々減、
増fるように81 H4# Bt ”+1及びCH,f
逐次調整して導入し、最後の一分間だけ高周波電力20
0Wを投入して光導電性層4上に厚さ0.1μm。
15 μm thick SB/B 10s on mud 2 blocking #3
1=lX10" atom%, C/C+81=2 Q, B from Qlatom% amorphous silicon carbide
, I(,/81H, flow rate ratio IX1.O-',
The flow rate ratio of CD4/81H decreased to about 300%,
81 H4# Bt ”+1 and CH, f to increase f
Adjust sequentially and introduce high-frequency power for only the last minute.
0 W was applied to the photoconductive layer 4 to a thickness of 0.1 μm.

B/B+s+の層ン大値が5 X 10−’ atom
% 、 C/C+81の層最大値が20 atom% 
の表面被覆層5′!)連続に成膜して感光体を製造した
(第1図図示)。なお、こうした感光体の厚み方向の工
量モデルを第3図に示す。なお、第3図中のO・・・・
・・oは81)T、、o−、はB、H,(2000pp
nl ) 、 0−−−−0はB、Ha(20ppm 
) I WFicH,で、これらガスは下記表の如き流
量に設定される。
The maximum layer value of B/B+s+ is 5 X 10-' atom
%, the maximum layer value of C/C+81 is 20 atom%
Surface coating layer 5'! ) A photoreceptor was manufactured by continuously forming a film (as shown in FIG. 1). Incidentally, a model for the amount of work in the thickness direction of such a photoreceptor is shown in FIG. In addition, O in Figure 3...
・・o is 81) T,, o-, is B, H, (2000pp
nl), 0---0 is B, Ha (20ppm
) I WFicH, and these gases are set at flow rates as shown in the table below.

3 4 しかして1本実施例の電子写真感光体は層間の剥離がな
く、かつコロナ放電によるチャージャーからドラムへの
流入電荷0,4μc/m” の条件において、表面電位
500Vが得られた。また、現像バイアスに対する耐圧
は1500V以上で、従来のものでは200vで絶縁破
壊を生じる部分が存在したのに比して大幅な改善が達成
された。更に、100万枚の繰り返し使用においても良
好な画像が得られ、充分に長寿命であることが確認され
た。
3 4 However, in the electrophotographic photoreceptor of this example, there was no peeling between the layers, and a surface potential of 500 V was obtained under the condition that the charge flowing from the charger to the drum due to corona discharge was 0.4 μc/m. The withstand voltage against developing bias is over 1500V, which is a significant improvement compared to the conventional product, which had parts that caused dielectric breakdown at 200V.Furthermore, good images were obtained even after repeated use of 1 million sheets. was obtained, and it was confirmed that it had a sufficiently long life.

なお、上記実施例において、第1ブロツキング層、第2
ブロツキング層、光導電性層及び表面被覆層な次のよう
な条件に設定しても同様な効果を有する感光体を得るこ
とができた。
Note that in the above embodiments, the first blocking layer, the second blocking layer
Even when the following conditions were set for the blocking layer, photoconductive layer, and surface coating layer, a photoreceptor having similar effects could be obtained.

(1)第1ブロッキング層 B、 H,/S i H,の流量割合をlXl0−’〜
l×10−” 、 CH4/8 tH4の同割合を10
〜100%にしてB/B+81 = I X 10−”
 〜l atom% 、C/C+8i=0.1〜JQ 
atom%の第1ブロツキング1曽を成膜。
(1) The flow rate of the first blocking layer B, H, /S i H, is set to lXl0-'~
l×10-”, the same proportion of CH4/8 tH4 is 10
~100% B/B+81 = I X 10-”
~l atom%, C/C+8i=0.1~JQ
A first blocking layer of 1 atom % is deposited.

5 (II)第2ブロッキング層 Bt Hll /’8 t H4ノ同割合’k l X
i O−’ 〜I XI O−’、 CH,/8 tH
4の同割合を10〜100%にしてB/B+81 = 
5.0XlO−” atom%以下、c/c+st= 
0.1〜50 atom%の$2ブロッキング層を成膜
5 (II) Second blocking layer Bt Hll /'8 t H4 equal proportion'k l X
i O-' ~ I XI O-', CH, /8 tH
Set the same ratio of 4 to 10-100% and B/B+81 =
5.0XlO-” atom% or less, c/c+st=
Deposit a $2 blocking layer of 0.1-50 atom%.

