JPS60128457A - Photoconductive member - Google Patents

Photoconductive member

Info

Publication number
JPS60128457A
JPS60128457A JP58237114A JP23711483A JPS60128457A JP S60128457 A JPS60128457 A JP S60128457A JP 58237114 A JP58237114 A JP 58237114A JP 23711483 A JP23711483 A JP 23711483A JP S60128457 A JPS60128457 A JP S60128457A
Authority
JP
Japan
Prior art keywords
photoconductive
support
layer
base
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58237114A
Other languages
Japanese (ja)
Inventor
Tatsuya Ikesue
龍哉 池末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Intelligent Technology Co Ltd
Toshiba Automation Engineering Ltd
Original Assignee
Toshiba Corp
Toshiba Automation Engineering Ltd
Toshiba Automation Equipment Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Automation Engineering Ltd, Toshiba Automation Equipment Engineering Ltd filed Critical Toshiba Corp
Priority to JP58237114A priority Critical patent/JPS60128457A/en
Publication of JPS60128457A publication Critical patent/JPS60128457A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To electrify both positive and negative polarities to a photoconductive member by providing semiconductor regions of alternately different conduction types along the interface near the boundary between the body of the photoconductive part consisting of an amorphous silicon layer provided on a base and the base. CONSTITUTION:A photoconductive member body 2 is laminated on a conductive base 1. The body 2 is formed of a photoconductive layer 3 consisting of a-Si provided to the base 1 and a surface coating layer 4 consisting of a-Si provided thereon. Semiconductor regions 6 of different conduction types are alternately formed along the interface direction near the boundary between the layer 3 and the base 1 by providing a-Si regions 5 of P type contg. the impurity of the IIIa group at prescribed intervals along the interface direction near the boundary between the layer 3 and the base 1. Positive electrification is made possible in the regions 5 and negative electrification is made possible except in the regions 5. The member having excellent electrifying power of both positive and negative polarities, high sensitivity up to the long wavelength region and a long life is thus obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光(紫外から可視、赤外、X線、γ線等の電磁
波を−いう)に感受性のある光導電部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a photoconductive member that is sensitive to light (electromagnetic waves such as ultraviolet to visible, infrared, X-rays, and gamma rays).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

固体撮像素子、電子写真感光体等における光導電性層を
構成する光導電性材料は、その使、用土の目的から暗所
での比抵抗が高く(通常10Ω為以上)、かつ光照射に
より比抵抗が小さくなる性質をもつものでなくてはなら
ない。
Photoconductive materials constituting photoconductive layers in solid-state imaging devices, electrophotographic photoreceptors, etc. have a high specific resistance in the dark (usually 10Ω or more) due to the purpose of their use and the purpose of the soil, and they have a high specific resistance when irradiated with light. It must have the property of reducing resistance.

これを電子写真を例にとり、その原理及び感光体として
必要な条件を簡単に説明する。電子写真は、感光体表面
に光を照射すると電子と正孔の対ができ、そのどちらか
一方により表面の電荷が中和される。例えば正極性に帯
電させた場合、光照射によりできた対のうちの電子によ
って中和される。そして、感光体表面の電荷と異極性に
帯電したトナーと呼ばれる黒粉体を現像器から感光体表
面にクーロン力によって吸引させることによりなされる
。この時、感光体表面に電荷がなくてもトナーの電荷で
このトナーが感光体に引きつけられることを避けるため
、感光体と現像器との間に電荷による電場と逆方向の電
場が生ずるように現像器の電位を高くするという処理が
なされる。以上がその原理であるが、次に感光体として
必要な条件を述べると、第1にコロナ放電により帯電し
た電荷が光照射まで保持されること、第2に光照射によ
り生成した電子と正孔の対が再結合することなく、−万
が表面の電荷を中和し、さらにもう−万が感光体支持体
まで瞬時に到達することなどがあげられる。
Using electrophotography as an example, the principle and conditions necessary for a photoreceptor will be briefly explained. In electrophotography, when the surface of a photoreceptor is irradiated with light, pairs of electrons and holes are created, and one of these pairs neutralizes the surface charge. For example, when it is positively charged, it is neutralized by the electrons in the pair created by light irradiation. This is done by attracting black powder called toner, which is charged with a polarity different from that on the surface of the photoreceptor, from a developing device to the surface of the photoreceptor using Coulomb force. At this time, in order to prevent the toner from being attracted to the photoreceptor due to the charge of the toner even if there is no charge on the surface of the photoreceptor, an electric field is created between the photoreceptor and the developer in the opposite direction to the electric field due to the charge. A process of increasing the potential of the developing device is performed. The above is the principle, but next we will discuss the conditions necessary for a photoreceptor: firstly, the charge charged by corona discharge is retained until light irradiation, and secondly, the electrons and holes generated by light irradiation One example of this is that the -man neutralizes the surface charge without the pair recombining, and the other -man instantly reaches the photoreceptor support.

