JPS61126559A - Photoconductive material - Google Patents

Photoconductive material

Info

Publication number
JPS61126559A
JPS61126559A JP59248088A JP24808884A JPS61126559A JP S61126559 A JPS61126559 A JP S61126559A JP 59248088 A JP59248088 A JP 59248088A JP 24808884 A JP24808884 A JP 24808884A JP S61126559 A JPS61126559 A JP S61126559A
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
charge injection
photoconductive
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59248088A
Other languages
Japanese (ja)
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59248088A priority Critical patent/JPS61126559A/en
Priority to US06/800,972 priority patent/US4666803A/en
Priority to DE19853541764 priority patent/DE3541764A1/en
Publication of JPS61126559A publication Critical patent/JPS61126559A/en
Priority to US06/913,369 priority patent/US4716090A/en
Priority to US06/913,362 priority patent/US4724193A/en
Priority to US06/913,368 priority patent/US4716089A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To prevent residual potential on the surface of a photosensitive body and dielectric breakdown due to developing bias by laminating the first charge injection preventive layer made of an amorphous silicon carbide on a conductive substrate, on this layer the second charge injection preventive layer made of an amorphous silicon nitride, and on this layer a photoconductive layer made of an amorphous silicon. CONSTITUTION:The photoconductive material 1 is composed of the conductive substrate 2, the charge injection preventive layer 3 made of an amorphous silicon carbide contg. an element of group IIIa or Va of the periodic table in an amt. of 1X10<-4>-1.0 atomic % formed on the substrate 2, the 5-40mum thick second charge injection preventive layer 4 made of an amorphous silicon nitride contg. said element in an amt. of 1X10<-4> atomic % formed on the layer 3, the first photoconductive layer 5 made of an amorphous silicon contg. said element in an amt. of 1X10<-8>-1X10<-4> atomic % formed on the layer 4, and a 500Angstrom -5mum thick surface coat layer 6 made of an amorphous silicon carbide, silicon nitride, or silicon oxide formed o the layer 5 for enhancing chemical stability.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光(紫外から可視、赤外、X線、γ線等にわた
る領域の電磁波をいう)に感受性のある光導電部材に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a photoconductive member that is sensitive to light (electromagnetic waves ranging from ultraviolet to visible, infrared, X-rays, gamma rays, etc.).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

固体撮像素子、電子写真感光体等における光導電層を構
成する光導電性材料は、その使用上の目的から暗所での
比抵抗が高く(通常1013Ω1以上)、かつ光照射に
より比抵抗が小さくなる性質をもつものでなくてはなら
ない。
Photoconductive materials constituting photoconductive layers in solid-state imaging devices, electrophotographic photoreceptors, etc. have a high specific resistance in the dark (usually 1013Ω1 or more) due to the purpose of use, and have a low specific resistance when irradiated with light. It must have the following characteristics.

ここでは電子写真を例にとって、その原理及び感光体と
して必要な条件を簡単に説明する。電子写真は感光体表
面にコロナ放電により電荷をふらせ帯電させる。次に感
光体に光を照射すると電子と正孔の対ができそのどちら
か一方により表面の電荷が中和される。例えば正に帯電
させた場合。
Here, taking electrophotography as an example, its principle and conditions necessary for a photoreceptor will be briefly explained. In electrophotography, the surface of a photoreceptor is charged by spreading electric charge through corona discharge. Next, when the photoreceptor is irradiated with light, pairs of electrons and holes are created, and one of them neutralizes the surface charge. For example, if it is positively charged.

