JPS649625B2 - - Google Patents

Info

Publication number
JPS649625B2
JPS649625B2 JP55134115A JP13411580A JPS649625B2 JP S649625 B2 JPS649625 B2 JP S649625B2 JP 55134115 A JP55134115 A JP 55134115A JP 13411580 A JP13411580 A JP 13411580A JP S649625 B2 JPS649625 B2 JP S649625B2
Authority
JP
Japan
Prior art keywords
layer
photoconductive
atoms
gas
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55134115A
Other languages
Japanese (ja)
Other versions
JPS5758160A (en
Inventor
Isamu Shimizu
Shigeru Shirai
Hidekazu Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP55134115A priority Critical patent/JPS5758160A/en
Priority to US06/304,568 priority patent/US4394426A/en
Priority to GB8128841A priority patent/GB2087643B/en
Priority to AU75648/81A priority patent/AU554181B2/en
Priority to CA000386703A priority patent/CA1181628A/en
Priority to NL8104426A priority patent/NL192142C/en
Priority to FR8118123A priority patent/FR2490839B1/en
Priority to PCT/JP1981/000256 priority patent/WO1982001261A1/en
Priority to DE813152399A priority patent/DE3152399A1/en
Publication of JPS5758160A publication Critical patent/JPS5758160A/en
Publication of JPS649625B2 publication Critical patent/JPS649625B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、光(ここでは広義の光で、紫外光
線、可視光線、赤外光線、X線、γ線等を示す)
の様な電磁波に感受性のある電子写真用光導電部
材に関する。 固体撮像装置、或いは像形成分野における電子
写真用像形成部材や原稿読取装置等に於ける光導
電層を構成する光導電材料としては、高感度で、
SN比〔光電流(Ip)/暗電流(Id)〕が高く、照
射する電磁波のスペクトル特性を有すること、光
応答性が良好で、所望の暗抵抗値を有すること、
使用時において人体に対して無公害である事、更
には、撮像装置に於いては、残像を所定時間内に
容易に処理出来る事等の特性が要求される。殊
に、事務機としてオフイスで使用される電子写真
装置内に組込まれる電子写真用像形成部材の場合
には、上記の使用時に於ける無公害性は重要な点
である。 この様な点に立脚して最近注目されている光導
電材料にアモルフアスシリコン(以後“a−Si”
と記す)があり、例えば、独国公開第2746967号
公報、同第2855718号公報には電子写真用像形成
部材として、特開昭55−39404号公報には光電変
換読取装置への応用が記載されてある。 而乍ら、従来のa−Siで構成された光導電層を
有する光導電部材は、暗抵抗値、光感度、光応答
性等の電気的、光学的、光導電的特性及び耐候
性、耐湿性等の使用環境特性の点に於いて、更に
改良される可き点が存し、実用的な固体撮像装置
や読取装置、電子写真用像形成部材等には、生産
性、量産性をも加味して仲々有効に使用し得ない
のが実情である。 例えば、電子写真用像形成部材や固体撮像装置
に適用した場合に、その使用時において残留電位
が残る場合が度々観測され、この様な種の光導電
部材は繰返し長時間使用し続けると、繰返し使用
による疲労の蓄積が起る。残像が生ずる所謂ゴー
スト現象を発する様になる等の不都合な点が少な
くなかつた。 更には、例えば本発明者等の多くの実験によれ
ば、電子写真用像形成部材の光導電層を構成する
材料としてのa−Siは従来のSe、CdS、ZnO或い
はPVCzやTNF等のOPC(有機光導電部材)に較
べて、数多くの利点を有するが、従来の太陽電池
用として使用する為の特性が付与されたa−Siか
ら成る単層構成の光導電層を有する電子写真用像
形成部材の上記光導電層に静電像形成の為の帯電
処理を施しても暗滅衰(dark decay)が著しく
速く、通常の電子写真法が仲々適用され難い事、
及び多湿雰囲気中に於いては上記傾向が著しく、
場合によつては現像時間まで帯電電荷を全く保持
し得ない事がある等、解決され得る可き点が存在
している事が判明している。 従つて、a−Si材料そのものの特性改良が計ら
れる一方で光導電部材を設計する際に、所望の電
気的、光学的及び光導電的特性が得られる様に工
夫される必要がある。 本発明は上記の諸点に鑑み成されたもので、a
−Siに就て電子写真用像形成部材に使用される光
導電部材としての適用性とその応用性という観点
から総括的に鋭意研究検討を続けた結果、シリコ
ン原子を母体として水素原子を含有するアモルフ
アス材料、所謂水素化アモルフアスシリコン(以
後“a−Si:H”と記す)から成る光導電層と、
該光導電層を支持する支持体との間に特定の中間
層を介在させる層構成に設計されて作製された光
導電部材は実用的に充分使用し得るばかりでな
く、従来の光導電部材と較べてみても殆んどの点
に於いて凌駕していること、殊に電子写真用の光
導電部材として著しく優れた特性を有しているこ
とを見出した点に基いている。 本発明は電気的・光学的・光導電的特性が常時
安定していて、殆んど使用環境に制限を受けない
全環境型であり、耐光疲労に著しく長け、繰返し
使用に際しても劣化現象を起さず、残留電位が全
く又は殆んど観測されない電子写真用光導電部材
を提供することを主たる目的とする。 本発明の別の目的は、光感度が高く、分光感度
領域も略々全可視光域を覆つていて、且つ光応答
性の速い電子写真用光導電部材を提供することで
ある。 本発明の他の目的は、電子写真用の像形成部材
として適用させた場合通常の電子写真法が極めて
有効に適用され得る程度に、静電像形成の為の帯
電処理の際の電液保持能が充分あり、且つ多湿雰
囲気中でもその特性の低下が殆んど観測されない
優れた電子写真特性を有する電子写真用光導電部
材を提供することである。 本発明の更に他の目的は、濃度が高く、ハーフ
トーンが鮮明に出て且つ解像度の高い、高品質画
像を得る事が容易に出来る電子写真用光導電部材
を提供することである。 本発明の電子写真用光導電部材は、支持体と、
シリコン原子を母体とし、水素原子を含むアモル
フアス材料で構成されている光導電層と、これ等
の間に設けられ、シリコン原子を母体とし、窒素
原子と水素原子を含むアモルフアス材料で構成さ
れ、前記支持体側から前記光導電層中へのキヤリ
アの流入を阻止し且つ電磁波照射によつて前記光
導電層中に生じ前記支持体側に向つて移動するキ
ヤリアの前記光導電層側から前記支持体側への通
過を許す中間層とを有することを特徴とするもの
である。 上記した様な層構成を取る様にして設計された
電子写真用光導電部材は、前記した諸問題の総て
を解決し得、極めてすぐれた電気的・光学的・光
導電性特性及び使用環境特性を示す。 そして本発明の電子写真用光導電部材は、電子
写真用像形成部材として適用する場合、帯電処理
の際の電荷保持能に長け、画像形成への残留電位
の影響が全くなく、多湿雰囲気中でもその電気的
特性が安定しており高感度で、高SN比を有する
ものであつて耐光疲労、繰返し使用性に著しく長
け、更に電子写真用像形成部材の場合には濃度が
高く、ハーフトーンが鮮明に出て、且つ解像度の
高い、高品質の可視画像を得る事が出来る。 又、電子写真用像形成部材として適用する場
合、高暗抵抗のa−Si:Hは光感度が低く、逆に
光感度の高いa−Si:Hは暗抵抗が108Ωcm前後
と低く、いずれの場合にも、従来の層構成の光導
電層のままでは電子写真用の像形成部材には適用
されなかつたのに対して、本発明の場合には、比
較的低抵抗(5×109Ωcm以上)のa−Si:H層
でも電子写真用の光導電層を構成することができ
るので、抵抗は比較的低い高感度であるa−Si:
Hも充分使用し得、a−Si:Hの特性面からの制
約が軽減され得る。 以下、図面に従つて、本発明の電子写真用光導
電部材(以下、単に“光導電部材”と称する。)
に就て詳細に説明する。 第1図は、本発明の光導電部材の基本的な構成
例を説明する為に模式的に示した模式的構成図で
ある。 第1図に示す光導電部材100は、光導電部材
用としての支持体101の上に、中間層102、
該中間層102に直接接触した状態に設けられて
いる光導電層103とで構成される層構造を有
し、本発明の最も基本的な例である。 支持体101としては、導電性でも電気性でも
電気絶縁性であつても良い。導電性支持体として
は、例えば、NiCr、ステンレス、Al、Cr、Mo、
Au、Ir、Nb、Ta、V、Ti、Pt、Pd等の金属又
はこれ等の合金が挙げられる。 電気絶縁性支持体としては、ポリエステル、ポ
リエチレン、ポリカーボネート、セルローズ、ア
セテート、ポリプロピレン、ポリ塩化ビニル、ポ
リ塩化ビニリデン、ポリスチレン、ポリアミド等
の合成樹脂のフイルム又はシート、ガラス、セラ
ミツク、紙等が通常使用される。これ等の電気絶
縁性支持体は、好適には少なくともその一方の表
面を導電処理され、該導電処理された表面側に他
の層が設けられるのが望ましい。 例えば、ガラスであれば、その表面がNiCr、
Al、Cr、Mo、Au、Ir、Nb、Ta、V、Ti、Pt、
Pd、In2O3、SnO2、ITO(In2O3+SnO2)等の薄
膜を設けることによつて導電処理され、或いはポ
リエステルフイルム等の合成樹脂フイルムであれ
ば、NiCr、Al、Ag、Pb、Zn、Ni、Au、Cr、
Mo、Ir、Nb、Ta、V、Ti、Pt等の金属で真空
蒸着、電子ビーム蒸着、スパツターリング等で処
理し、又は前記金属でラミネート処理して、その
表面が導電処理される。支持体の形状としては、
円筒状、ベルト状、板状等任意の形状とし得、所
望によつて、その形状は決定されるが、例えば、
第1図の光導電部材100を電子写真用像形成部
材として使用するのであれば連続高速複写の場合
には、無端ベルト状又は円筒状とするのが望まし
い。支持体の厚さは、所望通りの光導電部材が形
成される様に適宜決定されるが、光導電部材とし
て可撓性が要求される場合には、支持体としての
機能が充分発揮される範囲内であれば、可能な限
り薄くされる。而乍ら、この様な場合、支持体の
製造上及び取扱い上、機械的強度等の点から、通
常は、10μ以上とされる。 中間層102はシリコン原子を母体とし、窒素
原子と水素原子を含む、非光導電性のアモルフア
ス材料〔以後“a−(SixN1-xy:H1-y”と略記す
る。但し0<x<1、0<y<1〕で構成され、
支持体101の側から光導電層103中へのキヤ
リアの流入を効果的に阻止し且つ電磁波の照射に
よつて光導電層103中に生じ、支持体101の
側に向つて移動するフオトキヤリアの光導電層1
03の側から支持体101の側への通過を容易に
許す機能を有するものである。 a−(SixN1-xy:H1-yで構成される中間層10
2の形成はグロー放電法、スパツターリング法、
イオンインプラテーシヨン法、イオンプレーテイ
ング法、エレクトロンビーム法等によつて成され
る。これ等の製造法は、製造条件、設備資本投下
の負荷程度、製造規模、作製される光導電部材に
所望される特性等の要因によつて適宜選択されて
採用されるが、所望する特性を有する光導電部材
を製造する為の作製条件の制御が比較的容易であ
るが、シリコン原子と共に窒素原子及び水素原子
を作製する中間層中に導入するのが容易に行える
等の利点からグロー放電法或いはスパツターリン
グ法が好適に採用される。 更に、本発明に於いては、グロー放電法とスパ
ツターリング法とを同一装置系内で併用して中間
層102を形成しても良い グロー放電法によつて中間層102を形成する
には、a−(SixN1-xy:H1-y形成用の原料ガス
を、必要に応じて稀釈ガスと所定量の混合比で混
合して、支持体101の設置してある真空堆積用
の堆積室に導入し、導入されたガスをグロー放電
を生起させることでガラスプラズマ化して前記支
持体101上にa−(SixN1-xy:H1-yを堆積させ
れば良い。 本発明に於いてa−(SixN1-xy:H1-y形成用の
原料ガスとしては、Si、N、Hの少なくとも1つ
を構成原子とするガス状の物質又はガス化し得る
物質をガス化したものの中の大概のものが使用さ
れ得る。 Si、N、Hの中の1つとしてSiを構成原子とす
る原料ガスを使用する場合は、例えばSiを構成原
子とする原料ガスと、Nを構成原子とする原料ガ
スと、Hを構成原子とする原料ガスとを所望の混
合比で混合して使用するか、又は、Siを構成原子
とする原料ガスと、N及びHを構成原子とする原
料ガスとを、これも又所望の混合比で混合して使
用することが出来る。 又、別には、SiとHとを構成原子とする原料ガ
スにNを構成原子とする原料ガスを混合して使用
しても良い。 本発明に於いて、中間層102形成用の原料ガ
スに成り得るものとして有効に使用される出発物
質は、SiとHとを構成原子とするSiH4、Si2H6
Si4H10等のシラン(Silane)類等の水素化硅素N
を構成原子とする或いはNとHとを構成原子とす
る例えば窒素(N2)、アンモニア(NH3)、ヒド
ラジン(H2NNH2)、アジ化水素(NH3)、アジ
化アンモニウム(NH4N3)等のガス状の又はガ
ス化し得る窒素、窒化物及びアジ化物等の窒素化
合物を挙げることが出来る。これ等の中間層形成
用の出発物質となるものの他、H導入用原料ガス
としては勿論H2も有効なものとして使用される。 スパツターリング法によつて中間層102を形
成するには、単結晶又は多結晶のSiウエーハー又
はSi3N4ウエーハー又はSiとSi3N4が混合されて
含有されているウエーハーをターゲツトとして、
これ等を種々のガス雰囲気中でスパツターリング
することによつて行えば良い。 例えば、Siウエーハーをターゲツトとして使用