従来使用されているものでは非晶質カルコゲナイド系な
どがある。非晶質カルコゲナイドは大面積化が容易であ
り、すぐれた光導電性をもつ材料であるが、光の吸収端
が可視から紫外に近いところにあり、実用上可視域の光
に対する感度が低い。また、硬度が低く、電子写真用感
光体に応用した場合寿命が短い。又、人体に対して有害
である。更に、軟化点が低い等の問題がある。これに基
づいて、最近注目されている光導電性材料としては、ア
モルファスシリコン(以下a−8iと書く。)がある。
Conventionally used materials include amorphous chalcogenide. Amorphous chalcogenide is a material that can be easily made into a large area and has excellent photoconductivity, but its light absorption edge is from the visible to near the ultraviolet range, and its sensitivity to light in the visible range is low for practical purposes. In addition, it has low hardness and has a short life when applied to electrophotographic photoreceptors. It is also harmful to the human body. Further, there are problems such as a low softening point. Based on this, amorphous silicon (hereinafter referred to as a-8i) is a photoconductive material that has recently attracted attention.

このa −S iは吸収波長域が広<、 、panch
romaticであり、感度も高い。また、硬度が高く
、電子写真用感光体として応用した場合、従来のものよ
り10倍以上の寿命をもつことが期待されている。東に
、人体に対しても無害であり、単結晶Siと比較した場
合、安価でかつ容易に大面積のものが得られる等の多く
の利点をもつすぐれた材料である。このa−81のもつ
他の特徴としては、周期律表第1a族および第■a族の
不純物を添加することにより容易にp−n制御が可能と
なる点があげられる。したがって、光導電部材として応
用した場合、負、正帯電あるいは正負両帯電のいずれも
可能である。まず、負帯電用として用いる場合は、a−
8iそのままで良い。
This a-S i has a wide absorption wavelength range <, , punch
romatic and high sensitivity. Furthermore, it has high hardness, and when applied as an electrophotographic photoreceptor, it is expected to have a lifespan ten times longer than conventional ones. Furthermore, it is harmless to the human body, and when compared with single-crystal Si, it is an excellent material that has many advantages such as being inexpensive and easily obtained in a large area. Another feature of this a-81 is that p-n control can be easily achieved by adding impurities from Groups 1a and 1a of the periodic table. Therefore, when applied as a photoconductive member, either negative charging, positive charging, or both positive and negative charging is possible. First, when using it for negative charging, a-
8i is fine as is.

なぜなら、正孔のmobilityとI、ife Ti
meが小さく、かつ伝導型がいくぶんn型によっている
ためである。また、■a族の不純物を添加したa−Si
からなる層を光導電性層と支持体の間に設ければ、支持
体から光導電性層への正孔がブロックされることになり
、より帯電能が向Ia族の不純物を添加したa −S 
iからなる層を光導電性層と支持体の間に設ける等して
正帯電を可能とする。更に二色カラーコピー、およびプ
リンタとコピー兼用使用等の目的のため正負両帯電させ
ることが考えられる。その場合は光導電性層と支持体の
開に絶縁層を設けることがあげられる。しかし、この層
の膜厚が厚い場合には、光照射時に感光層から支持体側
へ流れるキャリヤも阻止してしまうため、残留電位が高
くなり、したがって繰り返し特性も悪化する。
Because the hole mobility and I, ife Ti
This is because me is small and the conduction type is somewhat n-type. In addition, ■a-Si doped with group a impurities
If a layer consisting of A is provided between the photoconductive layer and the support, holes from the support to the photoconductive layer will be blocked, and the charging ability will be improved by adding A containing a group Ia impurity. -S
Positive charging is made possible by, for example, providing a layer consisting of i between the photoconductive layer and the support. Furthermore, it is conceivable to charge both positive and negative charges for purposes such as two-color copying and dual use as a printer and copying device. In that case, an insulating layer may be provided between the photoconductive layer and the support. However, if this layer is thick, carriers flowing from the photosensitive layer toward the support during light irradiation are also blocked, resulting in a high residual potential and, therefore, deterioration in repeatability.