光照射によりできた対のうち電子によって中和され感光
体表面に正電荷の潜像が形成される。可視化は感光体表
面の電荷と異符号に帯電したトナーと呼ばれる黒粉体を
感光体表面にクーロン力によって吸引させることにより
なされる。このとき、感光体表面に電荷がなくとも、ト
ナーの電荷で感光体に引きつけられることを避けるため
、感光体と現像器の間に電荷による電場と逆方向の電場
が生ずる。−うに現像器の電位を高くするという処理が
なされている。これを、現像バイアスという。
Among the pairs created by the light irradiation, the electrons are neutralized and a positively charged latent image is formed on the surface of the photoreceptor. Visualization is achieved by attracting black powder called toner, which is charged with the opposite sign to the charge on the surface of the photoreceptor, to the surface of the photoreceptor using Coulomb force. At this time, even if there is no charge on the surface of the photoreceptor, an electric field is generated between the photoreceptor and the developer in the opposite direction to the electric field due to the charges in order to avoid toner being attracted to the photoreceptor due to the toner's charge. - Processing is done to increase the potential of the developing device. This is called developing bias.

以上が原理であるが、つぎに感光体として必要な条件を
述べると、第1にコロナ放電により帯電した電荷が光照
射まで保持されること、第2に光照射により生成した電
子と正孔の対が再結合することなく、一方が表面の電荷
を中和し、さらにもう一方は感光層の支持体まで短時間
に到達することなどがあげられる。
The above is the principle, but next we will describe the conditions necessary for a photoreceptor: firstly, the charge charged by corona discharge is retained until light irradiation, and secondly, the electrons and holes generated by light irradiation must be maintained until light irradiation. For example, one of the pairs neutralizes the surface charge without recombining, and the other one reaches the support of the photosensitive layer in a short time.

従来、光導電部材における光導電性層の形成に使用され
るものとして非晶質カルコゲナイド系材料がある。非晶
質カルコゲナイド系材料は、大面積化を容易に達成する
ことのできる優れた光導電性材料であるが、光吸収領域
端が可視領域から紫外領域に近いところまでにあるので
実用上可視領域における光感度が低く、また硬度が低い
ので電子写真感光体に応用した場合、寿命が短かいなど
幾つかの問題を有している。
Conventionally, amorphous chalcogenide materials have been used to form photoconductive layers in photoconductive members. Amorphous chalcogenide materials are excellent photoconductive materials that can easily be made into large-area materials, but the edges of the light absorption region range from the visible region to near the ultraviolet region, so they are practically limited to the visible region. Due to its low photosensitivity and low hardness, it has several problems when applied to electrophotographic photoreceptors, including short life.

このような問題点に基づき最近注目されている光導電性
材料にはアモルファスシリコンがある(以下、a−5i
と記す)、 a−5iは吸収波長域が広く全整色(Pa
nchromatic)であり、光感度も高い。
Amorphous silicon is a photoconductive material that has recently attracted attention due to these problems (hereinafter referred to as a-5i).
), a-5i has a wide absorption wavelength range and is fully colorimetric (Pa
nchromatic) and has high photosensitivity.

また、a−5iは硬度も高く、電子写真感光体に応用し
た場合、従来のものより10倍以上の寿命を持つことが
期待されている。さらにa−5iは、人体に無害であり
、単結晶シリコンと比較した場合、安価で容易に大面積
化を図ることができる等の多くの利点を有する。
Furthermore, a-5i has high hardness, and when applied to electrophotographic photoreceptors, it is expected to have a lifespan 10 times longer than conventional ones. Furthermore, a-5i has many advantages such as being harmless to the human body and being inexpensive and easily large-sized when compared with single-crystal silicon.

しかしながら、a−5iは暗所での比抵抗C以下。However, a-5i has a specific resistance of less than C in the dark.

暗抵抗という)が通常10@Ωc11〜10IOΩ口程
度の低さであるから、静電潜像を形成する電子写真感光
体にあっては、その表面に帯電した電荷を保持すること
ができない。そこで、a−5iを電子写真に応用した例
では、アモルファスシリコン感光層と支持体との間に、
窒化シリコン、炭化シリコン、酸化シリコンなどを介在
させることにより支持体からのキャリアの注入を防止す
ることが試みられている。
Since the dark resistance (referred to as dark resistance) is usually as low as about 10@Ωc11 to 10 IOΩ, an electrophotographic photoreceptor that forms an electrostatic latent image cannot retain charges on its surface. Therefore, in an example where a-5i is applied to electrophotography, between the amorphous silicon photosensitive layer and the support,
Attempts have been made to prevent carrier injection from the support by interposing silicon nitride, silicon carbide, silicon oxide, or the like.

