JPH0743543B2 - Photoconductive member - Google Patents

Photoconductive member

Info

Publication number
JPH0743543B2
JPH0743543B2 JP59248087A JP24808784A JPH0743543B2 JP H0743543 B2 JPH0743543 B2 JP H0743543B2 JP 59248087 A JP59248087 A JP 59248087A JP 24808784 A JP24808784 A JP 24808784A JP H0743543 B2 JPH0743543 B2 JP H0743543B2
Authority
JP
Japan
Prior art keywords
layer
photoconductive
amorphous silicon
photoconductive layer
surface coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59248087A
Other languages
Japanese (ja)
Other versions
JPS61126558A (en
Inventor
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59248087A priority Critical patent/JPH0743543B2/en
Publication of JPS61126558A publication Critical patent/JPS61126558A/en
Publication of JPH0743543B2 publication Critical patent/JPH0743543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光(紫外から可視、赤外、X線、γ線等にわた
る領域の電磁波をいう)に感受性のある光導電部材に関
する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a photoconductive member sensitive to light (which means an electromagnetic wave in a range from ultraviolet to visible, infrared, X-ray, γ-ray, etc.).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

固体撮像素子、電子写真感光体等における光導電層を構
成する光導電性材料は、その使用上の目的から暗所での
比抵抗が高く(通常1013Ωcm以上)、かつ光照射により
比抵抗が小さくなる性質をもつものでなくてはならな
い。
The photoconductive material that constitutes the photoconductive layer in solid-state imaging devices, electrophotographic photoconductors, etc., has a high specific resistance in the dark (usually 10 13 Ωcm or more) for the purpose of its use, and the specific resistance due to light irradiation. Must have the property of becoming small.

ここでは電子写真を例にとって、その原理及び感光体と
して必要な条件を簡単に説明する。電子写真は感光体表
面にコロナ放電により電荷をふらせ帯電させる。次に感
光体に光を照射すると電子と正孔の対ができそのどちら
か一方により表面の電荷が中和される。例えば正に帯電
させた場合、光照射によりできた対のうち電子によって
中和され感光体表面に正電荷の潜像が形成される。可視
化は感光体表面の電荷と異符号に帯電したトナーと呼ば
れる黒粉体を感光体表面にクーロン力によって吸引させ
ることによりなされる。このとき、感光体表面に電荷が
なくとも、トナーの電荷で感光体に引きつけられること
を避けるため、感光体と現像器の間に電荷による電場と
逆方向の電場が生ずるように現像器の電位を高くすると
いう処理がなされている。これを、現像バイアスとい
う。以上が原理であるが、つぎに感光体として必要な条
件を述べると、第1のコロナ放電により帯電した電荷が
光照射まで保持されること、第2に光照射により生成し
た電子と正孔の対が再結合することなく、一方が表面の
電荷を中和し、さらにもう一方は感光層の支持体まで短
時間に到達することなどがあげられる。
Here, taking electrophotography as an example, the principle thereof and the conditions required as a photoconductor will be briefly described. In electrophotography, the surface of a photoconductor is charged by corona discharge. Then, when the photoconductor is irradiated with light, a pair of electron and hole is formed, and one of these pairs neutralizes the charge on the surface. For example, when positively charged, the latent image of positive charge is formed on the surface of the photoconductor by being neutralized by electrons in the pair formed by light irradiation. Visualization is performed by attracting black powder called toner, which is charged with a different sign from the charge on the surface of the photoconductor, to the surface of the photoconductor by Coulomb force. At this time, even if there is no electric charge on the surface of the photoconductor, in order to avoid being attracted to the photoconductor by the charge of the toner, the electric potential of the developing device is adjusted so that an electric field due to the electric charge is generated between the photoconductor and the developing device. Is being processed. This is called developing bias. The above is the principle. Next, the conditions necessary for the photoconductor will be described. First, the charge charged by the first corona discharge is retained until light irradiation, and second, the charge of electrons and holes generated by light irradiation is retained. One is that the pair neutralizes the surface charge and the other reaches the support of the photosensitive layer in a short time without the pair being recombined.