逆に、膜厚を薄くすれば、現像時に絶縁破壊を生じる。Conversely, if the film thickness is made thinner, dielectric breakdown will occur during development.

このよりに、良好な特性をもつ正負両帯電用のものは現
在のところみあたらない。
For this reason, there is currently no material for both positive and negative charging that has good characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情にもとづいてなされたもので、その目
的とするところは、正負両帯電において、帯電能にすぐ
れ、がっ、残留電位も低く、また長波長域まで感度が高
く、更に長時間の使用に対しても上記特性が劣化せず、
以て長寿命で正負両帯電が可能な光導電部材を提供する
ことにある。
The present invention has been made based on the above circumstances, and its objectives are to have excellent charging ability in both positive and negative charging, low residual potential, high sensitivity to long wavelength range, and long-term use. The above characteristics do not deteriorate even when used with
Therefore, it is an object of the present invention to provide a photoconductive member that has a long life and can be charged both positively and negatively.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、1呑支持体と、
この壽嵜暢支持体上に設けられたアモルファスシリコン
からなる光導電性層を有する光導電部材本体と金具備し
、この光導電部材木体における上記光導電性層の上記支
持体との境界近傍にその界面方向に沿って交互に異なる
伝導型の半導体領域を設けて、正^性の負帯電が可能な
構成としたことを特徴とするものである。
In order to achieve the above object, the present invention includes a single support,
A photoconductive member main body having a photoconductive layer made of amorphous silicon provided on the support body and a metal fitting are provided, and the vicinity of the boundary between the photoconductive layer and the support body in the wooden body of the photoconductive member The structure is characterized in that semiconductor regions of different conductivity types are provided alternately along the interface direction, so that positive to negative charging is possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図を参照しながら説明す
る。第1図中1は導電性支持体であり、この上には光導
電部材本体2が積層されている。この光導電部材本体2
は上記支持体1上に設けられたa−Siからなる光導電
性層3と、その上に設けられたa−81からなる表面被
覆層4とからなる。また、光導電性層3の支持体1との
境界近傍には第1a族の不純物を含んだP型のa−8i
領域5が界面方向に涜って所定間隔で設けられており、
これにより光導電性層3の支持体1との境界近傍にはそ
の界面方向に涜って異なる伝導型の半導体領域6が交互
に存在していることになる。
An embodiment of the present invention will be described below with reference to FIG. Reference numeral 1 in FIG. 1 denotes a conductive support, on which a photoconductive member main body 2 is laminated. This photoconductive member body 2
consists of a photoconductive layer 3 made of a-Si provided on the support 1, and a surface coating layer 4 made of a-81 provided thereon. In addition, near the boundary between the photoconductive layer 3 and the support 1, there is a P-type a-8i containing group 1a impurities.
Regions 5 are provided at predetermined intervals in the interface direction,
As a result, in the vicinity of the boundary between the photoconductive layer 3 and the support 1, semiconductor regions 6 of different conductivity types are alternately present in the direction of the interface.

以上のような層構成の光導電部材においてコロナ放電に
より電荷を与えた場合について考えると、まず、正電荷
を与えた場合は、P型a−St領域5において支持体1
側から光導電性層3への電子の流入が阻止され、この部
分において正帯電が可能となる。ところが、光導電性層
3の支持体1との境界近傍で第1a族の不純物が存在し
ていない領域においては電子の流入を阻止しないため、
この部分では正帯電されない。
Considering the case where a charge is applied by corona discharge to a photoconductive member having the above layered structure, firstly, when a positive charge is applied, the support 1 in the P-type a-St region 5
Electrons are prevented from flowing into the photoconductive layer 3 from the side, allowing positive charging in this portion. However, in the region where Group 1a impurities are not present near the boundary between the photoconductive layer 3 and the support 1, the inflow of electrons is not blocked.
This part is not positively charged.

