JPS6161387B2 - - Google Patents

Info

Publication number
JPS6161387B2
JPS6161387B2 JP1940780A JP1940780A JPS6161387B2 JP S6161387 B2 JPS6161387 B2 JP S6161387B2 JP 1940780 A JP1940780 A JP 1940780A JP 1940780 A JP1940780 A JP 1940780A JP S6161387 B2 JPS6161387 B2 JP S6161387B2
Authority
JP
Japan
Prior art keywords
layer
gas
electrophotographic photoreceptor
conductive substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1940780A
Other languages
Japanese (ja)
Other versions
JPS56116037A (en
Inventor
Nobuyoshi Takagi
Kyoshi Ozawa
Toshiro Kodama
Satoru Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1940780A priority Critical patent/JPS56116037A/en
Publication of JPS56116037A publication Critical patent/JPS56116037A/en
Publication of JPS6161387B2 publication Critical patent/JPS6161387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は半導体レーザ等の0.75〜0.85μmの長
波長の光に感応する電子写真感光体の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrophotographic photoreceptor that is sensitive to light with a long wavelength of 0.75 to 0.85 μm such as a semiconductor laser.

従来、電子写真感光体として、Se、CdS、ZnO
等の無機光導電材料やポリビニルカルバゾール
(PVK)、トリニトロフルオレノン(TNF)、Cu
−フタロシアニン等の有機光導電材料が一般的に
使用されている。
Conventionally, Se, CdS, ZnO were used as electrophotographic photoreceptors.
Inorganic photoconductive materials such as polyvinylcarbazole (PVK), trinitrofluorenone (TNF), Cu
- Organic photoconductive materials such as phthalocyanines are commonly used.

しかしながら、長波長領域での感度不足、
Se、Cd、TNF等は公害材料であるという問題点
を有している。また、0.75〜0.85μmの長波長に
感度を持たせるために、多くの試みがなされてい
る。例えば、Se感光体の場合、Te添加が試みら
れている。しかし、その添加量が20体積%と非常
に多く必要であり、そのため結晶化しやすくなり
経時変化を大きくしている。
However, the lack of sensitivity in the long wavelength region,
Se, Cd, TNF, etc. have the problem of being polluting materials. Furthermore, many attempts have been made to provide sensitivity to long wavelengths of 0.75 to 0.85 μm. For example, in the case of Se photoreceptors, attempts have been made to add Te. However, it is necessary to add a very large amount of 20% by volume, which makes it easy to crystallize and causes a large change over time.

本発明は以上の欠点を除去し、かつ容易なる方
法で長波長に高感度を有する電子写真感光体を提
供する製造法である。
The present invention is a manufacturing method that eliminates the above-mentioned drawbacks and provides an electrophotographic photoreceptor having high sensitivity to long wavelengths in a simple manner.

電子写真感光体として必須な条件は、帯電され
た電荷が転写等の後処理完了まで保持されなけれ
ばならず、この電荷保持能力は感光体の抵抗が高
ければ高い程優れている。現在、この暗抵抗値は
装置条件にもよるが、1012Ω・cm以上必要とされ
ている。
An essential condition for an electrophotographic photoreceptor is that the charged charge must be retained until the completion of post-processing such as transfer, and the higher the resistance of the photoreceptor, the better the charge retention ability. Currently, this dark resistance value is required to be 10 12 Ω·cm or more, although it depends on the device conditions.

ところで、シランガスのグロー放電分解法によ
つて作製された無定形非晶質(アモルフアス)Si
膜は可視光を基準とし長波長に良好なる感度を有
する光導電体であることがしられている。しかし
ながら、その暗抵抗率は108〜1010Ω・cmと低く
電子写真感光体としては適当ではない。さらに、
その分光感度波長は600〜700nmにピークを持
ち、750〜850nmでの感度は低下しており、波長
に応じた増感を必要としている。
By the way, amorphous Si produced by the glow discharge decomposition method of silane gas
The film is known to be a photoconductor with good sensitivity to long wavelengths of visible light. However, its dark resistivity is as low as 10 8 to 10 10 Ω·cm, making it unsuitable for use as an electrophotographic photoreceptor. moreover,
Its spectral sensitivity wavelength has a peak at 600 to 700 nm, and the sensitivity decreases at 750 to 850 nm, requiring sensitization depending on the wavelength.

本発明はこのような従来は低抵抗とされていた
アモルフアスSi膜を高抵抗化し、かつ多層構造と
することにより750〜850nmに感度ピークを持つ
電子写真感光体を作製するものである。
The present invention is to fabricate an electrophotographic photoreceptor having a sensitivity peak in the range of 750 to 850 nm by increasing the resistance of such an amorphous Si film, which was conventionally considered to have low resistance, and by forming it into a multilayer structure.