従来、光導電部材における光導電性層の形成に使用され
るものとして非晶質カルコゲナイド系材料がある。非晶
質カルコゲナイド系材料は、大面積化を容易に達成する
ことのできる優れた光導電性材料であるが、光吸収領域
端が可視領域から紫外領域に近いところまでにあるので
実用上可視領域における光感度が低く、また硬度が低い
ので電子写真感光体に応用した場合、寿命が短かいなど
幾つかの問題を有している。
Conventionally, there is an amorphous chalcogenide material as a material used for forming a photoconductive layer in a photoconductive member. Amorphous chalcogenide-based materials are excellent photoconductive materials that can easily achieve a large area, but since the edge of the light absorption region is from the visible region to a position near the ultraviolet region, it is practically in the visible region. Since it has low photosensitivity and low hardness, it has some problems such as a short life when applied to an electrophotographic photoreceptor.

このような問題点に基づき最近注目されている光導電性
材料にはアモルファスシリコンがある(以下、a-Siと記
す)。a-Siは吸収波長域が広く全整色(Panchromatic)
であり、光感度も高い。またa-Siは硬度も高く、電子写
真感光体に応用した場合、従来のものより10倍以上の寿
命を持つことが期待されている。さらにa-Siは、人体に
無害であり、単結晶シリコンと比較した場合、安価で容
易に大面積化を図ることができる等の多くの利点を有す
る。
Amorphous silicon is one of the photoconductive materials that has recently received attention based on such problems (hereinafter referred to as a-Si). a-Si has a wide absorption wavelength range and is fully chromatic (Panchromatic)
The light sensitivity is also high. In addition, a-Si has high hardness, and when applied to an electrophotographic photoreceptor, it is expected to have a life of 10 times or more that of a conventional one. In addition, a-Si is harmless to the human body and has many advantages over single-crystal silicon, such as being inexpensive and easily increasing the area.

しかしながら、a-Siは暗所での比抵抗(以下、暗抵抗と
いう)が通常108Ωcm〜1010Ωcm程度の低さであるか
ら、静電潜像を形成する電子写真感光体にあっては、そ
の表面に帯電した電荷を保持することができない。もっ
とも、電子写真感光体においてはアモルファスシリコン
感光層と支持体との間に、窒化シリコン、炭化シリコ
ン、酸化シリコンなどを介在させることにより支持体か
らのキャリアの注入を防止することが試みられている。
However, since the specific resistance of a-Si in the dark (hereinafter referred to as dark resistance) is usually as low as about 10 8 Ωcm to 10 10 Ωcm, it is common in electrophotographic photoreceptors that form an electrostatic latent image. Cannot retain the charge that is charged on its surface. However, in the electrophotographic photoreceptor, it has been attempted to prevent carrier injection from the support by interposing silicon nitride, silicon carbide, silicon oxide, or the like between the amorphous silicon photosensitive layer and the support. .

しかしながら、この試みによりアモルファスシリコン感
光層と支持体との間に介在された上記材料からなる層の
厚みをを大きくすると、その上にあるa-Si層から支持体
へ流れるキャリアの通過を阻止することとなるので、結
果として残留電位が高くなるという問題が生じてしま
う。また、アモルファスシリコン感光層と支持体との間
に介在された上記材料からなる層の厚みをを小さくする
と、十分な電位保持能を持たせることができなくなって
しまい、また現像バイアスによる絶縁破壊が起るという
欠点を有している。
However, if the thickness of the layer made of the above material interposed between the amorphous silicon photosensitive layer and the support is increased by this attempt, the passage of carriers flowing from the a-Si layer thereabove to the support is blocked. As a result, there arises a problem that the residual potential becomes high. Further, if the thickness of the layer made of the above material interposed between the amorphous silicon photosensitive layer and the support is reduced, it becomes impossible to provide a sufficient potential holding ability, and dielectric breakdown due to the development bias may occur. It has the drawback of occurring.