しかしながら、この試みにより比抵抗の高いa−5i層
の厚みを大きくすると、その上にあるa−5i層から支
持体へ流れるキャリアの通過を阻止することとなるので
、結果として残留電位が高くなるという問題が生じてし
まう。また、比抵抗の高いa−5i層の厚みを小さくす
ると、十分な電位保持能を持たせることができなくなっ
てしまい、また現像バイアスによる絶縁破壊が起るとい
う欠点を有している。
However, if this attempt was made to increase the thickness of the a-5i layer with high resistivity, it would block the passage of carriers flowing from the overlying a-5i layer to the support, resulting in a higher residual potential. This problem arises. Further, if the thickness of the a-5i layer having a high specific resistance is made small, it becomes impossible to provide sufficient potential holding ability, and there are also disadvantages in that dielectric breakdown occurs due to development bias.

一方、導電性基体と光導電性層の間にP型あるいはn型
の導電性をもつ半導体膜を設ける方法もある。通常は硼
素(8)あるいは燐(P)を多量にドープしたP型ある
いはn型の非晶質シリコン−を用いる。このような層を
電荷注入防止層と呼ぶ。この層における電荷注入防止能
はBあるいはPを多くドープすることにより向上するが
、そのような膜は膜内部の歪が大きく、その上に歪の異
なる膜を積層すると膜が剥離してしまうという不具合を
有している。また、非晶質シリコンの光吸収は広い波長
域にわたって起り、光吸収端付近でも徐々に吸収が減少
するという様相を示す。すなわち、700n+mから8
00nmの波長域では吸収は減少するが零にはならず、
僅かながら吸収するものである。
On the other hand, there is also a method of providing a semiconductor film having P-type or n-type conductivity between the conductive substrate and the photoconductive layer. Usually, P-type or n-type amorphous silicon heavily doped with boron (8) or phosphorus (P) is used. Such a layer is called a charge injection prevention layer. The ability to prevent charge injection in this layer can be improved by doping a large amount of B or P, but such a film has a large internal strain, and if a film with a different strain is stacked on top of it, the film will peel off. It has a defect. Furthermore, light absorption in amorphous silicon occurs over a wide wavelength range, and the absorption gradually decreases even near the light absorption edge. That is, from 700n+m to 8
In the wavelength range of 00 nm, absorption decreases but does not become zero.
It absorbs a small amount.

このような材料で光導電性層を作る場合、電子写真感光
体のように光導電性層の膜厚が厚い場合には、長波長光
を光導電性層の基体に近いところでも吸収する。非晶質
シリコンは電子、正孔とともにその易動度はあまり高く
ないので、露光により感光体の表面より遠い所で発生し
たキャリアは残り易い。電子写真装置には1枚の画像を
形成した後、感光体表面に残る電荷を除去する除電と呼
ばれるプロセスがあるが、これを光照射で行なう場合に
は上記理由により残留した膜中のキャリアが次の画像を
得るために行なう感光体表面の帯電による表面電荷を中
和してしまう。したがって、露光直後の帯電能は暗中に
放置した後の帯電能よりも大幅に低下するという不具合
が生じている。
When a photoconductive layer is made of such a material, if the photoconductive layer is thick as in an electrophotographic photoreceptor, long-wavelength light is absorbed even in areas close to the base of the photoconductive layer. Since the mobility of amorphous silicon, along with electrons and holes, is not very high, carriers generated at a distance from the surface of the photoreceptor due to exposure tend to remain. Electrophotographic equipment has a process called static elimination that removes the charge remaining on the surface of the photoreceptor after forming an image, but when this is done by light irradiation, the carriers in the film that remain are removed due to the above-mentioned reasons. This neutralizes the surface charge caused by charging the surface of the photoreceptor to obtain the next image. Therefore, a problem arises in that the charging ability immediately after exposure is much lower than the charging ability after being left in the dark.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情にもとづきなされたもので、感光体の
表面に残留電位を生ぜしぬることなく。
The present invention has been made based on the above circumstances, and does not generate residual potential on the surface of the photoreceptor.