(ill)光導電性層 B、H,/s 目i、o同割合t IXI O−’ 〜
I Xi O−’、 CH4/s tH,の同割合を5
0%以下、(但しI X l O”以上)にし−t(B
/B+81=5.OX 10−a tcm%以下、 C
/C+81=0.05atom%以下の光導電性層金成
膜。
(ill) Photoconductive layer B, H, /s eyes i, o same proportion t IXI O-' ~
The same ratio of I Xi O-', CH4/s tH, is 5
0% or less (but not less than I
/B+81=5. OX 10-atcm% or less, C
/C+81=0.05 atom% or less photoconductive layer gold film deposition.

(lv)表面被覆層 B、H,/8iH,の同割合をlXl0−”〜l X 
10−’、 CH4/81H,の同割合を100%以上
にしてB/B+8i=5.0XIO”atom%以下、
 C/C+8i=10atom%以上の表面被覆層を成
膜。
(lv) The same proportions of surface coating layers B, H, /8iH,
10-', CH4/81H, the same ratio is 100% or more, B/B + 8i = 5.0XIO" atom% or less,
A surface coating layer of C/C+8i=10 atom% or more is formed.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く5本発明によれば帯電能並びに保持能
が従来と同等乃至それ以上向上され。
As described in detail above, according to the present invention, the charging ability and the holding ability are improved to the same level or more than the conventional ones.

6 かつ層間剥離を防止して耐用寿命が向上された′電子写
真の感光体等として有効な光導電性部材を提供できる。
6. It is also possible to provide a photoconductive member which is effective as a photoreceptor for electrophotography and has an improved service life by preventing delamination.

【図面の簡単な説明】[Brief explanation of the drawing]

飢1図は本発明の実施例において造られた感光体の断面
図、第2図は第1図の感光体の厚さ方向のエネルギーモ
デルを示す図、第3図は実施例の各l―の成膜に際して
の8iH,、B!H6,CH。 の流量モデルを示す図である。 J・・・支持体、2・・・第1ブロツキング層、3・・
・第2ブロツキング層、4・・・光導電性層% 5・・
・表面被覆層。 出願人代理人 弁理士 鈴 江 武 彦7
Figure 1 is a cross-sectional view of a photoreceptor manufactured in an example of the present invention, Figure 2 is a diagram showing an energy model in the thickness direction of the photoreceptor in Figure 1, and Figure 3 is a cross-sectional view of a photoreceptor manufactured in an example of the present invention. 8iH,,B! H6, CH. It is a figure showing a flow rate model of. J...Support, 2...First blocking layer, 3...
・Second blocking layer, 4...Photoconductive layer% 5...
・Surface coating layer. Applicant's agent Patent attorney Takehiko Suzue7

Claims (1)

【特許請求の範囲】 a)支持体上にブロッキング層及び光導電性層を順次有
する光導電性部材において、前記ブロッキング層及び光
導電性材料ての層が少なくとも8iと第1A族又は第v
A族との構成元素を共通に含み、かつ各層の界面近傍で
前記81以外の構成元素の比が連続的に変化している部
分が存在することを特徴とする光導電、性部材。 (21ブロッキング層が第1ブロッキング層と第2プロ
ツキンダ層とから構成され、かつ第1プロツキンダ層中
の第1A族ヌは第VA族の元素の濃度1に第2ブロッキ
ング層のそれより高くしたことを特徴とする特許請求の
範囲第1項記載の光導電性部材。 (31全ての層中にはsiと第1A族又は第VA族の他
にC及びH又はハロゲノの少なくともいずれか一方を共
通に含むことを特徴とする特許請求の範囲第1項記載の
光導電性部材。
Claims: a) A photoconductive member having sequentially a blocking layer and a photoconductive layer on a support, wherein the blocking layer and the layer of photoconductive material are at least 8i and Group 1A or V
1. A photoconductive material, characterized in that it contains a constituent element in common with Group A, and has a portion in which the ratio of the constituent elements other than 81 changes continuously near the interface of each layer. (21) The blocking layer is composed of a first blocking layer and a second blocking layer, and the concentration of the group VA element in the first blocking layer is set to 1, which is higher than that in the second blocking layer. A photoconductive member according to claim 1, characterized in that (31) all the layers contain at least one of C and H or halogen in addition to Si and Group 1A or Group VA. The photoconductive member according to claim 1, characterized in that the photoconductive member comprises:
JP18263683A 1983-09-30 1983-09-30 Photoconductive member Granted JPS6073628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18263683A JPS6073628A (en) 1983-09-30 1983-09-30 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18263683A JPS6073628A (en) 1983-09-30 1983-09-30 Photoconductive member