一方、導電性基体と光導電性層の間にP型あるいはn型
の導電性をもつ半導体膜を設ける方法もある。通常は硼
素(B)あるいは燐(P)を多量にドープしたP型ある
いはn型の非晶質シリコンを用いる。このような層を電
荷注入防止層と呼ぶ。この層における電荷注入防止能は
BあるいはPを多くドープすることにより向上するが、
そのような膜は膜内部の歪が大きく、その上に歪の異な
る膜を積層すると膜が剥離してしまうという不具合を有
している。また、非晶質シリコンの光吸収は広い波長域
にわたって起り、光吸収端付近でも徐々に吸収が減少す
るという様相を示す。すなわち、700nmから800nmの波長
域では吸収は減少するが零にはならず、僅かながら吸収
するものである。このような材料で光導電性層を作る場
合、電子写真感光体のように光導電性層の膜厚が厚い場
合には、長波長光を光導電性層の基体に近いところでも
吸収する。非晶質シリコンは電子、正孔とともにその易
動度はあまり高くないので、露光により感光体の表面よ
り遠い所で発生したキャリアは残り易い。電子写真装置
には1枚の画像を形成した後、感光体表面に残る電荷を
除去する除電と呼ばれるプロセスがあるが、これを光照
射で行なう場合には上記理由により残留した膜中のキャ
リアが次の画像を得るために行なう感光体表面の帯電に
よる表面電荷を中和してしまう。したがって、露光直後
の帯電能は暗中に放置した後の帯電能よりも大幅に低下
するという不具合が生じている。
On the other hand, there is also a method in which a semiconductor film having P-type or n-type conductivity is provided between the conductive substrate and the photoconductive layer. Usually, P-type or n-type amorphous silicon which is heavily doped with boron (B) or phosphorus (P) is used. Such a layer is called a charge injection prevention layer. The charge injection preventing ability in this layer is improved by doping a large amount of B or P.
Such a film has a problem that the strain inside the film is large and the film peels off when a film having a different strain is laminated on the film. In addition, light absorption of amorphous silicon occurs over a wide wavelength range, and the absorption gradually decreases even near the light absorption edge. That is, in the wavelength range of 700 nm to 800 nm, the absorption decreases but does not become zero, and it slightly absorbs. When the photoconductive layer is made of such a material, if the photoconductive layer is thick like an electrophotographic photoreceptor, long-wavelength light is absorbed even near the substrate of the photoconductive layer. Since the mobility of amorphous silicon along with electrons and holes is not so high, carriers generated by exposure far from the surface of the photoconductor are likely to remain. In an electrophotographic apparatus, there is a process called charge removal that removes electric charges remaining on the surface of a photoconductor after forming one image, but when this is performed by light irradiation, carriers remaining in the film are removed due to the above reason. The surface charge due to the charging of the surface of the photoconductor to obtain the next image is neutralized. Therefore, there is a problem in that the charging ability immediately after exposure is significantly lower than the charging ability after being left in the dark.

〔発明の目的〕[Object of the Invention]

本発明は上記事情にもとづきなされたもので、残留電位
を生じしめることなく帯電能に優れ、紫外から近赤外に
まで及ぶ広い波長域において、高い光感度をもち、かつ
長期間の使用に耐え得る光導電部材を提供することを目
的とする。
The present invention has been made based on the above circumstances, is excellent in charging ability without causing residual potential, has a high photosensitivity in a wide wavelength range from ultraviolet to near infrared, and withstands long-term use. It is intended to provide a photoconductive member to be obtained.

〔発明の概要〕[Outline of Invention]

導電性支持体上に電荷注入防止層、光導電性層および表
面被覆層を順次積層して成る光導電部材において、前記
電荷注入防止層は硼素あるいは燐を含有するP型あるい
はn型の非晶質炭化シリコンから構成され、前記表面被
覆層は所定量の炭素、窒素、あるいは酸素のいずれかを
含有した非晶質シリコンから構成され、前記光導電性層
は0.1μm乃至5.0μmの膜厚を有し硼素を含有する非晶
質シリコンから成る第1の光導電性層と、この第1の光
導電性層と前記表面被覆層との間に設けられ、硼素を含
有するとともに前記表面被覆層に含有される炭素、窒
素、あるいは酸素のいずれかの量よりも少量の窒素を含
有し、前記第1の光導電性層よりも高い比抵抗および前
記第1の光導電性層よりも大きくかつ前記表面被覆層よ
り小さい光学的バンドギャップを有する比晶質窒化シリ
コンから成る第2の光導電性層とから構成されることを
特徴とするものである。
In a photoconductive member comprising a conductive support, and a charge injection prevention layer, a photoconductive layer and a surface coating layer, which are sequentially laminated, the charge injection prevention layer is a P-type or n-type amorphous material containing boron or phosphorus. The surface coating layer is made of amorphous silicon containing a predetermined amount of carbon, nitrogen, or oxygen, and the photoconductive layer has a thickness of 0.1 μm to 5.0 μm. A first photoconductive layer made of amorphous silicon having boron and a boron-containing surface coating layer provided between the first photoconductive layer and the surface coating layer. Containing a smaller amount of nitrogen than any of carbon, nitrogen, or oxygen contained in, and having a specific resistance higher than that of the first photoconductive layer and higher than that of the first photoconductive layer. Optical bandgage smaller than the surface coating layer And a second photoconductive layer made of non-crystalline silicon nitride having a cap.