また、負電荷を与えた場合は、光導電性層3の支持体と
の境界近傍で第1ea族の不純物が含まれていない領域
では正孔のmobilityとLifeTimeが小さ
く、かつ伝導型がいくぶんn型になっているため、支持
体1から光導電性層3への正孔の流入が阻止され、この
部分で負帯電が可能となる。ところが、P型a−3i領
域5において正孔の流入を阻止しないため、この部分で
は負帯電されない。以上により、この光導電部材はコロ
ナ放電が正極性の場合は第11a族の不純物を含んだP
型a−81領域5が、負極性の場合は光導電性層3の支
持体1との境界近傍で第1a族の不純物が存在していな
い領域がそれぞれ光導電性層3の支持体1との境界近傍
において支持体1側から光導電性層3へのキャリヤの流
入を阻止するため、正負両帯電が可能となる。
In addition, when a negative charge is applied, the hole mobility and LifeTime are small in the region near the boundary of the photoconductive layer 3 with the support and does not contain group 1ea impurities, and the conductivity type is somewhat n. Since it is shaped like a mold, holes are prevented from flowing into the photoconductive layer 3 from the support 1, and this portion can be negatively charged. However, since the inflow of holes is not blocked in the P-type a-3i region 5, this portion is not negatively charged. As described above, when the corona discharge is of positive polarity, this photoconductive member contains P containing Group 11a impurities.
When the type A-81 region 5 has negative polarity, the regions in which group 1a impurities are not present near the boundary with the support 1 of the photoconductive layer 3 are the regions of the support 1 of the photoconductive layer 3, respectively. Since carriers are prevented from flowing into the photoconductive layer 3 from the support 1 side near the boundary, both positive and negative charging is possible.

なお、負極性の帯電能を向上させる場合に−は、第2図
に示すように、光導電性層3の支持体1との境界近傍に
おいて第1a族の不純物が存在していない領域に第Va
族の不純物を添加し、n型a −S i領域7とすれば
よい。
In order to improve the negative charging ability, as shown in FIG. Va
The n-type a-Si region 7 may be formed by adding impurities of the group A-Si.

次に、成膜装置の概略について説明する。第3図中11
は真空反応室であり、この反応室11の内部には電極1
2、支持体固定装置13、支持体1、支持体温度を一定
にするヒーター15、イオン源16が収容されている。
Next, the outline of the film forming apparatus will be explained. 11 in Figure 3
is a vacuum reaction chamber, and an electrode 1 is placed inside this reaction chamber 11.
2, a support fixing device 13, a support 1, a heater 15 for keeping the temperature of the support constant, and an ion source 16 are accommodated.

−万、17はガス供給装置であり、使用するガスはこの
ガス供給装置17から配管18を通じ、反応室ll内に
導入され、排気装置19によって排気される。又、電極
12にはRF電源2Oからの13.56MHzの高周波
電力が印加され、これにより、反応室11内の電極12
と固定装置13の間でプラズマが生じ、支持体lに成膜
することができる。
17 is a gas supply device, and the gas to be used is introduced into the reaction chamber 11 from this gas supply device 17 through a pipe 18, and is exhausted by an exhaust device 19. In addition, 13.56 MHz high frequency power is applied to the electrode 12 from the RF power source 2O, thereby causing the electrode 12 in the reaction chamber 11 to
Plasma is generated between the fixing device 13 and the fixing device 13, and a film can be formed on the support l.

次に、成膜方法について説明する。はじめに導電性支持
体1を反応室11内の固定装置13にとりつけ、反応室
11内を排気装置19により10〜10Torrの真空
にする。同時に支持体1は100°C〜400℃の温度
に昇温する。
Next, a film forming method will be explained. First, the conductive support 1 is attached to the fixing device 13 in the reaction chamber 11, and the inside of the reaction chamber 11 is evacuated to 10 to 10 Torr using the exhaust device 19. At the same time, the temperature of the support 1 is increased to 100°C to 400°C.