すれば、NとHを導入する為の原料ガス、例えば
H2とN2、又はNH3を、必要に応じて稀釈ガス稀
釈して、スパツター用の堆積室中に導入し、これ
等のガスのガスプラズマを形成して前記Siウエー
ハーをスパツターリングとすれば良い。 又、別には、SiとSi3N4とは別々のターゲツト
として、又はSiとSi3N4の混合して形成した一枚
のターゲツトを使用することによつて、少なくと
もH原子を含有するガス雰囲気中でスパツターリ
ングすることによつて成される。 N又はH導入用の原料ガスと成り得るものとし
ては、先述したグロー放電の例で示した中間層形
成用の出発物質のガスが、スパツターリングの場
合にも有効なガスとして使用され得る。 本発明に於いて、中間層102をグロー放電法
又はスパツターリング法で形成する際に使用され
る稀釈ガスとしては、所謂、希ガス、例えばHe、
Ne、Ar等が好適なものとして挙げることが出来
る。 本発明に於ける中間層102は、その要求され
る特性が所望通りに与えられる様に注意深く形成
される。 即ち、Si、N、及びHを構成原子とする物質は
その作成条件によつて構造的には結晶からアモル
フアスまでの形態を取り、電気物性的には導電性
から半導体性、絶縁性までの間の性質を、又光導
電的性質から非光導電的性質までの間の性質を、
各々示すので、本発明に於いては、好ましくは非
光導電性のa−(SixN1-xy:H1-yが形成される様
に、その作成条件の選択が厳密に成されるのが望
ましい。 本発明の中間層102を構成するa−(Six
N1-xy:H1-yは中間層102の機能が、支持体
101側から光導電層103中へのキヤリアの注
入を阻止し、且つ光導電層103中で発生したフ
オトキヤリアが移動して支持体101側に通過す
るのを容易に許すことを果たすものであることか
ら、電気絶縁性的挙動を示すものとして形成され
る。 又、光導電層103中で発生したフオトキヤリ
アが中間層102中を通過する際、その通過がス
ムーズに成される程度に通過するキヤリアに対す
る易動度(mobility)の値を有するものとしてa
−(SixN1-xy:H1-yが作成される。 上記の様な特性を有するa−(SixN1-xy:H1-y
が作成される為の作成条件の中の重要な要素とし
て、作成時の支持体温度を挙げる事が出来る。 即ち、支持体101の表面にa−(SixN1-xy
H1-yから成る中間層102を形成する際、層形
成中の支持体温度は、形成される層の構造及び特
性を左右する重要な因子であつて、本発明に於い
ては、目的とする特性を有するa−(SixN1-xy
H1-yが所望通りに作成され得る様に層作成時の
支持体温度が厳密に制御される。 本発明に於ける目的が効果的に達成される為の
中間層102を形成する際の支持体温度としては
中間層102の形成法に併せて適宜最適範囲が選
択されて、中間層102の形成が実行されるが、
通常の場合、100℃〜300℃好適には150℃〜250℃
とされるものが望ましいものである。中間層10
2の形成には、同一系内で中間層102から光導
電層103、更には必要に応じて光導電層103
上に形成される第3の層まで連続的に形成する事
が出来る。各層を構成する原子の組成比の微妙な
制御や層厚の制御が他の方法に較べて比較的容易
である事等の為に、グロー放電法やスパツターリ
ング法の採用が有利であるが、これらの層形成法
で中間層102を形成する場合には、前記の支持
体温度と同様に層形成の際の放電パワー、ガス圧
が作成されるa−(SixN1-xy:H1-yの特性を左右
する重要な因子の1つである。 本発明に於ける目的が達成される為の特性を有
するa−(SixN1-xy:H1-yが生産性良く効果的に
形成される為の放電パワー条件としては、通常1
〜300W、好適には2〜100Wである。堆積室内の
ガス圧は通常グロー放電にて層形成を行なう場合
に於いて0.01〜5Torr、好適には0.1〜0.5Torr程
度に、スパツターリング法にて層形成を行なう場
合に於いては、通常10-3〜5×10-2Torr、好適
には8×10-3〜3×10-2Torr程度とされるのが
望ましい。 本発明の光導電部材に於ける中間層102に含
有される窒素原子及び水素原子の量は、中間層1
02の作製条件と同様、本発明の目的を達成する
所望の特性が得られる中間層が形成される重要な
因子である。 本発明に於ける中間層102に含有される窒素
原子の量は通常は25〜55atomic%、好適には35
〜55atomic%とされるのが望ましいものである。
水素原子の含有量としては、通常の場合2〜
35atomic%、好適には5〜30atomic%とされる
のが望ましく、これ等の範囲に水素含有量がある
場合に形成される光導電部材は、実際面に於いて
優れたものとして充分適用させ得るものである。 即ち、先のa−(SixN1-xy:H1-yの表示で行え
ばxが通常は0.43〜0.60、好適には0.43〜0.50、
yが通常0.98〜0.65、好適には0.95〜0.70である。 本発明に於ける中間層102の層厚の数値範囲
は、本発明の目的を効果的に達成する為の重要な
因子の1つである。中間層102の層厚が充分過
ぎる程に薄いと、支持体101の側からの光導電
層103へのキヤリアの流入を阻止する働きが充
分果たし得なくなり、又、充分過ぎる程以上に厚
いと、光導電層103中に於いて生ずるフオトキ
ヤリアの支持体101の側への通過する確率が極
めて小さくなり、従つて、いずれの場合にも本発
明の目的を効果的に達成され得なくなる。 本発明の目的を効果的に達成する為の中間層1
02の層厚としては、通常の場合、30〜1000Å好
適には50〜600Åである。 本発明に於いて、その目的を効果的に達成する
為に、中間層102上に積層される光導電層10
3は、下記に示す半導体特性を有するa−Si:H
で構成される。 p型a−Si:H…アクセプターのみを含むも
の。或いは、ドナーとアクセプターとの両方を
含み、アクセプターの濃度(Na)が高いもの。 p−型a−Si:H…のタイプに於いてアク
セプターの濃度(Na)が低い所謂p型不純物
をライトリードープしたもの。 n型a−Si:H…ドナーのみを含むもの。或
いはドナーとアクセプターの両方を含み、ドナ
ーの濃度(Nd)が高いもの。 n−型a−Si:H…のタイプに於いてドナ
ーの濃度(Nd)が低い。所謂n型不純物をラ
イトリードープしたもの。 i型a−Si:H…NaNdOのもの又は、
NaNdのもの。 本発明に於いては、中間層102を設けること
によつて前記したように光導電層103を構成す
るa−Si:Hは、従来に較べて比較的低抵抗のも
のも使用され得るものであるが、一層良好な結果
を得るためには、形成される光導電層103の暗
抵抗が好適には5〜109Ωcm以上、最適には1010
Ωcm以上となる様に光導電層103が形成される
のが望ましいものである。 殊に、この暗抵抗値の数値条件は、作製された
光導電部材を電子写真用像形成部材や、低照度領
域で使用される高感度の読取装置や固体撮像装
置、或いは光電変換装置として使用する場合には
重要な要素である。 本発明に於ける電子写真用光導電部材の光導電
層の層厚としては、読取装置、固体撮像装置或い
は電子写真用像形成部材等の適用するものの目的
に適合させて所望に従つて適宜決定される。 本発明に於いては、光導電層の層厚としては、
光導電層の機能及び中間層の機能が各々有効に活
されて本発明の目的が効果的に達成される様に中
間層との層厚関係に於いて適宜所望に従つて決め
られるものであり、通常の場合、中間層の層厚に
対して数百〜数千倍以上の層厚とされるのが好ま
しいものである。 具体的な値としては、通常1〜100μ、好適に
は2〜50μの範囲とされるのが望ましい。 本発明に於いて、光導電層を、a−Si:Hで構
成された層とするには、これらの層を形成する
際、次の様な方法によつてHを層中に含有させ
る。 ここに於いて、「層中Hが含有されている」と
いうことは、「Hが、Siと結合した状態」「Hがイ
オン化して層中に取り込まれている状態」又は
「H2として層中に取り込まれている状態」の何れ
かの又はこれ等の複合されている状態を意味す
る。 光導電層へのHの含有法としては、例えば層を
形成する際、堆積装置系内にSiH4、Si2H6
Si3H8、Si4H10等のシラン(Silane)類等のシリ
コン化合物の形で導入し、グロー放電分解法によ
つて、それらの化合物を分解して、層の成長に併
せて含有される。 このグロー放電法によつて、光導電層を形成す
る場合には、a−Siを形成する出発物質がSiH4
Si2H6、Si3H8、Si4H10等の水素化硅素ガスが分
解して層が形成される際、Hは自動的に層中に含
有される。 反応スパツターリング法による場合には、He
やAr等の不活性ガス又はこれ等のガスをベース
とした混合ガス雰囲気中でSiをターゲツトしてス
パツターリングを行なう際にH2ガスを導入して
やるか又はSiH4、Si2H4、Si3H8、S4H10等の水素
化硅素ガス、或いは、不純物のドーピングも兼ね
てB2H6、PH3等のガスを導入してやれば良い。 本発明者等の見知によれば、a−Si:Hで構成
される光導電層のHの含有量は、形成された光導
電部材が実際面に於いて充分適用され得るか否か
を左右する大きな要因の一つであつて極めて重要
であることが判明している。 本発明に於いて、形成される光導電部材が実際
面に充分適用され得る為には、光導電層中に含有
されるHの量は通常の場合1〜4atomic%、好適
には5〜30atomic%とされるのが望ましい。 層中に含有されるHの量を制御するには、例え
ば堆積支持体温度又は及びHを含有させる為に使
用される出発物質の堆積装置系内へ導入する量、
放電々力等を制御してやれば良い。 光導電層をn型又はp型とするには、グロー放
電法や反応スパツターリング法等による層形成の
際に、n型不純物又は、p型不純物、或いは両不
純物を形成される層中にその量を制御し乍らドー
ピングしてやる事によつて成される。 光導電層中にドーピングされる不純物として
は、光導電層をp型にするには、周期律表第族
Aの元素、例えば、B、Al、Ga、In、Tl等が好
適なものとして挙げられ、n型にする場合には、
周期律表第族Aの元素、例えば、N、P、As、
Sb、Bi等が好適なものとして挙げられる。これ
らの不純物は、層中に含有される量がppmオーダ
ーであるので、光導電層を構成する主物質程その
公害性に注意を払う必要はないが出来る限り公害
性のないものを使用するのが好ましい。この様な
観点からすれば、形成される層の電気的・光学的
特性を加味して、例えば、B、Ga、P、Sb等が
最適である。この他に、例えば熱拡散やインプラ
ンテーシヨンによつてLi等がインターステイシア
ルにドーピングされることでn型に制御すること
も可能である。光導電層中にドーピングされる不
純物の量は、所望される電気的・光学的特性に応
じて適宜決定されるが、周期律表第族Aの不純
物の場合には、通常10-6〜10-3atomic%、好適に
は10-5〜10-4atomic%、周期律表第族Aの場合
には通常10-8〜10-3atomic%、好適は10-8
10-4atomic%とされるのが望ましい。 第2図には、本発明の光導電部材の別の実施態
様例の構成を説明する為の模式的構成図が示され
る。 第2図に示される光導電部材200は、光導電
層203の上に、中間層202と同様の機能を有
する上部層205を設けた以外は、第1図に示す
光導電部材100と同様の層構造を有するもので
ある。 即ち、光導電部材200は、支持体201の上
に中間層102と同様の材料であるa−(Six
N1-xy:H1-yを使用して同様の機能を有する様
に形成された中間層202と、a−Si:Hで構成
される光導電層203と、該光導電層203上に
設けられ自由表面204を有する上部層205を
具備している。 上部層205は、例えば光導電部材200を自
由表面204に帯電処理を処して電荷像を形成す
る場合の様な使い方をする際、自由表面204に
保持される可き電荷が光導電層203中に流入す
るのを阻止し且つ、電磁波の照射を受けた際には
光導電層203中に発生したフオトキヤリアと、
電磁波の照射を受けた部分の帯電々荷とがリコン
ビネーシヨンを起す様に、フオトキヤリアの通過
又は帯電々荷の通過を容易に許す機能を有する。 上部層205は、中間層202と同様の特性を
有するa−(SixN1-xy:H1-yで構成される他、a
−SiaC1-a、(a−SiaC1-ab:H1-b、(a−Sic
O1-cd:H1-d等の光導電層を構成する母体原子で
ある。シリコン原子と窒素原子又は酸素原子とで
構成されるか又は、これ等の原子を母体とし水素
原子を含むアモルフアス材料、或いは、更にハロ
ゲン原子を含む、これ等のアモルフアス材料、
Al2O3等の無機絶縁性材料、ポリエステル、ポリ
パラキシレン、ポリウレタン等の有機絶縁性材料
で構成することも出来る。 而乍ら、上部層205を構成する材料としては
生産性、量産性及び形成された層の電気的及び使
用環境的安定性等の点から、中間層202と同様
の特性を有するa−(SixN1-xy:H1-yで構成する
か又は、a−SiaC1-a、a−(SiaC1-ab:H1-b
a−SicN1-c、a−(SidC1-de:L1-e、a−(Sif
C1-fg:(H+X)1-g、a−(SihN1-hi:X1-i、1
−(SijN1-jk:(H+X)1-kで構成するのが望まし
い。 上部層205を構成する材料としては、上記に
挙げた物質の他、好適なものとしては、シリコン
原子と、C、N、Oの中の少なくとも2つの原子
とを母体とし、ハロゲン原子か又はハロゲン原子
と水素原子とを含むアモルフアス材料を挙げるこ
とができる。 ハロゲン原子としては、F、Cl、Br等が挙げ
られるが、熱的安定性の点から上記アモルフアス
材料の中Fを含有するものが有効である。 上部層205を構成する材料の選択及びその層
厚の決定は、上部層205側より光導電層203
の感受する電磁波の照射する様にして光導電部材
200を使用する場合には、照射される電磁波が
光導電層203に充分量到達して、効率良く、フ
オトキヤリアの発生を引起させ得る様に注意深く
成される。上部層205は、中間層202と同様
の手法で、例えばグロー放電法や反応スパツター
リング法で形成することが出来る。上部層205
形成の際に使用される出発物質としては、中間層
を形成するのに使用される前記の物質が使用され
る他、炭素原子導入用の出発物質として、例えば
炭素数1〜4の飽和炭化水素、炭素数2〜5のエ
チレン系炭化水素、炭素数2〜4のアセチレン系
炭化水素等を挙げることが出来る。 具体的には、飽和炭化水素としてはメタン
(CH4)、エタン(C2H6)、プロパン(C3H8)、n
−ブタン(n−C4H10)、ペンタン(C5H12)、エ
チレン系炭化水素としては、エチレン(C2H4)、
プロピレン(C3H6)、ブテン−1(C4H8)、ブテ