高い電位保持能ならびに帯電能を有するとともに、現像
バイアスによる絶縁破壊を起すことのない光導電部材を
提供することを目的とする。
It is an object of the present invention to provide a photoconductive member that has high potential holding ability and charging ability and does not cause dielectric breakdown due to development bias.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために導電性支持体上に電
荷注入防止層、光導電性層および表面被覆層の順序で成
層される光導電部材において、上記支持体と光導電性層
との間に支持体側からma族元素またはVa族元素のう
ちいずれか一方を1xio−4乃至1.Oato■ic
%を含む非晶質炭化シリコンより成る第1の電荷注入防
止層が積層され、さらにこの第1の電荷注入防止層の上
に膜厚が5μl乃至40μ−にして、かつ周期律表ma
族元素またはVa族元素のうちいずれか一方を1×10
−”乃至I X 10 8atomic%を含む非晶質
窒化シリコンより成る第2の電荷注入防止層が積層され
ることを特徴とするものである。
In order to achieve the above object, the present invention provides a photoconductive member in which a charge injection prevention layer, a photoconductive layer and a surface coating layer are formed on a conductive support in this order. In between, either one of the Ma group element or the Va group element is added from 1xio-4 to 1. Oato■ic
A first charge injection prevention layer made of amorphous silicon carbide containing % is laminated, and further on this first charge injection prevention layer, the film thickness is 5μl to 40μ−, and the periodic table ma
1×10 of either group element or Va group element
A second charge injection prevention layer made of amorphous silicon nitride containing 1.times.-" to 1.times.108 atomic percent is stacked.

非晶質窒化シリコンより成る第2の電荷注入防止層を積
層したことを特徴とするものである。
It is characterized in that a second charge injection prevention layer made of amorphous silicon nitride is laminated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例にもとづいて説明す
る。図中、(1)はたとえば電子写真感光体として使用
する光導電部材である。この光導電部材(1)は平板状
またはドラム状の導電性支持体(2)上に積層され、周
期律表ma族元素またはVa族元素をI X I O”
1.Oatoi+ic%含む非晶質炭化シリコンから成
る第1の電荷注入防止層(3)と、この第1の電荷注入
防止層(3)の上に積層され、IIIa族元素またはV
a族元素のいずれか一方をI X 10−8〜L X 
10−’atomic%含む非晶質窒化シリコンから成
る膜厚5μm〜40μmの第2の電荷注入防止層(4)
と、この第2の電荷注入防止層(4)の上に積層され、
周期律表111a族元素またはVa族元素を1×10−
’ 〜1×10’″’ atomic%含む非晶質シリ
コンより成る膜厚0.5μm〜5μ−の光導電性層(5
)と、さらに化学的安定性の向上のために上記光導電性
層(5)の上に500A〜5μm膜厚の非晶質炭化シリ
コン、窒化シリコンあるいは酸化シリコンを積層した表
面被覆層(6)とから構成される。
The present invention will be described below based on an embodiment shown in the drawings. In the figure, (1) is a photoconductive member used, for example, as an electrophotographic photoreceptor. This photoconductive member (1) is laminated on a flat plate-shaped or drum-shaped conductive support (2), and contains elements of group Ma or group Va of the periodic table.
1. A first charge injection prevention layer (3) made of amorphous silicon carbide containing Oatoi + ic%, and a group IIIa element or V
Any one of the group a elements I X 10-8 ~ L X
A second charge injection prevention layer (4) having a thickness of 5 μm to 40 μm and made of amorphous silicon nitride containing 10-' atomic%.
and laminated on this second charge injection prevention layer (4),
Group 111a element or Va group element of the periodic table at 1×10−
A photoconductive layer (5 μm) with a film thickness of 0.5 μm to 5 μ− made of amorphous silicon containing 1×10′″’ atomic%
), and a surface coating layer (6) in which amorphous silicon carbide, silicon nitride, or silicon oxide with a thickness of 500 A to 5 μm is laminated on the photoconductive layer (5) to further improve chemical stability. It consists of