そして、まず光導電性層3の成腹奢おこなう。First, the photoconductive layer 3 is prepared.

使用するガスはSi(ケイ累)原子を含むガス例えばS
iH,(シラン) 、5j2Ha (ジシラン)、Si
F、(四フッ化ケイ素)等のガス添加物としてC(炭素
)を含むガス例えば0M4(メタ7、)、C2H6(エ
タン)、C5Ha(ブタン)等、N(窒素)を含むガス
としてN2 、NHs (アンモニア)等、0(酸素)
を含むガスとして0. 、N、0(酸化窒素)等がある
。又、第1a族を含むガス例えばB2H2(ジがラン)
、BFs (三塩化ホウ素)、BCAa (三塩化ホウ
素)等を使用して第1a族を光導電性層に微量ドープ(
Dope)してもよい。反応室11内は0.1〜l ’
l’orr程度の圧力になるように排気系の排気速度を
調節し、定常状態になるまで待ち、反応室11内の電極
間に13.56 MH2の高周波電力を印加し、成膜を
おこなう。
The gas used is a gas containing Si atoms, such as S.
iH, (silane), 5j2Ha (disilane), Si
A gas containing C (carbon) as a gas additive such as F, (silicon tetrafluoride), etc. A gas containing N (nitrogen) such as 0M4 (meth), C2H6 (ethane), C5Ha (butane), etc. NHs (ammonia) etc., 0 (oxygen)
As a gas containing 0. , N, 0 (nitrogen oxide), etc. In addition, gases containing Group 1a, such as B2H2 (digarane)
, BFs (boron trichloride), BCAa (boron trichloride), etc. are used to lightly dope the photoconductive layer with Group 1a (
Dope). The inside of the reaction chamber 11 is 0.1 to 1'
The exhaust speed of the exhaust system is adjusted so that the pressure is approximately 1'orr, and after waiting until a steady state is reached, a high frequency power of 13.56 MH2 is applied between the electrodes in the reaction chamber 11 to form a film.

次に、電力の印加を止め、反応室11より支持体1をと
りだし、成膜した光導電性層3の上に穴径とピッチが一
定の均一なマスクtあて、再び反応室11内の固定装置
13に固定する。
Next, the application of electric power is stopped, the support 1 is taken out from the reaction chamber 11, a uniform mask t with a constant hole diameter and pitch is placed on the formed photoconductive layer 3, and the support body 1 is fixed again in the reaction chamber 11. It is fixed to the device 13.

そして、反応室11内を排気装置19により10〜10
 Torrまで減圧したのち、イオン源より第1i[a
族イオンを光導電性層3の導電性支持体1との境界近傍
に注入する。これにより第1図に示すP型a−8i領域
5が形成される。
Then, the inside of the reaction chamber 11 is evacuated by the exhaust device 19 to 10 to 10
After reducing the pressure to Torr, the 1i[a
Group ions are implanted into the photoconductive layer 3 near the boundary with the conductive support 1 . As a result, the P type a-8i region 5 shown in FIG. 1 is formed.

なお、その後、反応室11より支持体1をとりだし、マ
スクをずらしたのち、前回と同様にイオン源より第Va
族イオンを注入してもよく、これにより第2図に示すn
型a−8i領域7が形成され、負の帯電能は向上する。
After that, after taking out the support 1 from the reaction chamber 11 and shifting the mask, the Va.
Group ions may be implanted, which results in the n
A type a-8i region 7 is formed, and the negative charging ability is improved.

又、光導電性層3を10〜数μm成膜したのち、上記と
同様な方法を用いて、光導電性層3の支持体1との境界
近傍において、界面方向に異なる伝導型の領域を交互に
存在させたのち、マスクをはずし、再びa−8iからな
る光導電性層3を積層してもよい。
Further, after forming the photoconductive layer 3 to a thickness of 10 to several μm, regions of different conductivity types are formed in the interface direction near the boundary between the photoconductive layer 3 and the support 1 using the same method as above. After the photoconductive layers 3 are made to exist alternately, the mask may be removed and the photoconductive layer 3 made of a-8i may be laminated again.