〔発明の実施例〕Example of Invention

以下、本発明を図面に示す一実施例にもとづいて説明す
る。図中、(1)はたとえば電子写真感光体として使用
される光導電部材である。この光導電部材(1)は平板
状またはドラム状の導電性支持体(2)上に積層した非
晶質炭化シリコンから成る電荷注入防止層(3)と、こ
の電荷注入防止層(3)の上に0.1〜5.0μm膜厚のa-Si
層を積層した第1の光導電性層(4)と、この第1の光
導電性層(4)の上に積層した非晶質窒化シリコンから
成る第2の光導電性層(5)と、さらに好ましくは上記
第2の光導電性層(5)の上に500Å〜5μm膜厚の非
晶質炭化シリコン、窒化シリコンあるいは酸化シリコン
を積層した表面被覆層(6)とから構成される。
Hereinafter, the present invention will be described based on an embodiment shown in the drawings. In the figure, ( 1 ) is a photoconductive member used as an electrophotographic photoreceptor, for example. This photoconductive member ( 1 ) comprises a charge injection prevention layer (3) made of amorphous silicon carbide laminated on a flat plate-shaped or drum-shaped conductive support (2) and a charge injection prevention layer (3). 0.1-5.0 μm thick a-Si on top
A first photoconductive layer (4) having laminated layers, and a second photoconductive layer (5) made of amorphous silicon nitride laminated on the first photoconductive layer (4). More preferably, the surface coating layer (6) is formed by laminating amorphous silicon carbide, silicon nitride or silicon oxide having a film thickness of 500Å to 5 μm on the second photoconductive layer (5).

次に、各層について説明する。まず、電荷注入防止層
(3)として硼素(B)あるいは燐(P)などをドープ
したP型あるいはn型の非晶質炭化シリコンを積層する
理由は、a-Siは硼素(B)あるいは燐(P)を大量にド
ーピングすることにより膜中の歪が大きくなり膜が剥離
し易くなるのに対し非晶質炭化シリコンはこのような問
題がなく硼素(B)あるいは燐(P)を大量にドーピン
グすることが可能となり、電荷注入防止層(3)として
優れた膜が得られる。また、第1の光導電性層(4)の
役割は上部に積層した第2の光導電性層(5)に非晶質
窒化シリコンを使用したときの欠点を補なうことにあ
る。すなわち、非晶質窒化シリコンはa-Siと比較して光
学的バンドギャップが広く、感光波長域が狭い。したが
って、a-Si層は露光に用いられる光源に対応させて0.1
〜5.0μm程度の膜厚があればよい。
Next, each layer will be described. First, the reason for laminating P-type or n-type amorphous silicon carbide doped with boron (B) or phosphorus (P) as the charge injection prevention layer (3) is that a-Si is boron (B) or phosphorus. By doping a large amount of (P), the strain in the film becomes large and the film becomes easy to peel off, whereas amorphous silicon carbide does not have such a problem and a large amount of boron (B) or phosphorus (P) is contained. Doping becomes possible, and a film excellent as the charge injection preventing layer (3) can be obtained. Also, the role of the first photoconductive layer (4) is to make up for the drawbacks of using amorphous silicon nitride for the second photoconductive layer (5) laminated on top. That is, amorphous silicon nitride has a wider optical bandgap and a narrower photosensitive wavelength range than a-Si. Therefore, the a-Si layer should be 0.1% depending on the light source used for exposure.
A film thickness of about 5.0 μm is enough.