すなわち、アモルフアスSi膜の光導電性は成膜
時における基板の温度に強く依存し、基板温度を
高くするにつれ光感度は増大し、基板温度250℃
で明抵抗率は1000 lxの光で105Ω・cmを示す。一
方、暗抵抗率は108〜109Ω・cmと低い。逆に基板
温度が100℃前後と低い場合は、暗抵抗率が1010
〜1011Ω・cmと高く、明抵抗率は1000 lxの光で
107〜108と低い。
In other words, the photoconductivity of an amorphous Si film strongly depends on the temperature of the substrate at the time of film formation, and as the substrate temperature increases, the photosensitivity increases.
The bright resistivity is 10 5 Ω cm at 1000 lx light. On the other hand, the dark resistivity is low at 10 8 to 10 9 Ω·cm. Conversely, when the substrate temperature is low, around 100℃, the dark resistivity is 10 10
It has a high bright resistivity of ~10 11 Ω・cm and a light resistivity of 1000 lx.
As low as 10 7 to 10 8 .

そこで、本発明は、第1に基板温度80−130℃
でアモルフアスSi成膜を行う時にシランガス中に
酸素を混入させることによりアモルフアスSi膜中
にH−Si−O化合物を形成し高抵抗化を図るよう
にしている。シラン(SiH4)ガス中の酸素ガスの
含有量が0.5体積%以下であると形成したアモル
フアスSi膜の暗抵抗率が1012Ω・cm以下であり、
一方6体積%を越えると光導電材料は非常に高抵
抗となるが、明/暗抵抗率比が小さくなり、電子
写真感光体としては好ましくない。
Therefore, the present invention firstly aims at a substrate temperature of 80-130°C.
When forming an amorphous Si film, oxygen is mixed into the silane gas to form an H-Si-O compound in the amorphous Si film, thereby increasing the resistance. The dark resistivity of the amorphous Si film formed when the content of oxygen gas in the silane (SiH 4 ) gas is 0.5% by volume or less is 10 12 Ω·cm or less,
On the other hand, if it exceeds 6% by volume, the photoconductive material will have a very high resistance, but the bright/dark resistivity ratio will become small, making it undesirable for use as an electrophotographic photoreceptor.

第二には、上記のように形成された第1層のア
モルフアスSi膜を200−250℃で熱処理することに
より、膜中の欠陥を減少させキヤリアの輸送効率
を増大させるようにしている。
Second, by heat-treating the first layer amorphous Si film formed as described above at 200-250°C, defects in the film are reduced and carrier transport efficiency is increased.

さらに、第三には熱処理された上記第1層上に
基板温度を200−250℃とし、ゲルマニウム化水素
(ゲルマンとも呼ばれる)0−20体積%、残部シ
ランガスよりなる気体により第2層のアモルフア
スシリコン膜を成長させるようにしている。
Furthermore, in the third step, the substrate temperature is set to 200-250°C on the heat-treated first layer, and a gas consisting of 0-20% by volume of hydrogen germanide (also called germane) and the balance silane gas is applied to form an amorphous amorphous material in the second layer. We are trying to grow a silicon film.

GeH4(モノゲルマン)中のグロー放電により
作製したアモルフアスGe膜は抵抗率104〜106Ω・
cmと低いが、そのバンドギヤツプ(自由電子生成
エネルギー)は1.2〜0.9eVとアモルフアスSi
(1.5〜1.7eV)のそれに比較して小さく、ゆえに
SiとGeを適当な配合比で混合することにより、
分光感度波長を750nm−850nmと変化させるこ
とができる。その配合比は0−20体積%のゲルマ
ニウムが適当である。
An amorphous Ge film prepared by glow discharge in GeH 4 (monogermane) has a resistivity of 10 4 to 10 6 Ω.
cm, but its band gap (free electron generation energy) is 1.2 to 0.9 eV, which is amorphous Si.
(1.5-1.7eV), therefore
By mixing Si and Ge in an appropriate ratio,
The spectral sensitivity wavelength can be changed from 750nm to 850nm. A suitable blending ratio of germanium is 0-20% by volume.