又、以上の場合でイオンを注入するときはマスクを用い
ないで、イオン源の走査と継続を行なうことにより、マ
スクと同様な効果が得られる。
Furthermore, when ions are implanted in the above case, the same effect as with a mask can be obtained by scanning and continuing the ion source without using a mask.

さらに、イオン源を用いずに光導電部材を作製すること
も可能である。その場合は予め、支持体1上−にマスク
を置き、第1図に示す第Ha族を含んだa−81からな
る領域5を高周波電力を印加することにより、支持体1
に成膜し、そののちマスクをとりはずし、a−81から
なる光導電性層3を成膜してもよい。この場合、光導電
性層3を成膜する前にマスクをずらし第■a族を含んだ
a−8iからなる領域(第2図に示すn型a −3i領
域7)を成膜してもよい。
Furthermore, it is also possible to produce photoconductive members without using an ion source. In that case, a mask is placed on the support 1 in advance, and high frequency power is applied to the region 5 consisting of a-81 containing the Ha group shown in FIG.
After that, the mask may be removed and a photoconductive layer 3 made of a-81 may be formed. In this case, even if the mask is shifted and a region (n-type a-3i region 7 shown in FIG. 2) consisting of a-8i containing group Ⅰa is deposited before forming the photoconductive layer 3, good.

こうすることにより負の帯電能は向上する。By doing so, the negative charging ability is improved.

次に、このように作製した光導電部材を反応室11内に
固定し、Sl原子を含むガス、例えばSiH,、5t2
H6、S iF4等のガスと添加物としてCを含むガス
例えばCH4、CzHe 、Cs Ha等のガス、又は
Nを含むガス例えばN2.NH,等のガス、あるいはO
を含むガス、例えば02.N、0等のガスを導入し、0
.1〜1.5 ’l’orrの圧力になるように排気系
の排気速度を調節し、定常状態になった後、高周波電力
を印加することにより表面被覆層4を設ける。これによ
り特性は向上する。なお、この表面被覆層4は設けなく
てもよい。
Next, the photoconductive member produced in this way is fixed in the reaction chamber 11, and a gas containing Sl atoms, for example, SiH, 5t2
A gas such as H6, SiF4, etc. and a gas containing C as an additive, such as CH4, CzHe, CsHa, etc., or a gas containing N, such as N2. Gas such as NH, or O
A gas containing, for example, 02. Introducing a gas such as N, 0, etc.
.. The exhaust speed of the exhaust system is adjusted to a pressure of 1 to 1.5'l'orr, and after a steady state is reached, the surface coating layer 4 is provided by applying high frequency power. This improves the characteristics. Note that this surface coating layer 4 may not be provided.

次に、実験例を説明する。Next, an experimental example will be explained.

(実験例1) 温度300℃に昇温されている支持体1
に光導電性層3をSiH4流量30 SCCM。
(Experiment Example 1) Support 1 heated to 300°C
Add the photoconductive layer 3 to SiH4 at a flow rate of 30 SCCM.

反応圧0.2 Torr 、高周波電力50Wといり条
件で10分間成膜した。次に支持体1上に穴径が20μ
雇、ピッチが27μmであるマスクをあて、イオン源よ
り”B+イオンン20分間注入した。
A film was formed for 10 minutes under the conditions of a reaction pressure of 0.2 Torr and a high frequency power of 50 W. Next, make a hole diameter of 20μ on support 1.
A mask with a pitch of 27 μm was applied, and B+ ions were injected from the ion source for 20 minutes.