さらに、第2の光導電性層(5)はa-Siでもよいが、a-
Siは比抵抗が低く、帯電能ならびに電位保持能も満足す
べきものではない。これに対して非晶質窒化シリコンは
比抵抗が高いため、a-Siと比較して帯電能ならびに電位
保持能に20〜30%程度の向上があった。
Further, the second photoconductive layer (5) may be a-Si, but a-
Si has a low specific resistance, and its charging ability and potential holding ability are not satisfactory. On the other hand, since amorphous silicon nitride has a high specific resistance, the charging ability and the potential holding ability were improved by about 20 to 30% as compared with a-Si.

また、これらの光導電性層(4),(5)に少量の硼素
(B)をドーピングすることにより比抵抗は更に高くな
り、正孔の易動度、すなわち動き易さもドーピングしな
い場合よりも高くなるので好ましい結果が得られる。
Further, by doping a small amount of boron (B) into these photoconductive layers (4) and (5), the specific resistance is further increased, and the mobility of holes, that is, the ease of movement is also higher than that in the case where it is not doped. Higher results are obtained with good results.

つぎに、上記構成にもとづく本発明の光導電部材の成膜
方法を説明する。まず、導電性支持体(2)を真空反応
室(図示しない)に取付け、反応室内を図示しないメカ
ニカルブースターポンプと油回転ポンプにより10-3〜10
-4Torrの真空状態とする。このとき、上記支持体(2)
は100℃〜400℃の温度に保持しておく。
Next, the film forming method of the photoconductive member of the present invention based on the above configuration will be described. First, the conductive support (2) is attached to a vacuum reaction chamber (not shown), and the reaction chamber is set to 10 -3 to 10 by a mechanical booster pump and an oil rotary pump (not shown).
-4 Torr vacuum state. At this time, the support (2)
Is kept at a temperature of 100 ° C to 400 ° C.

つぎに、反応室内にSi原子を含むガス、例えばSiH4,Si2
H6,SiF4等のガスを導入し、0.1〜1Torr程度の圧力にな
るように排気速度を調節し定常状態になるまで待機す
る。
Next, a gas containing Si atoms in the reaction chamber, such as SiH 4 or Si 2
A gas such as H 6 or SiF 4 is introduced, the exhaust speed is adjusted so that the pressure is about 0.1 to 1 Torr, and the process waits until a steady state is reached.

つぎに、反応室内の電極間に13.56MHzの高周波電力を印
加することにより成膜することができる。
Next, a film can be formed by applying 13.56 MHz high frequency power between the electrodes in the reaction chamber.

また、a-Siは周期律表第IIIa族元素もしくはVa族元素の
ドーピングにより価電子制御が可能であり、比抵抗の制
御も可能である。さらに、窒素、炭素、または酸素の添
加により比抵抗を高くすることができる。また、不純物
添加の方法は、成膜時において、反応室内にSi原子を含
むガスと添加したい元素を含むガスとを混合することに
より成膜が可能となる。
Further, a-Si can control valence electrons by doping with a Group IIIa element or a Va group element of the periodic table, and can also control specific resistance. Furthermore, the specific resistance can be increased by adding nitrogen, carbon, or oxygen. In addition, the method of adding impurities enables film formation by mixing a gas containing Si atoms and a gas containing an element to be added into the reaction chamber during film formation.

そこで、上記成膜方法を用いて例えばAlの円筒状支持体
に積層し、電子写真感光体とした一例を説明する。ま
ず、導電性支持体(2)上に硼素(B)が1×10-3乃至
1.0atomic%を含む非晶質炭化シリコンを積層して電荷
注入防止層(3)とする。このときの成膜条件はSiH4
スに対してCH4ガスを20%乃至100%程度混合し、Heガス
で希釈したB2H6(濃度20,000ppm)ガスをSiH4ガスに対
し1〜10%程度混合している。
Therefore, an example will be described in which an electrophotographic photosensitive member is obtained by laminating the film on the cylindrical support made of, for example, Al by using the above film forming method. First, 1 × 10 −3 or more of boron (B) was formed on the conductive support (2).
Amorphous silicon carbide containing 1.0 atomic% is laminated to form a charge injection prevention layer (3). The film forming conditions at this time are as follows: CH 4 gas is mixed with SiH 4 gas in an amount of 20% to 100% and B 2 H 6 (concentration 20,000 ppm) gas diluted with He gas is 1 to 10 with respect to SiH 4 gas. % Mixed.