Publications (2)

Publication Number Publication Date
JPS6073628A true JPS6073628A (en) 1985-04-25
JPH0535425B2 JPH0535425B2 (en) 1993-05-26

Family

ID=16121753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18263683A Granted JPS6073628A (en) 1983-09-30 1983-09-30 Photoconductive member

Country Status (1)

Country Link
JP (1) JPS6073628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223848A (en) * 1985-03-29 1986-10-04 Shindengen Electric Mfg Co Ltd Electrohpotographic sensitive body
JPS62170968A (en) * 1986-01-23 1987-07-28 Hitachi Ltd Amorphous silicon electrophotographic sensitive body and its production
JPS62257172A (en) * 1986-05-01 1987-11-09 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body
JPS63271356A (en) * 1987-04-30 1988-11-09 Kyocera Corp Electrophotographic sensitive body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486341A (en) * 1977-12-22 1979-07-09 Canon Inc Electrophotographic photoreceptor
JPS5614241A (en) * 1979-07-16 1981-02-12 Matsushita Electric Ind Co Ltd Electrophotographic receptor
JPS57119357A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5888115A (en) * 1981-11-17 1983-05-26 Canon Inc Photoconductive component
JPS5895875A (en) * 1981-12-01 1983-06-07 Canon Inc Photoconductive member
JPS58106876A (en) * 1981-12-19 1983-06-25 Tokyo Denki Daigaku Photoelectric transducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486341A (en) * 1977-12-22 1979-07-09 Canon Inc Electrophotographic photoreceptor
JPS5614241A (en) * 1979-07-16 1981-02-12 Matsushita Electric Ind Co Ltd Electrophotographic receptor
JPS57119357A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5888115A (en) * 1981-11-17 1983-05-26 Canon Inc Photoconductive component
JPS5895875A (en) * 1981-12-01 1983-06-07 Canon Inc Photoconductive member
JPS58106876A (en) * 1981-12-19 1983-06-25 Tokyo Denki Daigaku Photoelectric transducer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223848A (en) * 1985-03-29 1986-10-04 Shindengen Electric Mfg Co Ltd Electrohpotographic sensitive body
JPH0554953B2 (en) * 1985-03-29 1993-08-13 Shindengen Electric Mfg
JPS62170968A (en) * 1986-01-23 1987-07-28 Hitachi Ltd Amorphous silicon electrophotographic sensitive body and its production
JPS62257172A (en) * 1986-05-01 1987-11-09 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body
JPH0588836B2 (en) * 1986-05-01 1993-12-24 Shindengen Kogyo Kk
JPS63271356A (en) * 1987-04-30 1988-11-09 Kyocera Corp Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH0535425B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
JPS61100759A (en) Photoconductive material
JPS6073628A (en) Photoconductive member
JPS6083957A (en) Electrophotographic sensitive body
JPS6194054A (en) Photoconductive member
JPH0782240B2 (en) Electrophotographic photoreceptor
JPS61126559A (en) Photoconductive material
JPH058420B2 (en)
JPS61126557A (en) Photoconductive material
JPS61138958A (en) Photoconductive material
JPS61126560A (en) Photoconductive material
JPH0554673B2 (en)
JPS61177465A (en) Photoconductive member
JPS59185345A (en) Photoconductive member
JPS5876842A (en) Electrophotographic receptor
JPS62151857A (en) Photoconductive member
JPS61126558A (en) Photoconductive material
JPS61134768A (en) Photoconductive element
JPS61177467A (en) Photoconductive member
JPS60119568A (en) Photoconducting member
JPH0616178B2 (en) Photoconductive member
JPS61177466A (en) Photoconductive member
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS61138957A (en) Photoconductive material
JPS62151856A (en) Photoconductive member
JPS60112046A (en) Photoconductive member