ン−2(C4H8)、イソブチレン(C4H8)、ペンテ
ン(C5H10)、アセチレン系炭化水素としては、
アセチレン(C2H2)、メチルアセチレン
(C3H4)、ブチン(C4H6)等が挙げられる。 酸素原子を上部層205中に含有させる為の出
発物質としては、例えば、酵素(O2)、オゾン
(O3)、一酸化炭素(CO)、二酸化炭素(CO2)、
一酸化窒素(NO)、二酸化窒素(NO2)、一酸化
二窒素(N2O)等を挙げることが出来る。 これ等の他に、上部層205形成用の出発物質
の1つとして、例えばCCl4、CHF3、CH2F2
CH3F、CH3Cl、CH3Br、CH3I、C2H5Cl等のハ
ロゲン置換パラフイン系炭化水素、SF4、SF6
のフツ素化硫黄化合物、Si(CH34、Si(C2H54
のケイ化アルキルやSiCl(CH33、SiCl2C
(CH32、SiCl3CH3等のハロゲン含有ケイ化アル
キル等のシランの誘導体も有効なものとして挙げ
ることが出来る。 これらの上部層205形成用の出発物質は、所
定の原子が構成原子として、形成される上部層2
05中に含まれる様に、層形成の際に適宜選択さ
れて使用される。 例えば、グロー放電法を採用するのであればSi
(CH34、SiCl2(CH32等の単独ガス又はSiH4
O2(−Aγ)系、SiH4−NO2系、SiH4−O2−N2
系、SiCl4−CO2−H2系、SiCl4−NO−H2系、
SiH4−NH3系、SiCl4−NH4系、SiH4−N2系、
SiH4−NH3−NO系、Si(CH34−SiH4系、SiCl2
(CH32−SiH4系等の混合ガスを上部層105形
成用の出発物質として使用することが出来る。 本発明に於ける上部層205の層厚としては、
前述した機能が充分発揮される様に、層を構成す
る材料、層形成条件等によつて所望に従つて適宜
決定される。 本発明に於ける上部層205の層厚としては、
通常の場合、30〜1000Å、好適には50〜600Åと
されるのが望ましいものである。 本発明の光導電部材を電子写真用像形成部材と
して使用する場合にある種の電子写真プロセスを
採用するのであれば、第1図又は第2図に示され
る層構成の光導電部材の自由表面上に更に表面被
覆層を設ける必要がある。 この場合の表面被覆層は、例えば、特公昭42−
23910号公報、同43−24748号公報に記載されてい
るNP方式の様な電子写真プロセスを適用するの
であれば、電気的絶縁性であつて、帯電処理を受
けた際の静電荷保持能が充分であつて、ある程度
以上の厚みがあることが要求されるが、例えば、
カールソンプロセスの如き電子写真プロセスを適
用するのであれば、静電像形成後の明暗の電位は
非常に小さいことが望ましいので表面被覆層の厚
さとしては非常に薄いことが要求される。表面被
覆層は、その所望される電気的特性を満足するの
に加えて、光導電層又は上部層に化学的・物理的
に悪影響を与えないこと光導電層又は上部層との
電気的接触性及び装着性、更には耐湿性、耐摩耗
性、クリーニング性等を考慮して形成される。 表面被覆層の形成材料として有効に使用される
ものとして、その代表的なのは、ポリエチレンテ
レフタレート、ポリカーボネート、プリプロピレ
ン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
ビニルアルコール、ポリスチレン、ポリアミド、
ポリ四弗化エチレン、ポリ三弗化塩化エチレン、
ポリ弗化ビニル、ポリ弗化ビニリデン、六弗化プ
ロピレン−四弗化エチレンコポリマー、三弗化エ
チレン−弗化ビニリデンコポリマー、ポリブデ
ン、ポリビニルブチラール、ポリウレタン、ポリ
パラキシリレン等の有機絶縁羽料、シリコン窒化
物、シリコン酸化物等の無機絶縁材料等が挙げら
れる。これ等の合成樹脂又はセルロース誘導体は
フイルム状とされて光導電層又は上部層の上に貼
合されてもよく、又、それらの塗布液を形成し
て、光導電層又は上部層上に塗布し、層形成して
も良い。表面被覆層の層厚は、所望される特性に
応じて、又、使用される材質によつて適宜決定さ
れるが、通常の場合、0.5〜70μ程度とされる。殊
に表面被覆層が先述した保護層としての機能が要
求される場合には、通常の場合、10μ以下とさ
れ、逆に電気的絶縁層としての機能が要求される
場合には、通常の場合10μ以上とされる。而乍
ら、この保護層と電気絶縁層とを差別する層厚値
は、使用材料及び適用される電子写真プロセス、
設計される像形成部材の構造によつて、変動する
もので、先の10μという値は絶対的なものではな
い。 又、この表面被覆層は、反射防止層としての役
目も荷わせれば、その機能が一層拡大されて効果
的となる。 実施例 1 完全にシールドされたクリーンルーム中に設置
された第3図に示す装置を用い、以下の如き操作
によつて電子写真用像形成部材を作製した。 表面が清浄にされた0.5mm厚10cm角のモリブデ
ン板(基板)309を支持台302上に静置された
グロー放電堆積室301内の所定位置にある固定
部材303に堅固に固定した。基板309は、固
定部材303内の加熱ヒーター308によつて±
0.5℃の精度で加熱される。温度は、熱電対(ア
ルメル−クロメル)によつて基板裏面を直接測定
されるようになされた。次いで系内の全バルブが
閉じられていることを確認してからメインバルブ
310を全開して、室301内が排気され、約5
×10-6Torrの真空度にした。その後ヒーター3
08の入力電圧を上昇させ、モリブデン基板温度
を検知しながら入力電圧を変化させ、200℃の一
定値になるまで安定させた。 その後、補助バルブ340、次いで流出バルブ
325,326,327及び流入バルブ320−
2,321,322を全開し、フローメーター3
16,317,318内にも十分脱気真空状態に
された。補助バルブ340、バルブ325,32
6,327,320−2,321,322を閉じ
た後、H2で10vol%に稀釈されたSiH4ガス(以後
SiH4/H2と略す。純度99.999%)ボンベ311
のバルブ330、N2(純度99.999%)ガスボンベ
312のバルブ331を開け、出口圧ゲージ33
5,336の圧を1Kg/cm2に調整し、流入バルブ
320−2,321を徐々に開けてフローメータ
ー316,317内へSiH4/H2ガスN2ガスを流
入させた。引き続いて、流出バルブ325,32
6を徐々に開け、次いで補助バルブ340を徐々
に開けた。このときSiH2/H2ガス流量とN2ガス
流量比が1:10になるように流入バルブ320−
2,321を調整した。次にピラニーゲージ34
1の読みを注視しながら補助バルブ340の開口
を調整し、室301内が1×10-2Torrになるま
で補助バルブ340を開けた。室301内圧が安
定してから、メインバルブ310を徐々に閉じ、
ピラニーゲージ341の指示が0.5Torrになるま
で開口を絞つた。ガス流入が安定し内圧が安定す
るのを確認し続いて高周波電源342のスイツチ
をON状態にして、誘導コイル343に、13.56M
Hzの高周波電力を投入しコイル部(室上部)の室
301内にグロー放電を発生させ3Wの入力電力
とした。上記条件で基板上にa−(SixN1-xy
H1-yを堆積させるために、1分間条件を保つて
中間層を形成した。その後、高周波電源342を
off状態とし、グロー放電を中止させた状態で、
流出バルブ326を閉じ、次にH2で50vol ppm
に稀釈されたB2H6(以後B2H6/H2と略す)ガス
ボンベ313から流入バルブ322を通じて1
Kg/cm2のガス圧(出口圧ゲージ337の読み)
で、流入バルブ322、流出バルブ327の調整
によつてフローメーター318の読みが、
SiH4/H2ガス流量の1/50になる様に流出バルブ
327の開口を定め、安定化させた。 引き続き、再び高周波電源342をON状態に
して、グロー放電を再開させた。そのときの入力
電力を10Wにした。こうしてグロー放電を更に3
時間持続させて光導電層を形成した後、加熱ヒー
ター308をoff状態にし、高周波電源342も
off状態とし、基板温度が100℃になるのを持つて
から流出バルブ325,327及び流入バルブ3
20−2,322を閉じ、メインバルブ310を
全開して、室31内を10-5Torr以下にした後、
メインバルブ310を閉じ室301内をリークバ
ルブ344によつて大気圧として基板を取り出し
た。この場合、形成された層の全厚は約9μであ
つた。こうして得られた像形成部材を、帯電露光
実験装置に設置し、6.0KVで0.2sec間コロナ帯
電を行い、直ちに光像を照射した。光像は、タン
グステンランプ光源を用い、1.01ux・secの光量
を透過型のテストチヤートを通して照射させた。 その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)を部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、5.0KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、諧調
再現性のよい鮮明な高濃度の画像が得られた。 次に上記像形成部材に就て、帯電露光実験装置
で5.5KVで、0.2sec間のコロナ帯電を行い、直
ちに0.8lux・secの光量で、画像露光を行い、そ
の後直ちに荷電性の現像剤を部材表面にカスケ
ードし、次に転写紙上に転写・定着したところ、
極めて鮮明な画像が得られた。 この結果と先の結果から、本実施例で得られた
電子写真用像形成部材は、帯電極性に対する依存
性がなく、両極性像形成部材の特性を具備してい
ることが判つた。 実施例 2 モリブデン基板上に中間層を形成する際のグロ
ー放電保持時間を、下記の第1表に示す様に、
種々変化させた以外は、実施例1と全く同様の条
件及び手順によつて試料No.〜で示される像形
成部材を作成し、実施例1と全く同様の帯電露光
実験装置に設置して同様の画像形成を行つたとこ
ろ下記の第1表に示す如き結果を得た。 第1表に示される結果から判る様に本発明の目
的を達成するには、中間層の膜厚を30Å〜1000Å
の範囲で形成する必要がある。
The present invention relates to light (here, light in a broad sense, including ultraviolet rays, visible rays, infrared rays, X-rays, γ-rays, etc.)
The present invention relates to photoconductive members for electrophotography that are sensitive to electromagnetic waves such as. As a photoconductive material constituting a photoconductive layer in a solid-state imaging device, an electrophotographic image forming member in the image forming field, a document reading device, etc., it is highly sensitive,
It has a high signal-to-noise ratio [photocurrent (Ip)/dark current (Id)], has spectral characteristics of the electromagnetic waves to be irradiated, has good photoresponsiveness, and has a desired dark resistance value.
Imaging devices are required to have characteristics such as being non-polluting to the human body during use and being able to easily dispose of afterimages within a predetermined time. Particularly in the case of an electrophotographic image forming member incorporated into an electrophotographic apparatus used in an office as a business machine, the pollution-free nature during use is an important point. Based on these points, amorphous silicon (hereinafter referred to as "a-Si") is a photoconductive material that has recently attracted attention.