その後、マスクをはずし、支持体1を300℃に昇温し
、再び光導電性層3を5lH4の流量80SCCM、反
応圧0.4 Torr、高周波電力100Wという条件
で1時開成膜した。更に表面被覆層4はSiH4の流量
50 SCCM% CH4の流量250SCCM、反応
圧0.5Torr、高周波電力50Wという条件で5分
間成膜した。全体の膜厚は15μ嘱であった。このよう
に作製した光導電部材はコロナ放電によるチャージャー
がら支持体1(ドラム)への流入電流が±0.45μc
 /cdという条件では、正の帯電能は600v以上、
負の帯電能は400v以上であり、15秒後の電位保持
率は正の場合は60%以上、負の場合は5−0%以上で
あった。また、1万回の繰り返し使用を試みた結果、正
負両帯電のいずれにおいても帯電能、保持率などの特性
の劣化はなく、また残留電位の増加もなく又表面の劣化
もみられなかった。更に、この光導電部材を用いて3万
回の連続コピーをとったところ正負両帯電ともに良好な
画像がえられた。
Thereafter, the mask was removed, the temperature of the support 1 was raised to 300° C., and a photoconductive layer 3 was formed again under the conditions of a flow rate of 5 lH 4 at 80 SCCM, a reaction pressure of 0.4 Torr, and a high-frequency power of 100 W for 1 hour. Furthermore, the surface coating layer 4 was formed for 5 minutes under the following conditions: a flow rate of SiH4 of 50 SCCM%, a flow rate of CH4 of 250 SCCM, a reaction pressure of 0.5 Torr, and a high frequency power of 50 W. The total film thickness was 15 μm. The photoconductive member produced in this manner has a current flowing into the charger support 1 (drum) due to corona discharge of ±0.45 μc.
/cd, the positive charging capacity is 600V or more,
The negative chargeability was 400 V or more, and the potential retention rate after 15 seconds was 60% or more in the positive case and 5-0% or more in the negative case. Further, as a result of repeated use 10,000 times, there was no deterioration in characteristics such as charging ability and retention rate in both positive and negative charging, no increase in residual potential, and no surface deterioration. Furthermore, when continuous copies were made 30,000 times using this photoconductive member, good images were obtained in both positive and negative charging.

(実験例2) 実験例1において、1B イオンを注入
したのちマスクをずらし、イオン源よりP イオンを2
5分間注入したのち、実験例1と同様な光導電性層3を
成膜した。作製した光導電部材は−0,45μC/−の
流入電流の条件では、負の帯電能が600v以上となり
、保持率も60%以上となった。画出しの結果も実験例
1と同様に鮮明な画像が得られた。
(Experimental Example 2) In Experimental Example 1, after implanting 1B ions, the mask was shifted and 2 P ions were implanted from the ion source.
After injecting for 5 minutes, a photoconductive layer 3 similar to that in Experimental Example 1 was formed. The produced photoconductive member had a negative chargeability of 600 V or more and a retention rate of 60% or more under the condition of an inflow current of -0.45 μC/-. As a result of image display, a clear image was obtained as in Experimental Example 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、支持体と、この支
持体上に設けられたアモルファスシリコンからなる光導
電性層を有する光導電部材本体とを具備し、この光導電
部材本体における上記光導電性層の上記支持体との境界
近傍にその界面方向に沿って交互に異なる伝導型の半導
体領域を設けて、正負両極性の帯電が可能な構成とした
から、正負両帯電能にすぐれ、かつ残留電位も低く、ま
た長波長域まで感度が高く、更に長時間の使用に対して
も上記特性が劣化せず、以て長寿命で正負両帯電が可能
な光導電部材を提供することができる等の優れた効果な
奏する。
As explained above, according to the present invention, the photoconductive member body includes a support and a photoconductive layer made of amorphous silicon provided on the support, and the photoconductive member body has a photoconductive layer formed on the support. Semiconductor regions of different conductivity types are provided alternately along the interface direction in the vicinity of the boundary between the conductive layer and the support, resulting in a structure capable of being charged in both positive and negative polarities. It is also possible to provide a photoconductive member that has a low residual potential, has high sensitivity up to a long wavelength range, and does not deteriorate the above characteristics even after long-term use, and has a long life and can be charged both positively and negatively. It has excellent effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図1第2図は本発
明の他の実施例を示す断面図、第3図は成膜装置を示す
構成図である。 1・・・支持体、2・・・光導電部材本体、3・・・光
導電性層、4・・・表面被覆層、5・・・P型a −S
i領域、6・・・半導1体領域、7・・・n型a −S
 i領域。
FIG. 1 is a sectional view showing one embodiment of the present invention. FIG. 2 is a sectional view showing another embodiment of the invention, and FIG. 3 is a configuration diagram showing a film forming apparatus. DESCRIPTION OF SYMBOLS 1... Support body, 2... Photoconductive member main body, 3... Photoconductive layer, 4... Surface coating layer, 5... P type a-S
i region, 6...semiconductor 1 body region, 7...n type a-S
i area.