つぎに、各層について説明する。まず、第1の電荷注入
防止層(3)の膜厚は5μmでも良いが光導電部材(1
)の表面を帯電して用いる場合にはどの程度の表面電位
を得るかによって膜厚を変えるように設定する。また、
光導電性層(5)として積層される非晶質シリコンは広
い波長域に亘って吸光係数が高く、上記膜厚で充分な感
度が得られる。
Next, each layer will be explained. First, the thickness of the first charge injection prevention layer (3) may be 5 μm;
) When used with a charged surface, the film thickness is set to vary depending on how much surface potential is to be obtained. Also,
The amorphous silicon laminated as the photoconductive layer (5) has a high absorption coefficient over a wide wavelength range, and sufficient sensitivity can be obtained with the above film thickness.

さらに、表面被覆層(6)は電子の易動度を高くするた
めに同期律表■a族元素のドーピングも好ましい。
Further, the surface coating layer (6) is preferably doped with an element of group 1a of the synchronous table in order to increase the mobility of electrons.

一方、第2の電荷注入防止層(4)は第1の電荷注入防
止層(3)の補助的役割を果すものであって。
On the other hand, the second charge injection prevention layer (4) plays a supplementary role to the first charge injection prevention layer (3).

光学的バンドギャップが第1の電荷注入防止層(3)の
場合よりも僅か広く、また比抵抗も高い非晶質窒化シリ
コンである。
It is amorphous silicon nitride, which has an optical bandgap slightly wider than that of the first charge injection prevention layer (3) and also has a high specific resistance.

つぎに、上記構成にもとづく本発明の光導電部材の成膜
方法を説明する。まず、導電性支持体(2)を真空反応
室(図示しない)に取付け、反応室内を図示しないメカ
ニカルブースターポンプと油回転ポンプにより10−3
〜10−4Torrの真空状態とする。このとき、上記
支持体(2)は100℃〜400℃の温度に保持してお
く。
Next, a method for forming a photoconductive member of the present invention based on the above structure will be explained. First, the conductive support (2) is attached to a vacuum reaction chamber (not shown), and a mechanical booster pump (not shown) and an oil rotary pump (not shown)
A vacuum state of ~10 −4 Torr is established. At this time, the support (2) is maintained at a temperature of 100°C to 400°C.

つぎに1反応室内にSi原子を含むガス、例えば5iF
14 、 SiH6、SiF4等のガスを導入するが第
1の電荷注入防止層(3)に用いられる非晶質炭化シリ
コンを成膜するには上記ガスにco4.cna等の炭化
水素を混合する。また第2の電荷注入防止層(4)に用
いられる非晶質窒化シリコンを成膜するにはN2.NH
3等のガスを混合すればよい。この際、ガスの混合比を
変えることにより光学的バンドギャップを変えることが
できる。
Next, a gas containing Si atoms, for example 5iF, is added to one reaction chamber.
14. A gas such as SiH6 or SiF4 is introduced, but in order to form a film of amorphous silicon carbide used for the first charge injection prevention layer (3), CO4. Mix hydrocarbons such as cna. In addition, N2. N.H.
It is sufficient to mix 3 grade gases. At this time, the optical bandgap can be changed by changing the gas mixture ratio.

さらに1表面被覆層(6)として用いられる周期律表T
IIa族元素またはVa族元素のドーピングには[32
H6+ BF3.あるいはPH3、PFs等のガスを混
合することにより達成される。
Furthermore, periodic table T used as one surface coating layer (6)
For doping with Group IIa or Va elements, [32
H6+ BF3. Alternatively, this can be achieved by mixing gases such as PH3 and PFs.