For example, German Publication No. 2746967 and German Publication No. 2855718 describe its application as an image forming member for electrophotography, and JP-A-55-39404 describes its application to a photoelectric conversion/reading device. It has been done. However, conventional photoconductive members having a photoconductive layer composed of a-Si have poor electrical, optical, and photoconductive properties such as dark resistance, photosensitivity, and photoresponsiveness, as well as weather resistance and moisture resistance. There are points that can be further improved in terms of usage environment characteristics such as performance, and practical solid-state imaging devices, reading devices, electrophotographic image forming members, etc. need to be improved in terms of productivity and mass production. The reality is that it cannot be used effectively by taking into account the situation. For example, when applied to image forming members for electrophotography or solid-state imaging devices, it is often observed that residual potential remains during use, and such photoconductive members can be repeatedly used for long periods of time. Accumulation of fatigue occurs due to use. There have been many disadvantages, such as a so-called ghost phenomenon in which an afterimage occurs. Furthermore, according to many experiments conducted by the present inventors, for example, a-Si as a material constituting the photoconductive layer of an electrophotographic image forming member can be used as a material constituting the photoconductive layer of an electrophotographic image forming member. An electrophotographic image having a single-layer photoconductive layer made of a-Si, which has many advantages compared to (organic photoconductive members), but also has properties suitable for use in conventional solar cells. Even if the photoconductive layer of the forming member is subjected to charging treatment for electrostatic image formation, dark decay is extremely fast, making it difficult to apply ordinary electrophotographic methods;
The above tendency is remarkable in a humid atmosphere.
It has been found that there are some problems that can be solved, such as in some cases, the charge cannot be retained at all until the development time. Therefore, while efforts are being made to improve the properties of the a-Si material itself, it is necessary to take measures to obtain desired electrical, optical, and photoconductive properties when designing photoconductive members. The present invention has been made in view of the above points, and includes a
-As a result of intensive research and study on Si from the viewpoint of its applicability and applicability as a photoconductive member used in electrophotographic image forming members, we found that it contains silicon atoms as a matrix and contains hydrogen atoms. a photoconductive layer made of an amorphous material, so-called hydrogenated amorphous silicon (hereinafter referred to as "a-Si:H");
A photoconductive member designed and manufactured with a layer structure in which a specific intermediate layer is interposed between the photoconductive layer and the support supporting the photoconductive layer is not only usable for practical use, but is also incomparable with conventional photoconductive members. This is based on the fact that it has been found to be superior in most respects, especially when compared, and has particularly excellent properties as a photoconductive member for electrophotography. The present invention has stable electrical, optical, and photoconductive properties at all times, is suitable for all environments with almost no restrictions on usage environments, and has excellent resistance to light fatigue and does not cause deterioration even after repeated use. The main object of the present invention is to provide a photoconductive member for electrophotography in which no or almost no residual potential is observed. Another object of the present invention is to provide a photoconductive member for electrophotography which has high photosensitivity, has a spectral sensitivity region that covers substantially the entire visible light region, and has fast photoresponsiveness. Another object of the present invention is to maintain electrolyte during charging processing for electrostatic image formation to such an extent that ordinary electrophotography can be applied very effectively when applied as an image forming member for electrophotography. It is an object of the present invention to provide a photoconductive member for electrophotography, which has sufficient performance and excellent electrophotographic properties with almost no deterioration of the properties observed even in a humid atmosphere. Still another object of the present invention is to provide a photoconductive member for electrophotography that can easily produce high-quality images with high density, clear halftones, and high resolution. The electrophotographic photoconductive member of the present invention includes a support;
a photoconductive layer made of an amorphous material containing silicon atoms as a matrix and containing hydrogen atoms; Preventing carriers from flowing into the photoconductive layer from the support side, and causing carriers generated in the photoconductive layer and moving toward the support side from the photoconductive layer side to the support side by electromagnetic wave irradiation. It is characterized by having an intermediate layer that allows passage. A photoconductive member for electrophotography designed to have the above-mentioned layer structure can solve all of the above-mentioned problems, and has extremely excellent electrical, optical, and photoconductive properties, as well as an environment in which it can be used. Show characteristics. When the photoconductive member for electrophotography of the present invention is applied as an image forming member for electrophotography, it has excellent charge retention ability during charging processing, has no influence of residual potential on image formation, and remains stable even in a humid atmosphere. It has stable electrical properties, high sensitivity, and a high signal-to-noise ratio, and has excellent resistance to light fatigue and repeated use. Furthermore, in the case of electrophotographic image forming members, it has high density and clear halftones. It is possible to obtain high-quality visible images with high resolution. Furthermore, when applied as an electrophotographic image forming member, a-Si:H with high dark resistance has low photosensitivity, and conversely, a-Si:H with high photosensitivity has a low dark resistance of around 10 8 Ωcm. In either case, a photoconductive layer with a conventional layer structure could not be applied to an electrophotographic image forming member, whereas the present invention has a relatively low resistance (5×10 Since a photoconductive layer for electrophotography can be constructed even with an a-Si:H layer having a resistance of 9 Ωcm or more, a high-sensitivity a-Si:
H can also be used sufficiently, and restrictions from the characteristics of a-Si:H can be alleviated. Hereinafter, according to the drawings, a photoconductive member for electrophotography of the present invention (hereinafter simply referred to as "photoconductive member") will be described.