Claims (1)

【特許請求の範囲】 (11支持体と、この支持体上に設けられたアモルファ
スシリコンからなる光導電性層を有する光導電部材本体
とを具備し、この光導電部材本体における上記光導電性
層の上記支持体との境界近傍にその界面方向に沿って交
互に異なる伝導型の半導体領域を設けて、正負両極性の
帯電が可能な構成としたことを特徴とする光導電部材。 (2) 光導電部材本体は、光導電性層の基体と反対側
の表面上にアモルファスシリコンからなる表面被覆層を
設けて構成したことを特徴とする特許請求の範囲第1項
記載の光導電部材。 (3)光導電性層は周期律表第1a族および第■a族の
元素を含有した構成としたことを特徴とする特許請求の
範囲第1項または$2項記載の光導電部材。 (4)光導電性層は、炭素、窒素、酸素の元素のうち少
なくとも1つ以上を含有した構成としたことを特徴とす
る特許請求の範囲第1項ないし第3項のいずれかに記載
の光導電部材。 (5)表面被覆層は、炭素、窒素、酸素の元素のうち少
なくとも1つ以上を含有した構成としたことを特徴とす
る特許請求の範囲第2項記載の光導電部材。
[Scope of Claims] (11) A photoconductive member main body having a support and a photoconductive layer made of amorphous silicon provided on the support; A photoconductive member characterized in that semiconductor regions of different conductivity types are provided alternately along the interface direction in the vicinity of the boundary with the support body, so that the photoconductive member can be charged with both positive and negative polarities. (2) The photoconductive member according to claim 1, wherein the photoconductive member main body is constructed by providing a surface coating layer made of amorphous silicon on the surface of the photoconductive layer opposite to the base body. 3) The photoconductive member according to claim 1 or $2, characterized in that the photoconductive layer contains elements of Group 1a and Group Ⅰa of the periodic table. ) The photoconductive layer according to any one of claims 1 to 3, wherein the photoconductive layer contains at least one of the following elements: carbon, nitrogen, and oxygen. Member. (5) The photoconductive member according to claim 2, wherein the surface coating layer contains at least one of the following elements: carbon, nitrogen, and oxygen.
JP58237114A 1983-12-15 1983-12-15 Photoconductive member Pending JPS60128457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237114A JPS60128457A (en) 1983-12-15 1983-12-15 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237114A JPS60128457A (en) 1983-12-15 1983-12-15 Photoconductive member

Publications (1)

Publication Number Publication Date
JPS60128457A true JPS60128457A (en) 1985-07-09

Family

ID=17010615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237114A Pending JPS60128457A (en) 1983-12-15 1983-12-15 Photoconductive member

Country Status (1)

Country Link
JP (1) JPS60128457A (en)

Similar Documents

Publication Publication Date Title
US4656110A (en) Electrophotographic photosensitive member having a photoconductive layer of an amorphous material
JPS59185346A (en) Photoconductive member
JPS60128457A (en) Photoconductive member
JPS6194054A (en) Photoconductive member
JPH0535425B2 (en)
US4716089A (en) Photoconductive member for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
JPH058420B2 (en)
JPS61126559A (en) Photoconductive material
JPH0760271B2 (en) Photoconductive member
JPS59185343A (en) Photoconductive member
JPS62151857A (en) Photoconductive member
JPH0554673B2 (en)
JPS61126557A (en) Photoconductive material
JPS61177467A (en) Photoconductive member
JPS59185344A (en) Photoconductive member
JPS61177465A (en) Photoconductive member
JPS62106466A (en) Photoconductive body
JPS60156068A (en) Electrostatic charge stabilizing method
JPS59176750A (en) Electrophotographic sensitive body
JPS61134768A (en) Photoconductive element
JPH0616178B2 (en) Photoconductive member
JPS61138957A (en) Photoconductive material
JPS61177464A (en) Photoconductive member
JPS60153051A (en) Photoconductive member
JPS61126560A (en) Photoconductive material