このようなガスを各層の組成にもとづき反応室内に導入
し、0.1〜3 Torr程度の圧力となるように排気
速度を調節する。
Such a gas is introduced into the reaction chamber based on the composition of each layer, and the exhaust speed is adjusted so that the pressure is approximately 0.1 to 3 Torr.

つぎに、上記支持体(2)の周辺にプラズマが起るよう
に設置した電極間に高周波電力を投入することにより支
持体(2)上に成膜することができる。
Next, a film can be formed on the support (2) by applying high frequency power between electrodes installed so that plasma is generated around the support (2).

そこで、上記成膜方法を用いて例えばA1の円筒状支持
体に積層し、電子写真感光体とした一例を説明する。ま
ず、導電性支持体(2)上に硼素(B)をI X 10
−3at、owic%ドーピングした非晶質炭化シリコ
ンから成る第1の電荷注入防止層(3)が0.5μmの
膜厚となるように積層する。この第1の電荷注入防止層
(3)は硼素(B)を多くドーピングしており、比抵抗
が低く、かつ光学的バンドギャップも1.7eV程度で
ある。
Therefore, an example will be described in which the film is laminated onto, for example, an A1 cylindrical support using the above-mentioned film forming method to form an electrophotographic photoreceptor. First, boron (B) is placed on the conductive support (2) at I x 10
A first charge injection prevention layer (3) made of amorphous silicon carbide doped with -3at, owic% is laminated to a thickness of 0.5 μm. This first charge injection prevention layer (3) is doped with a large amount of boron (B), has a low specific resistance, and has an optical band gap of about 1.7 eV.

つぎに、第2の電荷注入防止層(4)は硼素(B)をI
 X 10−6at、omic%ドーピングした非晶質
窒化シリコンを25μmの膜厚に積層する。この第2の
電荷注入防止層(4)は少量の硼素(B)をドーピング
することにより真性領域に近いものが得られ、比抵抗は
1013Ωcm以上と高く、光学的バンドギャップも1
 、75eV程度で、上記第1の電荷注入防止層(3)
より広くなる。
Next, the second charge injection prevention layer (4) is made by adding boron (B) to I
Amorphous silicon nitride doped with X 10-6at and omic% is laminated to a thickness of 25 μm. This second charge injection prevention layer (4) can be obtained close to the intrinsic region by doping with a small amount of boron (B), has a high specific resistance of 1013 Ωcm or more, and has an optical band gap of 1.
, about 75 eV, the first charge injection prevention layer (3)
It becomes wider.

つぎに、光導電性M(5)は非晶質シリコンを5μm程
度の膜厚に積層する。この光導電性層(5)はドーピン
グしないでもよいが硼素(B)を1×10−’atom
ic%程度ドーピングすることにより正孔の易動度が大
きくなり、より好ましいものが得られる。
Next, photoconductive material M(5) is formed by laminating amorphous silicon to a thickness of about 5 μm. This photoconductive layer (5) may not be doped, but may be doped with boron (B) at 1×10-' atoms.
By doping to about ic%, the mobility of holes increases, and a more preferable result can be obtained.

また、この層は1.55eV程度の光学的バンドギャッ
プをもっており、広い波長域に亘って光を吸収すること
ができる。
Further, this layer has an optical band gap of about 1.55 eV and can absorb light over a wide wavelength range.

さらに、表面被覆層(6)は光学的バンドギャップが2
.2eV、比抵抗が1014Ωcm程度の非晶質炭化シ
リコンを1μmの膜厚に積層する。この表面被覆層(6
)は0.1μm程度でもよいが、厚くても5μI以下で
あれば多少の残留電位がふえるだけであって、それ以上
に暗中での帯電能の向上が見られる上、化学的にも安定
するという利点を有する。
Furthermore, the surface coating layer (6) has an optical band gap of 2.
.. Amorphous silicon carbide having a resistivity of 2 eV and a specific resistance of about 1014 Ωcm is laminated to a thickness of 1 μm. This surface coating layer (6
) may be about 0.1 μm, but if it is thicker than 5 μI, the residual potential will only increase a little, and the charging ability in the dark will be improved and it will be chemically stable. It has the advantage of

また、硼素(B)をI X I O−’aton+ic
%ドーピングすることにより電子の易動度が高くなるの
でドーピングすることも有効である。
Also, boron (B) is I X I O-'aton+ic
% doping increases the mobility of electrons, so doping is also effective.