This will be explained in detail. FIG. 1 is a schematic configuration diagram schematically shown to explain a basic configuration example of a photoconductive member of the present invention. The photoconductive member 100 shown in FIG. 1 has an intermediate layer 102,
This layer structure includes a photoconductive layer 103 provided in direct contact with the intermediate layer 102, and is the most basic example of the present invention. The support 101 may be conductive, electrical, or electrically insulating. Examples of the conductive support include NiCr, stainless steel, Al, Cr, Mo,
Examples include metals such as Au, Ir, Nb, Ta, V, Ti, Pt, and Pd, and alloys thereof. As the electrically insulating support, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose, acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used. Ru. Preferably, at least one surface of these electrically insulating supports is conductively treated, and another layer is preferably provided on the conductively treated surface side. For example, if it is glass, its surface may be NiCr,
Al, Cr, Mo, Au, Ir, Nb, Ta, V, Ti, Pt,
If it is conductive treated by providing a thin film of Pd, In 2 O 3 , SnO 2 , ITO (In 2 O 3 +SnO 2 ), or if it is a synthetic resin film such as polyester film, NiCr, Al, Ag, Pb, Zn, Ni, Au, Cr,
The surface is treated with a metal such as Mo, Ir, Nb, Ta, V, Ti, or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal, so that the surface thereof is conductive. The shape of the support is
It can be of any shape such as cylindrical, belt-like, plate-like, etc., and the shape is determined depending on the desire, but for example,
If the photoconductive member 100 of FIG. 1 is used as an electrophotographic image forming member, it is preferably in the form of an endless belt or a cylinder for continuous high-speed copying. The thickness of the support is determined appropriately so that a desired photoconductive member is formed, but if flexibility is required as a photoconductive member, the support can sufficiently function as a support. Within this range, it is made as thin as possible. However, in such a case, the thickness is usually set to 10μ or more in view of manufacturing and handling of the support, mechanical strength, etc. The intermediate layer 102 is made of a non-photoconductive amorphous material [hereinafter abbreviated as "a-(Si x N 1-x ) y :H 1-y "] that has silicon atoms as its base material and contains nitrogen atoms and hydrogen atoms. However, it is composed of 0<x<1, 0<y<1],
This effectively prevents the inflow of carriers into the photoconductive layer 103 from the side of the support 101 and prevents photocarriers generated in the photoconductive layer 103 by the irradiation of electromagnetic waves and moving toward the side of the support 101. Photoconductive layer 1
03 side to the support body 101 side. a-(Si x N 1-x ) y : Intermediate layer 10 composed of H 1-y
2 is formed by glow discharge method, sputtering method,
This is accomplished by an ion implantation method, an ion plating method, an electron beam method, or the like. These manufacturing methods are selected and adopted as appropriate depending on factors such as manufacturing conditions, amount of equipment capital investment, manufacturing scale, and desired characteristics of the photoconductive member to be manufactured. The glow discharge method is preferred because it is relatively easy to control the manufacturing conditions for manufacturing the photoconductive member, and it is also easy to introduce nitrogen atoms and hydrogen atoms together with silicon atoms into the intermediate layer to be manufactured. Alternatively, a sputtering method is preferably employed. Furthermore, in the present invention, the intermediate layer 102 may be formed by using a glow discharge method and a sputtering method in the same system.To form the intermediate layer 102 by the glow discharge method , a-(Si x N 1-x ) y : The raw material gas for forming H 1-y is mixed with dilution gas at a predetermined mixing ratio as needed, and the mixture is heated to the vacuum where the support 101 is installed. The gas is introduced into a deposition chamber for deposition, and the introduced gas is turned into glass plasma by generating a glow discharge, and a-(Si x N 1-x ) y :H 1-y is deposited on the support 101. That's fine. In the present invention, the raw material gas for forming a-(Si x N 1-x ) y :H 1-y is a gaseous substance or gasified substance containing at least one of Si, N, and H as a constituent atom. Most of the gasified materials available can be used. When using a raw material gas containing Si as one of Si, N, and H, for example, a raw material gas containing Si as a constituent atom, a raw material gas containing N as a constituent atom, and a raw material gas containing H as a constituent atom. Alternatively, a raw material gas containing Si as a constituent atom and a raw material gas containing N and H as constituent atoms may be mixed at a desired mixing ratio. Can be used by mixing. Alternatively, a raw material gas containing Si and H as constituent atoms may be mixed with a raw material gas containing N as constituent atoms. In the present invention, starting materials that can be effectively used as raw material gas for forming the intermediate layer 102 include SiH 4 , Si 2 H 6 , and SiH 4 whose constituent atoms are Si and H.
Silicon hydride N such as silanes such as Si 4 H 10
or N and H as constituent atoms, such as nitrogen (N 2 ), ammonia (NH 3 ), hydrazine (H 2 NNH 2 ), hydrogen azide (NH 3 ), ammonium azide (NH 4 Mention may be made of gaseous or gasifiable nitrogen such as N 3 ), nitrogen compounds such as nitrides and azides. In addition to these starting materials for forming the intermediate layer, H 2 is of course also used as an effective raw material gas for introducing H. To form the intermediate layer 102 by the sputtering method, target a single crystal or polycrystalline Si wafer, a Si 3 N 4 wafer, or a wafer containing a mixture of Si and Si 3 N 4 ,
This may be done by sputtering in various gas atmospheres. For example, if a Si wafer is used as a target, the raw material gas for introducing N and H, e.g.
H 2 and N 2 or NH 3 are diluted with diluted gas as necessary and introduced into a deposition chamber for sputtering to form a gas plasma of these gases to sputter the Si wafer. Just do it. Alternatively, by using Si and Si 3 N 4 as separate targets or by using a single target formed by mixing Si and Si 3 N 4 , a gas containing at least H atoms can be produced. This is done by sputtering in an atmosphere. As a raw material gas for introducing N or H, the starting material gas for forming the intermediate layer shown in the glow discharge example described above can also be used as an effective gas for sputtering. In the present invention, a so-called rare gas, such as He,
Preferable examples include Ne, Ar, and the like. The intermediate layer 102 in the present invention is carefully formed to provide the desired properties. In other words, materials whose constituent atoms are Si, N, and H can have structural forms ranging from crystalline to amorphous depending on the conditions of their creation, and electrical properties ranging from conductive to semiconductive to insulating. and the properties between photoconductive and non-photoconductive properties,
Therefore, in the present invention, the preparation conditions are strictly selected so that preferably non-photoconductive a-(Si x N 1-x ) y :H 1-y is formed. It is desirable that a-(Si x
N 1-x ) y : H 1-y has the function of the intermediate layer 102 to prevent the injection of carriers from the support 101 side into the photoconductive layer 103 and to prevent the photocarriers generated in the photoconductive layer 103 from being injected into the photoconductive layer 103 . Since it is intended to easily allow movement and passage to the support body 101 side, it is formed to exhibit electrically insulating behavior. Further, when the photocarrier generated in the photoconductive layer 103 passes through the intermediate layer 102, it has a mobility value with respect to the carrier that passes through the intermediate layer 102 smoothly.
−(Si x N 1-x ) y : H 1-y is created. a-(Si x N 1-x ) y : H 1-y with the above characteristics
An important factor in the production conditions for production is the temperature of the support during production. That is, on the surface of the support 101, a-(Si x N 1-x ) y :
When forming the intermediate layer 102 consisting of H 1-y , the temperature of the support during layer formation is an important factor that influences the structure and properties of the formed layer. a-(Si x N 1-x ) y having the property of:
The support temperature during layer formation is strictly controlled so that H 1-y can be formed as desired. In order to effectively achieve the purpose of the present invention, the temperature of the support when forming the intermediate layer 102 is appropriately selected in an optimal range in accordance with the method of forming the intermediate layer 102. is executed, but
Normally 100℃~300℃ Preferably 150℃~250℃
It is desirable that the middle layer 10
2, the intermediate layer 102 to the photoconductive layer 103, and further the photoconductive layer 103 as necessary, are formed in the same system.
It can be formed continuously up to the third layer formed on top. Glow discharge method and sputtering method are advantageous because delicate control of the composition ratio of atoms constituting each layer and control of layer thickness are relatively easy compared to other methods. , when forming the intermediate layer 102 using these layer forming methods, the discharge power and gas pressure during layer formation are created in the same manner as the support temperature described above.a-(Si x N 1-x ) y : One of the important factors that influences the characteristics of H 1-y . The discharge power conditions for effectively forming a-(Si x N 1-x ) y :H 1-y with good productivity, which have the characteristics to achieve the purpose of the present invention, are usually 1
~300W, preferably 2-100W. The gas pressure in the deposition chamber is usually about 0.01 to 5 Torr, preferably about 0.1 to 0.5 Torr when layer formation is performed by glow discharge, and usually about 0.1 to 0.5 Torr when layer formation is performed by sputtering method. It is desirable to set it at about 10 -3 to 5 x 10 -2 Torr, preferably about 8 x 10 -3 to 3 x 10 -2 Torr. The amounts of nitrogen atoms and hydrogen atoms contained in the intermediate layer 102 in the photoconductive member of the present invention are as follows:
Similar to the manufacturing conditions of No. 02, this is an important factor in forming an intermediate layer that provides the desired properties to achieve the object of the present invention. The amount of nitrogen atoms contained in the intermediate layer 102 in the present invention is usually 25 to 55 atomic %, preferably 35 atomic %.
It is desirable that the content be ~55 atomic%.
The content of hydrogen atoms is usually 2~
It is desirable that the hydrogen content be 35 atomic %, preferably 5 to 30 atomic %, and photoconductive members formed when the hydrogen content is in this range can be sufficiently applied as excellent products in practice. It is something. That is, if expressed as above a-(Si x N 1-x ) y :H 1-y , x is usually 0.43 to 0.60, preferably 0.43 to 0.50,
y is usually 0.98 to 0.65, preferably 0.95 to 0.70. The numerical range of the layer thickness of the intermediate layer 102 in the present invention is one of the important factors for effectively achieving the object of the present invention. If the layer thickness of the intermediate layer 102 is too thin, it will not be able to sufficiently prevent carriers from flowing into the photoconductive layer 103 from the support 101 side, and if it is too thick, The probability that the photocarriers generated in the photoconductive layer 103 will pass to the support 101 side becomes extremely small, and therefore the object of the invention cannot be effectively achieved in any case. Intermediate layer 1 for effectively achieving the object of the present invention
The layer thickness of 02 is usually 30 to 1000 Å, preferably 50 to 600 Å. In the present invention, in order to effectively achieve the purpose, a photoconductive layer 10 laminated on an intermediate layer 102 is used.
3 is a-Si:H having the semiconductor properties shown below.