つぎに、a-Siから成る第1の光導電性層(4)を膜厚0.
1〜5μm積層するには硼素(B)を少量ドーピングす
ることが望ましく、そのときにはSiH4ガスに対しHeガス
で希釈したB2H6(濃度20ppm)ガスを1〜10%程度混合
して成膜する。
Next, a first photoconductive layer (4) made of a-Si was formed to a film thickness of 0.
It is desirable to dope a small amount of boron (B) for stacking 1 to 5 μm. At that time, B 2 H 6 (concentration 20 ppm) gas diluted with He gas is mixed with SiH 4 gas to form 1 to 10%. To film.

つぎに、非晶質窒化シリコンから成る第2の光導電性層
(5)はN2もしくはNH3ガスをSiH4ガスに対し5〜40%
程度混合する以外はa-Siから成る第1の光導電性層
(4)と同様である。このとき、得られる膜の光学的バ
ンドギャップは1.7eVまたは1.9eVとなり、a-Siに比較し
て大きい利点がある。
Next, the second photoconductive layer (5) made of amorphous silicon nitride contains 5% to 40% of N 2 or NH 3 gas with respect to SiH 4 gas.
It is the same as the first photoconductive layer (4) made of a-Si except that it is mixed to some extent. At this time, the optical band gap of the obtained film is 1.7 eV or 1.9 eV, which is a great advantage as compared with a-Si.

さらに、表面被覆層(6)はSiH4に対し同量かそれ以上
のCH4,C2H6,C2H2,O2,N2,NH3ガスを混合して成膜する
が、その膜厚は500Å〜5.0μm程度が好ましく、光学的
バンドギャップも2.0eV以上の大きなものが得られる。
Further, the surface coating layer (6) is deposited by mixing the same amount or more CH 4, C 2 H 6, C 2 H 2, O 2, N 2, NH 3 gas to SiH 4, The film thickness is preferably about 500 Å to 5.0 μm, and a large optical band gap of 2.0 eV or more can be obtained.

このように成層されたAlの円筒状支持体(2)を電子写
真感光体として用いた結果、正帯電用として充分使用可
能な帯電能と電荷保持能を有しており、10万枚以上のコ
ピーにも画像の乱れがなく、長期間の使用に耐え得るこ
とが立証されている。
As a result of using the Al cylindrical support (2) layered in this way as an electrophotographic photosensitive member, it has a charging ability and a charge holding ability that can be sufficiently used for positive charging. It has been proved that the copy has no image distortion and can be used for a long period of time.