このようにして作用された光導電部材を電子写真感光体
として使用した場合、コロナチャージャから感光体への
流入電流が0.4μc/calという条件で700v以
上の表面電位が得られ、帯電15秒後の電位保持率が8
0%という良好な静電特性を有するものである。
When the photoconductive member treated in this manner is used as an electrophotographic photoreceptor, a surface potential of 700 V or more can be obtained under the condition that the inflow current from the corona charger to the photoreceptor is 0.4 μc/cal, and charging takes 15 seconds. The potential retention rate after is 8
It has good electrostatic properties of 0%.

なお、上記光導電部材は正帯電用電子写真感光体に応用
したがドーピングされた硼素(B)を燐(P)に変える
ことにより負帯電用電子写真用感光体が得られる。すな
わち、成膜時に混合するガスをB2 IIIaからPH
3に変えればよく、他の条件は上記と同様である。この
ようにして作成された光導電部材はコロナチャージャへ
印加する電圧の極性を変える以外、上記と同一条件で帯
電能及び電位保持能を有するものである。
Although the photoconductive member described above is applied to a positively charged electrophotographic photoreceptor, a negatively charged electrophotographic photoreceptor can be obtained by replacing the doped boron (B) with phosphorus (P). In other words, the gases mixed during film formation are changed from B2 IIIa to PH
3, and the other conditions are the same as above. The photoconductive member thus prepared has charging ability and potential holding ability under the same conditions as above except that the polarity of the voltage applied to the corona charger is changed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば光導電部材の表面に
残留電位を生ぜしぬることがなく、高い電位保持能なら
びに帯電能を有するとともに、現像バイアスによる絶縁
破壊を起することのない優れた効果を奏するものである
As explained above, according to the present invention, no residual potential is generated on the surface of the photoconductive member, and the photoconductive member has excellent potential holding ability and charging ability, and does not cause dielectric breakdown due to development bias. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す光導電部材の模式的構成
図である。
The drawing is a schematic diagram of a photoconductive member showing an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)導電性支持体上に第1の電荷注入防止層、第2の
電荷注入防止層、光導電性層、表面被覆層を積層して成
る光導電部材において、上記第1の電荷注入防止層は周
期律表IIIa族元素またはVa族元素を1×10^−^
4乃至1.0atomic%含む非晶質炭化シリコンか
ら成り、第2の電荷注入防止層は膜厚が5μm乃至40
μmの、周期律表IIIa族元素またはVa族元素が1×
10^−^4乃至1×10^−^8atomic%を含
む非晶質窒化シリコンから成り、さらに光導電性層は膜
厚が0.5μm乃至5μmである非晶質シリコン層であ
ることを特徴とする光導電部材。
(1) In a photoconductive member formed by laminating a first charge injection prevention layer, a second charge injection prevention layer, a photoconductive layer, and a surface coating layer on a conductive support, the first charge injection prevention layer described above is provided. The layer contains 1 x 10 ^-^ of group IIIa elements or group Va elements of the periodic table.
The second charge injection prevention layer is made of amorphous silicon carbide containing 4 to 1.0 atomic%, and has a thickness of 5 to 40 μm.
μm, Group IIIa element or Va group element of the periodic table is 1×
It is made of amorphous silicon nitride containing 10^-^4 to 1 x 10^-^8 atomic%, and the photoconductive layer is an amorphous silicon layer with a film thickness of 0.5 μm to 5 μm. A photoconductive member.
(2)光導電部材には周期律表IIIa族元素またはVa
族元素を含むことを特徴とする特許請求の範囲第1項記
載の光導電部材。
(2) The photoconductive member contains Group IIIa elements of the periodic table or Va.
The photoconductive member according to claim 1, characterized in that it contains a group element.
(3)表面被覆層は膜厚が0.05μm乃至5μmであ
り、比抵抗が10^1^3Ωcm以上の非晶質炭化シリ
コンから成ることを特徴とする特許請求の範囲第1項記
載の光導電部材。
(3) The light according to claim 1, wherein the surface coating layer is made of amorphous silicon carbide having a thickness of 0.05 μm to 5 μm and a specific resistance of 10^1^3 Ωcm or more. conductive member.
JP59248088A 1984-11-26 1984-11-26 Photoconductive material Pending JPS61126559A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59248088A JPS61126559A (en) 1984-11-26 1984-11-26 Photoconductive material
US06/800,972 US4666803A (en) 1984-11-26 1985-11-22 Photoconductive member for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
DE19853541764 DE3541764A1 (en) 1984-11-26 1985-11-26 PHOTO LADDER ELEMENT
US06/913,369 US4716090A (en) 1984-11-26 1986-09-30 Photoconductive member for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
US06/913,362 US4724193A (en) 1984-11-26 1986-09-30 Photoconductive membrane for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
US06/913,368 US4716089A (en) 1984-11-26 1986-09-30 Photoconductive member for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248088A JPS61126559A (en) 1984-11-26 1984-11-26 Photoconductive material