Consists of. p-type a-Si:H... Contains only acceptor. Or one that contains both a donor and an acceptor and has a high acceptor concentration (Na). P-type a-Si: Lightly doped with a so-called p-type impurity having a low acceptor concentration (Na) in the H... type. n-type a-Si:H... Contains only a donor. Or one that contains both donor and acceptor and has a high concentration of donor (Nd). The donor concentration (Nd) is low in the n-type a-Si:H... type. Lightly doped with so-called n-type impurities. i-type a-Si:H...NaNdO or
NaNd stuff. In the present invention, by providing the intermediate layer 102, a-Si:H that constitutes the photoconductive layer 103 as described above can be used with a relatively low resistance compared to the conventional one. However, in order to obtain better results, the dark resistance of the photoconductive layer 103 to be formed is preferably 5 to 10 9 Ωcm or more, most preferably 10 10
It is desirable that the photoconductive layer 103 be formed so that the resistance is Ωcm or more. In particular, this numerical condition for the dark resistance value is required when the manufactured photoconductive member is used as an image forming member for electrophotography, a highly sensitive reading device or solid-state imaging device used in a low-light region, or a photoelectric conversion device. This is an important element when doing so. The layer thickness of the photoconductive layer of the photoconductive member for electrophotography in the present invention is appropriately determined according to the purpose of the application, such as a reading device, a solid-state imaging device, or an image forming member for electrophotography. be done. In the present invention, the layer thickness of the photoconductive layer is as follows:
The thickness relationship between the photoconductive layer and the intermediate layer can be appropriately determined as desired so that the functions of the photoconductive layer and the intermediate layer can be effectively utilized and the objects of the present invention can be effectively achieved. In normal cases, the layer thickness is preferably several hundred to several thousand times or more than the thickness of the intermediate layer. A specific value is usually 1 to 100μ, preferably 2 to 50μ. In the present invention, in order to make the photoconductive layer a layer composed of a-Si:H, H is incorporated into the layer by the following method when forming these layers. Here, "H is contained in the layer" means "a state in which H is combined with Si", "a state in which H is ionized and incorporated into the layer", or "a state in which H is ionized and incorporated into the layer ". It means any of the states "incorporated into" or a combination of these states. As a method for incorporating H into the photoconductive layer, for example, when forming the layer, SiH 4 , Si 2 H 6 ,
Introduced in the form of silicon compounds such as silanes such as Si 3 H 8 and Si 4 H 10 , these compounds are decomposed by a glow discharge decomposition method, and the contained substances are removed as the layer grows. Ru. When forming a photoconductive layer by this glow discharge method, the starting materials for forming a-Si are SiH 4 ,
When silicon hydride gas such as Si 2 H 6 , Si 3 H 8 , Si 4 H 10 is decomposed to form a layer, H is automatically contained in the layer. When using the reaction sputtering method, He
H 2 gas is introduced when performing sputtering targeting Si in an inert gas atmosphere such as SiH 4 , Ar, etc., or a mixed gas atmosphere based on these gases, or SiH 4 , Si 2 H 4 , Si A silicon hydride gas such as 3 H 8 or S 4 H 10 or a gas such as B 2 H 6 or PH 3 which also serves as impurity doping may be introduced. According to the knowledge of the present inventors, the H content of the photoconductive layer composed of a-Si:H determines whether the formed photoconductive member can be sufficiently applied in practice. It has been found that this is one of the major influencing factors and is extremely important. In the present invention, in order for the photoconductive member to be formed to be sufficiently applicable to practical applications, the amount of H contained in the photoconductive layer is usually 1 to 4 atomic%, preferably 5 to 30 atomic%. It is preferable to set it as %. The amount of H contained in the layer can be controlled by, for example, the temperature of the deposition support or the amount of starting material used to contain H introduced into the deposition system;
All you have to do is control the discharge force, etc. In order to make the photoconductive layer n-type or p-type, an n-type impurity, a p-type impurity, or both impurities are added to the formed layer during layer formation using a glow discharge method, a reactive sputtering method, etc. This is achieved by doping while controlling the amount. As impurities to be doped into the photoconductive layer, elements of group A of the periodic table, such as B, Al, Ga, In, Tl, etc., are preferably used to make the photoconductive layer p-type. and when making it n-type,
Elements of group A of the periodic table, such as N, P, As,
Preferred examples include Sb and Bi. Since the amount of these impurities contained in the layer is on the order of ppm, it is not necessary to pay as much attention to their pollution properties as the main materials constituting the photoconductive layer, but it is important to use materials that are as non-polluting as possible. is preferred. From this point of view, B, Ga, P, Sb, etc. are optimal, taking into consideration the electrical and optical characteristics of the layer to be formed. In addition, it is also possible to control the material to be n-type by interstitial doping with Li or the like by thermal diffusion or implantation, for example. The amount of impurity doped into the photoconductive layer is appropriately determined depending on the desired electrical and optical properties, but in the case of impurities in group A of the periodic table, it is usually 10 -6 to 10 -3 atomic%, preferably 10 -5 to 10 -4 atomic%, usually 10 -8 to 10 -3 atomic%, preferably 10 -8 to 10 -3 atomic% in the case of Group A of the periodic table.
It is desirable to set it to 10 -4 atomic%. FIG. 2 shows a schematic configuration diagram for explaining the configuration of another embodiment of the photoconductive member of the present invention. The photoconductive member 200 shown in FIG. 2 is similar to the photoconductive member 100 shown in FIG. 1 except that an upper layer 205 having the same function as the intermediate layer 202 is provided on the photoconductive layer 203 It has a layered structure. That is, the photoconductive member 200 has a-(Si x
N 1-x ) y : An intermediate layer 202 formed using H 1-y to have a similar function, a photoconductive layer 203 composed of a-Si:H, and the photoconductive layer 203 It comprises a top layer 205 having a free surface 204 thereon. When the upper layer 205 is used, for example, when the free surface 204 of the photoconductive member 200 is subjected to charging treatment to form a charge image, the charge that can be retained on the free surface 204 is transferred to the photoconductive layer 203. photocarriers generated in the photoconductive layer 203 when irradiated with electromagnetic waves;
It has a function of easily allowing photo carriers or charged charges to pass through so as to cause recombination with the charged charges in the area irradiated with electromagnetic waves. The upper layer 205 is composed of a-(Si x N 1-x ) y :H 1-y , which has the same characteristics as the middle layer 202, and also has a
-Si a C 1-a , (a-Si a C 1-a ) b :H 1-b , (a-Si c
O 1-c ) d : A host atom constituting a photoconductive layer such as H 1-d . Amorphous materials composed of silicon atoms and nitrogen atoms or oxygen atoms, or containing hydrogen atoms based on these atoms, or such amorphous materials further containing halogen atoms,
It can also be composed of an inorganic insulating material such as Al 2 O 3 or an organic insulating material such as polyester, polyparaxylene, or polyurethane. However, the material constituting the upper layer 205 is a-(Si), which has the same characteristics as the intermediate layer 202 from the viewpoint of productivity, mass production, and electrical and usage environment stability of the formed layer. x N 1-x ) y : H 1-y or a-Sia C 1-a , a-( Sia C 1-a ) b : H 1-b ,
a-Si c N 1-c , a-(Si d C 1-d ) e :L 1-e , a-(Si f
C 1-f ) g : (H+X) 1-g , a-(Si h N 1-h ) i : X 1-i , 1
-(Si j N 1-j ) k : (H+X) 1-k is desirable. In addition to the above-mentioned materials, suitable materials for forming the upper layer 205 include silicon atoms and at least two atoms among C, N, and O, and halogen atoms or halogen atoms. Mention may be made of amorphous materials containing atoms and hydrogen atoms. Examples of the halogen atom include F, Cl, Br, etc. Among the above amorphous materials, those containing F are effective from the viewpoint of thermal stability. The selection of the material constituting the upper layer 205 and the determination of its layer thickness are carried out from the upper layer 205 side to the photoconductive layer 203.
When using the photoconductive member 200 in such a manner that the electromagnetic waves that are detected by done carefully. The upper layer 205 can be formed using the same method as the intermediate layer 202, such as a glow discharge method or a reactive sputtering method. Upper layer 205
As starting materials used in the formation, in addition to the above-mentioned materials used for forming the intermediate layer, examples of starting materials for introducing carbon atoms include saturated hydrocarbons having 1 to 4 carbon atoms. , ethylene hydrocarbons having 2 to 5 carbon atoms, acetylene hydrocarbons having 2 to 4 carbon atoms, and the like. Specifically, saturated hydrocarbons include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), n
-Butane (n - C4H10 ) , pentane ( C5H12 ), ethylene hydrocarbons include ethylene ( C2H4 ),
Propylene (C 3 H 6 ), butene-1 (C 4 H 8 ), butene-2 (C 4 H 8 ), isobutylene (C 4 H 8 ), pentene (C 5 H 10 ), acetylenic hydrocarbons ,
Examples include acetylene (C 2 H 2 ), methylacetylene (C 3 H 4 ), butyne (C 4 H 6 ), and the like. Examples of starting materials for incorporating oxygen atoms into the upper layer 205 include enzymes (O 2 ), ozone (O 3 ), carbon monoxide (CO), carbon dioxide (CO 2 ),
Examples include nitric oxide (NO), nitrogen dioxide (NO 2 ), and dinitrogen monoxide (N 2 O). In addition to these, as one of the starting materials for forming the upper layer 205, for example, CCl 4 , CHF 3 , CH 2 F 2 ,
Halogen-substituted paraffinic hydrocarbons such as CH 3 F, CH 3 Cl, CH 3 Br, CH 3 I, and C 2 H 5 Cl, fluorinated sulfur compounds such as SF 4 and SF 6 , Si(CH 3 ) 4 , Alkyl silicides such as Si(C 2 H 5 ) 4 , SiCl(CH 3 ) 3 , SiCl 2 C
Derivatives of silanes such as halogen-containing alkyl silicides such as (CH 3 ) 2 and SiCl 3 CH 3 can also be mentioned as effective. These starting materials for forming the upper layer 205 include predetermined atoms as constituent atoms of the upper layer 2 to be formed.
05, they are appropriately selected and used during layer formation. For example, if a glow discharge method is used, Si
Single gas such as (CH 3 ) 4 , SiCl 2 (CH 3 ) 2 or SiH 4
O 2 (−Aγ) system, SiH 4 −NO 2 system, SiH 4 −O 2 −N 2
system, SiCl 4 −CO 2 −H 2 system, SiCl 4 −NO−H 2 system,
SiH 4 −NH 3 system, SiCl 4 −NH 4 system, SiH 4 −N 2 system,
SiH 4 −NH 3 −NO system, Si(CH 3 ) 4 −SiH 4 system, SiCl 2
A mixed gas such as a ( CH3 ) 2 - SiH4 system can be used as a starting material for forming the upper layer 105. The layer thickness of the upper layer 205 in the present invention is as follows:
In order to fully exhibit the above-mentioned functions, it is determined as desired depending on the material constituting the layer, the layer formation conditions, etc. The layer thickness of the upper layer 205 in the present invention is as follows:
Usually, the thickness is preferably 30 to 1000 Å, preferably 50 to 600 Å. If a certain type of electrophotographic process is employed when the photoconductive member of the present invention is used as an electrophotographic imaging member, the free surface of the photoconductive member has a layer configuration as shown in FIG. 1 or FIG. It is necessary to further provide a surface coating layer on top. In this case, the surface coating layer is, for example,
If an electrophotographic process such as the NP method described in Publications No. 23910 and No. 43-24748 is applied, it must be electrically insulating and have a low ability to retain static charge when subjected to charging treatment. It is required that the thickness is sufficient and above a certain level, for example,
If an electrophotographic process such as the Carlson process is applied, it is desirable that the bright and dark potentials after electrostatic image formation be very small, so the surface coating layer is required to be very thin. In addition to satisfying its desired electrical properties, the surface coating layer should not have any adverse chemical or physical effects on the photoconductive layer or the upper layer, and should have electrical contact with the photoconductive layer or the upper layer. It is formed in consideration of wearability, moisture resistance, abrasion resistance, cleaning properties, etc. Typical materials effectively used for forming the surface coating layer include polyethylene terephthalate, polycarbonate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polystyrene, polyamide,
Polytetrafluoroethylene, polytrifluorochloroethylene,
Organic insulating feathers such as polyvinyl fluoride, polyvinylidene fluoride, propylene hexafluoride-ethylene tetrafluoride copolymer, ethylene trifluoride-vinylidene fluoride copolymer, polybutene, polyvinyl butyral, polyurethane, polyparaxylylene, etc., silicone Examples include inorganic insulating materials such as nitrides and silicon oxides. These synthetic resins or cellulose derivatives may be made into a film and laminated onto the photoconductive layer or the upper layer, or a coating solution thereof may be formed and applied onto the photoconductive layer or the upper layer. However, a layer may be formed. The thickness of the surface coating layer is appropriately determined depending on the desired characteristics and the material used, but is usually about 0.5 to 70 μm. In particular, when the surface coating layer is required to function as the above-mentioned protective layer, it is usually 10μ or less, and conversely, when it is required to function as an electrical insulating layer, it is usually It is considered to be 10μ or more. However, the layer thickness value that differentiates this protective layer from the electrically insulating layer depends on the materials used, the applied electrophotographic process,
The above value of 10μ is not absolute, as it varies depending on the designed structure of the image forming member. Furthermore, if this surface coating layer also serves as an antireflection layer, its function will be further expanded and it will become more effective. Example 1 Using the apparatus shown in FIG. 3 installed in a completely shielded clean room, an electrophotographic image forming member was produced by the following operations. A molybdenum plate (substrate) 309 having a surface cleaned and having a thickness of 0.5 mm and 10 cm square was firmly fixed to a fixing member 303 at a predetermined position in a glow discharge deposition chamber 301 placed on a support stand 302 . The substrate 309 is heated by the heater 308 inside the fixing member 303.