以上のように形成された電子写真感光体の構造
を第1図に示す。図中、Aは電極であり、Bは高
抵抗でかつ電荷輸送効率の高い第1層のSi膜、C
は高感度でかつ光キヤリア発生効率の高い第2層
のSi膜である。この電子写真感光体上にコロナ放
電器Dより電荷を一様に供給し、次に750−850n
mの光Eを所望のマスク等を介して局所的に照射
することにより、第2層Cでキヤリアが発生し、
それが第1層Bへ注入され、かつ第1層Bに存在
する高電界により電極Aへ輸送され帯電電荷が消
失する。
The structure of the electrophotographic photoreceptor formed as described above is shown in FIG. In the figure, A is the electrode, B is the first layer of Si film with high resistance and high charge transport efficiency, and C
is a second layer Si film with high sensitivity and high optical carrier generation efficiency. Charge is uniformly supplied onto this electrophotographic photoreceptor from a corona discharger D, and then 750-850n
By locally irradiating the light E of m through a desired mask, a carrier is generated in the second layer C,
It is injected into the first layer B, and transported to the electrode A by the high electric field existing in the first layer B, thereby dissipating the charged charge.

以上のメカニズムによつて、この電子写真感光
体は長波長に感度を有する。
Due to the above mechanism, this electrophotographic photoreceptor has sensitivity to long wavelengths.

実施例 (第1工程) 容量型の高周波グロー放電装置において、基板
ホルダに導電性基板をセツトした。次にこの装置
の真空室内の空気を排気した後、加熱ヒータによ
り基板の温度を120℃まで上昇させた。その後、
4体積%の酸素を含むシランガスを導入し、真空
度5×10-2Torrに維持して電力10Wの高周波(
=13.56MHz)放電電極を加えることにより第1
層のSi膜を基板上に3μmの膜厚まで成膜した。
Example (first step) In a capacitive high frequency glow discharge device, a conductive substrate was set in a substrate holder. Next, after exhausting the air in the vacuum chamber of this device, the temperature of the substrate was raised to 120°C using a heater. after that,
Silane gas containing 4% by volume of oxygen was introduced, the vacuum level was maintained at 5 x 10 -2 Torr, and a high frequency power (10W) was applied.
= 13.56MHz) By adding a discharge electrode, the first
A layer of Si film was formed on the substrate to a thickness of 3 μm.

(第2工程) その後、第1工程と同じ真空度を保ちつつ基板
温度を220℃まで上昇させ、1時間保持した。
(Second Step) Thereafter, while maintaining the same degree of vacuum as in the first step, the substrate temperature was raised to 220° C. and held for 1 hour.

(第3工程) 15体積%のゲルマンガス(GeH4)、残部シラン
ガスよりなる気体を5×1-2Torrの真空度になる
ように導入し、電力10Wの高周波を放電電極に加
えることにより、既形成の第1層のSi膜上に第2
層のSi膜を1μmの膜厚まで成膜した。
(Third step) By introducing a gas consisting of 15% by volume of germane gas (GeH 4 ) and the remainder silane gas to a degree of vacuum of 5×1 -2 Torr, and applying high frequency power of 10W to the discharge electrode, A second layer is placed on the already formed first layer Si film.
A layer of Si film was formed to a thickness of 1 μm.

以上の3工程により作製したアモルフアスSi膜
につき電子写真感光体としての特性を調べた。そ
の結果を第2図に示す。この測定にあたり、帯電
を5.5kVの負コロナ放電により行い、露光を波長
850nmで5μW/cm2の光で行つた。光減衰によ
る半減時間は0.5秒であつた。図中、縦軸は感光
体表面電位、横軸は経過時間を夫々示している。
The characteristics of the amorphous Si film produced through the above three steps as an electrophotographic photoreceptor were investigated. The results are shown in FIG. For this measurement, charging was performed using a 5.5kV negative corona discharge, and exposure was performed using a wavelength
It was performed with 5 μW/cm 2 of light at 850 nm. The half-life time due to optical attenuation was 0.5 seconds. In the figure, the vertical axis represents the photoreceptor surface potential, and the horizontal axis represents the elapsed time.

以上本発明によれば750−850nmの光に高感度
を有する電子写真感光体を提供し、高速な半導体
レーザを使つたプリンタを実現するものである。
As described above, according to the present invention, an electrophotographic photoreceptor having high sensitivity to light of 750 to 850 nm is provided, and a printer using a high-speed semiconductor laser is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により製造される電子写真感光
体の構造を例示した断面図である。Aは電極、B
は電荷輸送を担う第1のSi層、Cは電荷発生を担
う第2のSi層、Dはコロナ放電器である。 第2図は、本発明によつて製造した電子写真感
光体の暗減衰・明減衰特性である。
FIG. 1 is a cross-sectional view illustrating the structure of an electrophotographic photoreceptor manufactured according to the present invention. A is the electrode, B
is a first Si layer responsible for charge transport, C is a second Si layer responsible for charge generation, and D is a corona discharger. FIG. 2 shows the dark decay and bright decay characteristics of the electrophotographic photoreceptor manufactured according to the present invention.