Publications (1)

Publication Number Publication Date
JPS61126559A true JPS61126559A (en) 1986-06-14

Family

ID=17173025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248088A Pending JPS61126559A (en) 1984-11-26 1984-11-26 Photoconductive material

Country Status (1)

Country Link
JP (1) JPS61126559A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138957A (en) * 1984-12-12 1986-06-26 Toshiba Corp Photoconductive material
JP2003017005A (en) * 2001-06-27 2003-01-17 Harison Toshiba Lighting Corp Low-pressure discharge lamp
WO2007037230A1 (en) 2005-09-29 2007-04-05 Matsushita Electric Industrial Co., Ltd. External electrode lamp, backlight unit, and liquid crystal display
JP2007294462A (en) * 2006-04-25 2007-11-08 Mire Kk Flat fluorescent lamp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138957A (en) * 1984-12-12 1986-06-26 Toshiba Corp Photoconductive material
JP2003017005A (en) * 2001-06-27 2003-01-17 Harison Toshiba Lighting Corp Low-pressure discharge lamp
WO2007037230A1 (en) 2005-09-29 2007-04-05 Matsushita Electric Industrial Co., Ltd. External electrode lamp, backlight unit, and liquid crystal display
JP2007294462A (en) * 2006-04-25 2007-11-08 Mire Kk Flat fluorescent lamp

Similar Documents

Publication Publication Date Title
JPH0774909B2 (en) Photoconductive member
JPS59185346A (en) Photoconductive member
GB2145530A (en) Amorphous silicon photoreceptor
JPS61126559A (en) Photoconductive material
JPS61126557A (en) Photoconductive material
JPS6194054A (en) Photoconductive member
JPS61126560A (en) Photoconductive material
JPH07120953A (en) Electrophotographic photoreceptor and image forming method using the same
JPS61177465A (en) Photoconductive member
JPS61138958A (en) Photoconductive material
US4724193A (en) Photoconductive membrane for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
JPS6059356A (en) Photoconductive member
JPH0535425B2 (en)
JPS61177467A (en) Photoconductive member
JPS61177466A (en) Photoconductive member
JPS61138957A (en) Photoconductive material
JPS61126558A (en) Photoconductive material
JPS61177464A (en) Photoconductive member
JPS61134768A (en) Photoconductive element
JPS6123158A (en) Photosensitive body for electrophotography
JPH0554673B2 (en)
JP3113404B2 (en) Image forming device
JPS59185344A (en) Photoconductive member
JPS60153051A (en) Photoconductive member
JPS59185343A (en) Photoconductive member