Heated with an accuracy of 0.5℃. Temperature was measured directly on the back side of the substrate by a thermocouple (alumel-chromel). Next, after confirming that all valves in the system are closed, the main valve 310 is fully opened, and the inside of the chamber 301 is evacuated.
The vacuum level was set to ×10 -6 Torr. Then heater 3
The input voltage of 08 was increased, and the input voltage was varied while detecting the temperature of the molybdenum substrate until it stabilized at a constant value of 200°C. After that, the auxiliary valve 340, then the outflow valves 325, 326, 327 and the inflow valve 320-
2,321,322 fully open, flow meter 3
16, 317, and 318 were also sufficiently degassed and vacuumed. Auxiliary valve 340, valves 325, 32
After closing 6,327,320-2,321,322, SiH4 gas diluted to 10 vol% with H2 (hereinafter
Abbreviated as SiH 4 /H 2 . Purity 99.999%) Cylinder 311
Open the valve 330 of the N 2 (99.999% purity) gas cylinder 312, and open the outlet pressure gauge 33.
The pressure of 5,336 was adjusted to 1 Kg/cm 2 and the inflow valves 320-2, 321 were gradually opened to allow SiH 4 /H 2 gas and N 2 gas to flow into the flow meters 316 and 317. Subsequently, the outflow valves 325, 32
6 was gradually opened, and then the auxiliary valve 340 was gradually opened. At this time, the inflow valve 320-
2,321 were adjusted. Next, Pirani Gauge 34
The opening of the auxiliary valve 340 was adjusted while observing the reading of 1, and the auxiliary valve 340 was opened until the inside of the chamber 301 became 1×10 −2 Torr. After the internal pressure of the chamber 301 stabilizes, the main valve 310 is gradually closed.
The aperture was closed until the reading on the Pirani gauge 341 was 0.5 Torr. After confirming that the gas inflow is stable and the internal pressure is stable, turn on the high frequency power supply 342 and apply 13.56M to the induction coil 343.
A high frequency power of Hz was applied to generate glow discharge in the chamber 301 of the coil section (upper part of the chamber), resulting in an input power of 3W. a-(Si x N 1-x ) y on the substrate under the above conditions:
To deposit H 1-y , conditions were maintained for 1 minute to form an intermediate layer. After that, turn on the high frequency power supply 342.
In the off state and with the glow discharge stopped,
Close the outflow valve 326 and then 50vol ppm with H2
B 2 H 6 (hereinafter abbreviated as B 2 H 6 /H 2 ) diluted to
Gas pressure in Kg/cm 2 (outlet pressure gauge 337 reading)
Then, by adjusting the inflow valve 322 and outflow valve 327, the reading of the flow meter 318 becomes
The opening of the outflow valve 327 was set to be 1/50 of the SiH 4 /H 2 gas flow rate to stabilize it. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was set to 10W. In this way, the glow discharge continues for three more times.
After forming the photoconductive layer for a certain period of time, the heating heater 308 is turned off, and the high frequency power source 342 is also turned off.
After the substrate temperature reaches 100℃, the outflow valves 325, 327 and the inflow valve 3 are turned off.
After closing 20-2 and 322 and fully opening the main valve 310 to reduce the inside of the chamber 31 to 10 -5 Torr or less,
The main valve 310 was closed, and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 9μ. The image forming member thus obtained was placed in a charging exposure experimental device, corona charged at 6.0 KV for 0.2 seconds, and immediately irradiated with a light image. The optical image was created using a tungsten lamp light source, and a light intensity of 1.01 ux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the member by cascading a charged developer (including toner and carrier) onto the surface of the member. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good tone reproducibility was obtained. Next, the image forming member was corona charged for 0.2 seconds at 5.5 KV using a charging exposure experiment device, and then imagewise exposed at a light intensity of 0.8 lux・sec, and then a charging developer was immediately applied. When cascaded onto the surface of the component and then transferred and fixed onto transfer paper,
An extremely clear image was obtained. From this result and the previous results, it was found that the electrophotographic image forming member obtained in this example had no dependence on charging polarity and had the characteristics of a bipolar image forming member. Example 2 The glow discharge holding time when forming an intermediate layer on a molybdenum substrate was as shown in Table 1 below.
Except for various changes, image forming members indicated by Sample No. ~ were prepared under the same conditions and procedures as in Example 1, and were placed in the same charging exposure experimental apparatus as in Example 1. When images were formed, the results shown in Table 1 below were obtained. As can be seen from the results shown in Table 1, in order to achieve the object of the present invention, the thickness of the intermediate layer must be between 30 Å and 1000 Å.
It is necessary to form within the range of .

【表】 ◎:優 ○:良 △:実用上使用し得る ×:不可
中間層の膜堆積速度:1Å/sec
実施例 3 モリブデン基板上に中間層を形成する際の中間
層におけるSiH4/H2とN2の流量比を第2表に示
す様に種々変化させた以外は、実施例1と全く同
様の条件及び手順によつて試料No.〜で示され
る像形成部材を作成し、実施例1と全く同様の帯
電露光実験装置に設置して同様の画像形成を行な
つた所、第2表に示す如き結果を得た。尚、試料
No.〜の中間層のみをオージエ電子分光分析法
により分析した結果を第3表に示す。第2、3表
に示される結果から判る様に本発明の目的を達成
するには中間層におけるSiとNの組成比に関係す
るxを0.60〜0.43の範囲で形成する必要がある。
[Table] ◎: Excellent ○: Good △: Can be used for practical purposes ×: Not possible Film deposition rate of intermediate layer: 1 Å/sec
Example 3 The process was exactly the same as Example 1, except that the flow rate ratio of SiH 4 /H 2 and N 2 in the intermediate layer was varied as shown in Table 2 when forming the intermediate layer on the molybdenum substrate. Image forming members indicated by sample numbers ~ were prepared according to the conditions and procedures, and were installed in the same charging exposure experimental apparatus as in Example 1 to form images in the same manner as shown in Table 2. I got similar results. Furthermore, the sample
Table 3 shows the results of analyzing only the intermediate layers of Nos. 1 to 3 by Auger electron spectroscopy. As can be seen from the results shown in Tables 2 and 3, in order to achieve the object of the present invention, it is necessary to form the intermediate layer with x, which is related to the composition ratio of Si and N, in the range of 0.60 to 0.43.

【表】 ◎:優 ○:良 △:実用上使用し得る ×:
不可
[Table] ◎: Excellent ○: Good △: Can be used for practical purposes ×:
Not possible

【表】 実施例 4 実施例1と同様にモリブデン基板を設置し続い
て実施例1と同様の操作によつてグロー放電堆積
室301内を5×10-6Torrの真空となし、基板
温度は200℃に保たれた後実施例1と同様の操作
によつて補助バルブ340、次いで流出バルブ3
25,326、及び流入バルブ320−2,32
1を全開し、フローメーター316,317内も
十分脱気真空状態にされた。補助バルブ340、
バルブ325,326,320−2,321を閉
じた後、H2で10vol%に稀釈されたSiH4ガス(純
度99.999%、SiH4/H2)ボンベ311のバルブ
330、ガスボンベ312のバルブ331を開
け、出口圧ゲージ335,336の圧を1m/cm2
に調整し、流入バルブ320−2,321を徐々
に開けてフローメーター316,317内へ
SiH4/H2ガス、N2ガスを流入させた。引き続い
て、流出バルブ325,326を徐々に開け、次
いで補助バルブ340を徐々に開けた。このとき
SiH4/H2ガス流量とN2ガス流量比が1:10にな
るように流入バルブ320−2,321を調整し
た。次にピラニーゲージ341の読みを注視しな
がら補助バルブ340の開口を調整し、室301
内が1×10-2Torrになるまで補助バルブ340
を開けた。室301内圧が安定してから、メイン
バルブ310を徐々に閉じ、ピラニーゲージ34
1の指示が0.5Torrになるまで開口を絞つた。ガ
ス流入が安定し内圧が安定するのを確認し続いて
高周波電源342のスイツチをON状態にして、
誘導コイル343に、13.56MHzの高周波電力を
投入しコイル部(室上部)の室301内にグロー
放電を発生させ、3Wの入力電力とした。上記条
件で基板上にa−(SixN1-xy:H1-yを堆積させる
為に、1分間条件を保つて中間層を形成した。そ
の後、高周波電源342をoff状態とし、グロー
放電を中止させた状態で、流出バルブ326を閉
じ、引き続き、再び高周波電源342をON状態
にして、グロー放電を再開させた。そのときの入
力電力を10Wにした。こうしてグロー放電を更に
5時間持続させて光導電層を形成した後、加熱ヒ
ーター308をoff状態にし、高周波電源342も
off状態とし、基板温度が100℃になるのを待つて
から流出バルブ325及び流入バルブ320−
2,321を閉じ、メインバルブ310を全開に
して、室301内を10-5Torr以下にした後、メ
インバルブ310を閉じ室301内をリークバル
ブ344によつて大気圧として基板を取り出し
た。この場合形成された層の全厚は約15μであつ
た。この像形成部材に就て、実施例1と同様の条
件及び手順で転写紙上に画像を形成したところ、
コロナ放電を行つて画像形成した方が、コロ
ナ放電を行つて画像を形成したよりも、その画質
が優れており、極めて鮮明であつた。この結果よ
り本実施例で得られた感光体には、帯電極性の依
存性が認められた。 実施例 5 実施例1と同様な条件及び手順によつて、モリ
ブデン基板上に1分間の中間層の形成を行つた
後、その後、高周波電源342をoff状態とし、
グロー放電を中止させた状態で、流出バルブ32
6を閉じ、次にH2で25volppmに稀釈されたPH3
ガスボンベ(以後PH3/H2と略す)314から
流入バルブ323を通じて1Kg/cm2のガス圧(出
口圧ゲージ338Zの読み)で、流入バルブ32
3、流出バルブ328の調整によつてフローメー
ター319の読みが、SiH4/H2ガスの流量の1/5
0になる様に流出バルブ328の開口を定め、安
定化させた。 引き続き、再び高周波電源342をON状態に
して、グロー放電を再開させた。そのときの入力
電力を10Wにした。こうしてグロー放電を更に4
時間持続させて光導電層を形成した後、加熱ヒー
ター308をoff状態にし、高周波電源342も
off状態とし、基板温度が100℃になるのを持つて
から流出バルブ325,328及び流入バルブ3
20−2,323を閉じ、メインバルブ310を
全開にして、室301内を10-5Torr以下にした
後、メインバルブ310を閉じ室301内をリー
クバルブ344によつて大気圧として基板を取り
出した。この場合、形成された層の全厚は約11μ
であつた。こうして得られた像形成部材を、実施
例1と同様の条件及び手順で転写紙上に画像を形
成したところ、コロナ放電を行つて画像形成し
た方が、コロナ放電を行つて画像形成したより
も、その画質が優れており極めて鮮明であつた。
この結果より本実施例で得られた感光体には、帯
電極性の依存性が認められた。 実施例 6 実施例1と同様な条件及び手順によつて、モリ
ブデン基板上に1分間の中間層の形成を行つた
後、高周波電源342をoff状態とし、グロー放
電を中止させた状態で、流出バルブ326を閉
じ、次にH2で50volppmに稀釈されたB2H6がス
ボンベ313から流入バルブ322を通じて1
Kg/cm2のガス圧(出口圧ゲージ337の読み)
で、流入バルブ322流出バルブ327の調整に
よつてフローメーター318の読みが、SiH4
H2ガスの流量の1/10になる様に流出バルブ32
7の開口を定め、安定化させた。 引き続き、再び高周波電源342をON状態に
して、グロー放電を再開させた。そのときの入力