Claims (1)

【特許請求の範囲】 1 シランガスを含有する気体中でグロー放電を
行い導電性基体表面に感光体層を形成する電子写
真感光体の製造方法において、酸素0.5〜6モル
%残部シランガスよりなり圧力が10-1〜10-3Torr
気体中に、温度を80℃〜130℃に保つた上記導電
性基体を配置し、グロー放電を行うことにより該
導電性基体上に第1層を形成する工程、 次に上記気体中に温度を200℃〜250℃に保つた
導電性基体を所定時間放置する工程、 その後、ゲルマンガス0〜20体積%、残部シラ
ンガスよりなり圧力が10-1〜10-3Torrの気体中に
温度を200℃〜250℃に保つた導電性基体を配置
し、グロー放電を行うことにより上記第1層上に
第2層を形成する工程と含むことを特徴とする電
子写真感光体の製造方法。
[Scope of Claims] 1. In a method for producing an electrophotographic photoreceptor in which a photoreceptor layer is formed on the surface of a conductive substrate by performing glow discharge in a gas containing silane gas, the method comprises silane gas containing 0.5 to 6 mol% oxygen and the balance being under pressure. 10-1 to 10-3 Torr
A step of arranging the conductive substrate at a temperature of 80° C. to 130° C. in a gas and forming a first layer on the conductive substrate by performing glow discharge; The process of leaving the conductive substrate at 200°C to 250°C for a predetermined period of time, and then raising the temperature to 200°C in a gas consisting of 0 to 20% by volume of germane gas and the balance being silane gas at a pressure of 10 -1 to 10 -3 Torr. A method for manufacturing an electrophotographic photoreceptor, comprising the steps of: disposing a conductive substrate maintained at a temperature of ~250° C. and forming a second layer on the first layer by performing glow discharge.
JP1940780A 1980-02-19 1980-02-19 Manufacture of electrophotographic receptor Granted JPS56116037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1940780A JPS56116037A (en) 1980-02-19 1980-02-19 Manufacture of electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1940780A JPS56116037A (en) 1980-02-19 1980-02-19 Manufacture of electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS56116037A JPS56116037A (en) 1981-09-11
JPS6161387B2 true JPS6161387B2 (en) 1986-12-25

Family

ID=11998396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1940780A Granted JPS56116037A (en) 1980-02-19 1980-02-19 Manufacture of electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS56116037A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189643A (en) * 1982-03-31 1983-11-05 Minolta Camera Co Ltd Photoreceptor
US4609604A (en) * 1983-08-26 1986-09-02 Canon Kabushiki Kaisha Photoconductive member having a germanium silicon photoconductor
JPS6075841A (en) * 1983-09-13 1985-04-30 Canon Inc Photoconductive member
US4540647A (en) * 1984-08-20 1985-09-10 Eastman Kodak Company Method for the manufacture of photoconductive insulating elements with a broad dynamic exposure range
JPH087449B2 (en) * 1986-12-18 1996-01-29 京セラ株式会社 Manufacturing method of electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS56116037A (en) 1981-09-11

Similar Documents

Publication Publication Date Title
US4664998A (en) Electrophotographic image forming member having hydrogenated amorphous photoconductive layer including carbon
US5753936A (en) Image forming member for electrophotography
US4461819A (en) Image-forming member for electrophotography
US4495262A (en) Photosensitive member for electrophotography comprises inorganic layers
US4592983A (en) Photoconductive member having amorphous germanium and amorphous silicon regions with nitrogen
JPS6161387B2 (en)
US4769303A (en) Electrophotographic photosensitive member
US4882252A (en) Electrophotographic sensitive member with amorphous silicon carbide
US4587190A (en) Photoconductive member comprising amorphous silicon-germanium and nitrogen
JPS6161386B2 (en)
US6322942B1 (en) Xerographic photoreceptor primarily formed by the hydrogenated amorphous silicon material and the method for manufacturing the same
US4762761A (en) Electrophotographic photosensitive member and the method of manufacturing the same comprises micro-crystalline silicon
US4704343A (en) Electrophotographic photosensitive member containing amorphous silicon and doped microcrystalline silicon layers
JPS6159451A (en) Manufacture of photoconductive insulation element
JP2761741B2 (en) Electrophotographic photoreceptor
JPS6227388B2 (en)
JP2949290B2 (en) Manufacturing method of amorphous silicon based semiconductor film
US4579798A (en) Amorphous silicon and germanium photoconductive member containing carbon
JP2761734B2 (en) Electrophotographic photoreceptor
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
JP3058522B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JPS61221755A (en) Recording parts having amorphous si-ge type layer
JPS61282849A (en) Photoconductor
JPH0572780A (en) Electrophotographic sensitive body
JPS60205457A (en) Electrophotographic sensitive body