一方、上記電荷注入防止層(3)に硼素(B)の代りに
燐(P)をドーピングすると負帯電用となり、上記同様
の電子写真用感光体が得られるものである。
On the other hand, when the charge injection prevention layer (3) is doped with phosphorus (P) instead of boron (B), it becomes for negative charging, and the same electrophotographic photoreceptor as described above can be obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば光導電部材の表面に
残留電位がなく、帯電能および電荷保持能に優れている
ため、長期間に亘り寿命を伸ばすことができるという格
別な効果を奏するものである。
As described above, according to the present invention, since there is no residual potential on the surface of the photoconductive member and the charging ability and the charge holding ability are excellent, a special effect that the life can be extended for a long time is exhibited. Is.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の一実施例を示す光導電部材の模式的構成
図である。1 ……光導電部材、2……導電性支持体 3……電荷注入防止層、4……第1の光導電性層 5……第2の光導電性層、6……表面被覆層
The drawing is a schematic configuration diagram of a photoconductive member showing an embodiment of the present invention. 1 ... Photoconductive member, 2 ... Conductive support 3 ... Charge injection preventing layer, 4 ... First photoconductive layer 5 ... Second photoconductive layer, 6 ... Surface coating layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性支持体上に電荷注入防止層、光導電
性層および表面被覆層を順次積層して成る光導電部材に
おいて、前記電荷注入防止層は硼素あるいは燐を含有す
るP型あるいはn型の非晶質炭化シリコンから構成さ
れ、前記表面被覆層は所定量の炭素、窒素、あるいは酸
素のいずれかを含有した非晶質シリコンから構成され、
前記光導電性層は0.1μm乃至5.0μmの膜厚を有し硼素
を含有する非晶質シリコンから成る第1の光導電性層
と、この第1の光導電性層と前記表面被覆層との間に設
けられ、硼素を含有するとともに前記表面被覆層に含有
される炭素、窒素、あるいは酸素のいずれかの量よりも
少量の窒素を含有し、前記第1の光導電性層よりも高い
比抵抗および前記第1の光導電性層よりも大きくかつ前
記表面被覆層より小さい光学的バンドギャップを有する
非晶質窒化シリコンから成る第2の光導電性層とから構
成されることを特徴とする光導電部材。
1. A photoconductive member comprising a conductive support, on which a charge injection prevention layer, a photoconductive layer and a surface coating layer are sequentially laminated, wherein the charge injection prevention layer is a P-type or boron-containing phosphorous type. It is composed of n-type amorphous silicon carbide, and the surface coating layer is composed of amorphous silicon containing a predetermined amount of carbon, nitrogen, or oxygen.
The photoconductive layer has a thickness of 0.1 μm to 5.0 μm and is made of amorphous silicon containing boron, the first photoconductive layer, and the surface coating layer. Between the first photoconductive layer and the first photoconductive layer, which contains boron and contains a smaller amount of nitrogen than the amount of carbon, nitrogen or oxygen contained in the surface coating layer. A second photoconductive layer made of amorphous silicon nitride having a specific resistance and an optical bandgap larger than that of the first photoconductive layer and smaller than that of the surface coating layer. Photoconductive member.
JP59248087A 1984-11-26 1984-11-26 Photoconductive member Expired - Lifetime JPH0743543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248087A JPH0743543B2 (en) 1984-11-26 1984-11-26 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248087A JPH0743543B2 (en) 1984-11-26 1984-11-26 Photoconductive member

Publications (2)

Publication Number Publication Date
JPS61126558A JPS61126558A (en) 1986-06-14
JPH0743543B2 true JPH0743543B2 (en) 1995-05-15

Family

ID=17173011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248087A Expired - Lifetime JPH0743543B2 (en) 1984-11-26 1984-11-26 Photoconductive member

Country Status (1)

Country Link
JP (1) JPH0743543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760272B2 (en) * 1984-12-12 1995-06-28 株式会社東芝 Photoconductive member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219565A (en) * 1982-06-15 1983-12-21 Konishiroku Photo Ind Co Ltd Photoreceptor
JPS5967551A (en) * 1982-10-11 1984-04-17 Konishiroku Photo Ind Co Ltd Recording body
JPS5967549A (en) * 1982-10-11 1984-04-17 Konishiroku Photo Ind Co Ltd Recording body
JPS59177561A (en) * 1983-03-28 1984-10-08 Canon Inc Photoconductive member

Also Published As

Publication number Publication date
JPS61126558A (en) 1986-06-14

Similar Documents

Publication Publication Date Title
US4656110A (en) Electrophotographic photosensitive member having a photoconductive layer of an amorphous material
JPS6161383B2 (en)
GB2145530A (en) Amorphous silicon photoreceptor
JPH0743543B2 (en) Photoconductive member
US4716089A (en) Photoconductive member for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
JPS6194054A (en) Photoconductive member
JPH0760271B2 (en) Photoconductive member
JPH058420B2 (en)
JPS61126559A (en) Photoconductive material
JPS61126557A (en) Photoconductive material
JPH0535425B2 (en)
JPH0616178B2 (en) Photoconductive member
JPH0760272B2 (en) Photoconductive member
JPS61177465A (en) Photoconductive member
JPS61126560A (en) Photoconductive material
JPS62151857A (en) Photoconductive member
JPS61177466A (en) Photoconductive member
JPS60153051A (en) Photoconductive member
JP2948937B2 (en) Image forming device
JPH0554673B2 (en)
JPS61177467A (en) Photoconductive member
JPH052296A (en) Image forming device
JP2000214617A (en) Image forming device
JPS61134768A (en) Photoconductive element
JPS61177464A (en) Photoconductive member

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term