電力を10Wにした。こうしてグロー放電を更に3
時間持続させて光導電層を形成した後、加熱ヒー
ター308をoff状態にし、高周波電源342もoff
状態とし、基板温度が100℃になるのを持つてか
ら流出バルブ325,327及び流入バルブ32
0,322を閉じ、メインバルブ310を全開し
て、室301内を10-5torr以下にした後、メイン
バルブ310を閉じ室301内をリークバルブ3
44によつて大気圧として基板を取り出した。こ
の場合、形成された層の全厚は約10μであつた。
こうして得られた像形成部材を実施例1と同様の
条件及び手順で転写紙上に画像を形成したとこ
ろ、コロナ放電を行つて画像形成した方が、
コロナ放電を行つて画像形成したよりも、その画
質が優れており極めて鮮明であつた。この結果よ
り本実施例で得られた感光体には、帯電極性の依
存性が認められた。而し、との帯電極性依存性
は、実施例4、5で得られた像形成部材とは逆で
あつた。 実施例 7 実施例1と同様な条件及び手順によつて、モリ
ブデン基板上に1分間の中間層の形成、5時間の
光導電層の形成を行つた後、高周波電源342を
off状態として、グロー放電を中止させた状態で、
流出バルブ327を閉じ、そして再び、流出バル
ブ326を開き、中間層の形成時と同様の条件に
なるようにした。引き続き再び高周波電源をON
状態にしてグロー放電を再開させた。そのときの
入力電力も中間層形成時と同様の3Wとした。こ
うしてグロー放電を2分間持続させて光導電層上
に、上部層を形成した後、加熱ヒーター308を
off状態にし、高周波電源342もoff状態とし、
基板温度が100℃になるのを持つてから流出バル
ブ325,326及び流入バルブ320−2,3
21を閉じ、メインバルブ310を全開にして、
室301内を10-5torr以下にした後、メインバル
ブ310を閉じ室301内をリークバルブ344
によつて大気圧として基板を取り出した。こうし
て得られた像形成部材を、実施例1と同様の帯電
露光実験装置に設置し、6.0KVで0.2sec間コロ
ナ帯電を行い、直ちに光像を照射した。光像は、
タングステンランプ光源を用い、1.01ux・secの
光量を透過型のテストチヤートを通して照射させ
た。 その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)を部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、5.0KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、諧調
再現性のよい鮮明な高濃度の画像が得られた。 実施例 8 光導電層形成に際してH2で10vol%に稀釈され
たSiH4ガスのボンベ311のかわりに稀釈され
ていないSi2H6ボンベ315を使用して、Si2H6
とB2H6/H2の流量比を5:1に設定した以外
は、実施例1と同様の条件及び手順によつて中間
層、光導電層をモリブデン基板上に形成した後、
堆積室301外に取り出し実施例1と同様に帯電
露光の実験装置に静置して画像形成の試験をした
所、5.5KVのコロナ放電荷電性現像剤の組み
合せの場合に、極めて良質の、コントラストの高
いトナー画像が転写紙上に得られた。 実施例 9 実施例1と同様の条件及び手順に従いモリブデ
ン基板上に中間層、光導電層を形成したのち第4
図に示す堆積室401内の所定の固定部材403
に光導電層を下にして基板402を固定した。リ
ークバルブ411を閉じ、メインバルブ412を
開け、室内を5×10-7torrまで真空にした。その
後補助バルブ409流出バルブ413〜419、
流入バルブ427〜433を全開とし、系内のガ
スを排気した後、補助バルブ409、流出バルブ
413〜419流入バルブ427〜433を閉じ
た。固定部材403内の加熱ヒーター404を
ON状態にし所定の温度に設定した後第4表に示
す各条件に従い各種ガスボンベ449〜455の
中の所定のガスボンベの出口バルブ(441〜4
48)を設け、出口圧を1Kg/cm2とし(出口圧ゲ
ージ434〜440の読み)流入バルブと流出バ
ルブによつてフローメーター420〜426を流
れるガスの流量を所定値に制御した。その後、補
助バルブ409を開けて室内へガスを流入させ、
メインバルブ412により室内圧を制御した(ピ
ラニゲージ410の読み)。流量及び室内圧が安
定した後、グロー放電分解の場合はシヤツター4
07を閉とし、スパツタリングの場合はシヤツタ
ー407を開として高周波電源408をON状態
にし、室内にグロー放電を発生させて層を形成し
た。 所定の時間、層を形成した後、高周波電源40
8と加熱ヒーター404をoff状態にして補助バ
ルブ409を閉じメインバルブ412を全開し
た。基板温度が100℃になるのをまつてメインバ
ルブ412を閉じ、リーフバルブ411により室
内に大気圧にして基板をとり出した。 なお、スパツタリングに際してターゲツト40
5は必要に応じて多結晶Si、多結晶Si上にグラフ
アイトが部分的に積層されたもの及びSi3N4を使
用した。 又、第4図における各ボンベ内のガス種は以下
の通りである。 ボンベ449:SiH4ガス(H2で10vol%に稀
釈)、ボンベ450:SiF4ガス(H2を10vol%含
む)、ボンベ451:Si(CH34(H2で10vol%に稀
釈)、ボンベ452:C2H4ガス(H2で10vol%に
稀釈)、ボンベ453:NH3ガス(H2で10vol%
に稀釈)、ボンベ454:Arガス、ボンベ45
5:N2ガス この様にして作製した像形成部材A〜Hについ
て各々、実施例1と同様にして、両極性に関
して帯電、露光及び転写を行なつたところ、いず
れも帯電極性に対する依存性がなく、極めて鮮明
なトナー画像が得られた。
[Table] Example 4 A molybdenum substrate was installed in the same manner as in Example 1, and then a vacuum of 5×10 -6 Torr was created in the glow discharge deposition chamber 301 by the same operation as in Example 1, and the substrate temperature was After the temperature was maintained at 200°C, the auxiliary valve 340 and then the outflow valve 3 were opened by the same operation as in Example 1.
25, 326, and inflow valve 320-2, 32
1 was fully opened, and the insides of the flow meters 316 and 317 were also sufficiently degassed and vacuumed. auxiliary valve 340,
After closing the valves 325, 326, 320-2, 321, the valve 330 of the SiH 4 gas (purity 99.999%, SiH 4 /H 2 ) gas cylinder 311 diluted to 10 vol% with H 2 and the valve 331 of the gas cylinder 312 are opened. Open the outlet pressure gauges 335 and 336 and set the pressure to 1 m/cm 2
and gradually open the inflow valves 320-2 and 321 to enter the flow meters 316 and 317.
SiH 4 /H 2 gas and N 2 gas were introduced. Subsequently, the outflow valves 325 and 326 were gradually opened, and then the auxiliary valve 340 was gradually opened. At this time
The inflow valves 320-2 and 321 were adjusted so that the ratio of SiH 4 /H 2 gas flow rate to N 2 gas flow rate was 1:10. Next, while watching the reading on the Pirani gauge 341, adjust the opening of the auxiliary valve 340, and
Auxiliary valve 340 until the inside becomes 1×10 -2 Torr.
I opened it. After the internal pressure of the chamber 301 becomes stable, the main valve 310 is gradually closed and the Pirani gauge 34 is closed.
The aperture was narrowed down until the instruction in step 1 was 0.5 Torr. After confirming that the gas inflow is stable and the internal pressure is stable, turn on the high frequency power supply 342, and
A high frequency power of 13.56 MHz was applied to the induction coil 343 to generate glow discharge in the chamber 301 in the coil section (upper part of the chamber), resulting in an input power of 3 W. In order to deposit a-(Si x N 1-x ) y :H 1-y on the substrate under the above conditions, the conditions were maintained for 1 minute to form an intermediate layer. Thereafter, the high frequency power source 342 was turned off to stop glow discharge, the outflow valve 326 was closed, and then the high frequency power source 342 was turned on again to restart the glow discharge. The input power at that time was set to 10W. After continuing the glow discharge for another 5 hours to form a photoconductive layer, the heating heater 308 is turned off, and the high frequency power source 342 is also turned off.
OFF state, wait for the substrate temperature to reach 100°C, and then open the outflow valve 325 and inflow valve 320-
2, 321 was closed and the main valve 310 was fully opened to bring the inside of the chamber 301 to 10 -5 Torr or less, and then the main valve 310 was closed and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. The total thickness of the layer formed in this case was approximately 15μ. When an image was formed on a transfer paper using this image forming member under the same conditions and procedures as in Example 1,
Images formed by corona discharge had better image quality and were extremely clear than images formed by corona discharge. From these results, it was found that the photoreceptor obtained in this example had charge polarity dependence. Example 5 After forming an intermediate layer on a molybdenum substrate for 1 minute under the same conditions and procedures as in Example 1, the high frequency power source 342 was turned off,
With the glow discharge stopped, the outflow valve 32
Close 6 and then PH3 diluted to 25volppm with H2
At a gas pressure of 1 Kg/cm 2 (reading of the outlet pressure gauge 338Z) from the gas cylinder (hereinafter abbreviated as PH 3 /H 2 ) 314 through the inflow valve 323, the inflow valve 32
3. By adjusting the outflow valve 328, the reading of the flow meter 319 becomes 1/5 of the flow rate of SiH 4 /H 2 gas.
The opening of the outflow valve 328 was set so as to be 0, and the outflow valve 328 was stabilized. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was set to 10W. In this way, the glow discharge is further increased by 4
After forming the photoconductive layer for a certain period of time, the heating heater 308 is turned off, and the high frequency power source 342 is also turned off.
After the substrate temperature reaches 100℃, the outflow valves 325, 328 and the inflow valve 3 are turned off.
After closing 20-2 and 323 and fully opening the main valve 310 to reduce the inside of the chamber 301 to 10 -5 Torr or less, close the main valve 310 and bring the inside of the chamber 301 to atmospheric pressure using the leak valve 344 and take out the substrate. Ta. In this case, the total thickness of the formed layer is approximately 11μ
It was hot. An image was formed on a transfer paper using the image forming member thus obtained under the same conditions and procedures as in Example 1. The image quality was excellent and extremely clear.
From these results, it was found that the photoreceptor obtained in this example had charge polarity dependence. Example 6 After forming an intermediate layer on a molybdenum substrate for 1 minute under the same conditions and procedures as in Example 1, the high frequency power source 342 was turned off and glow discharge was stopped, and the flow was discharged. The valve 326 is closed, and then B 2 H 6 diluted with H 2 to 50 volppm is injected from the bomb 313 through the inflow valve 322.
Gas pressure in Kg/cm 2 (outlet pressure gauge 337 reading)
By adjusting the inflow valve 322 and outflow valve 327, the reading of the flow meter 318 changes to SiH 4 /
Outflow valve 32 so that the flow rate is 1/10 of the H2 gas flow rate.
7 openings were defined and stabilized. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was set to 10W. In this way, the glow discharge continues for three more times.
After forming the photoconductive layer for a period of time, the heating heater 308 is turned off, and the high frequency power source 342 is also turned off.
After the substrate temperature reaches 100°C, the outflow valves 325, 327 and the inflow valve 32 are closed.
After closing the main valve 310 and reducing the inside of the chamber 301 to 10 -5 torr or less, the main valve 310 is closed and the inside of the chamber 301 is opened by the leak valve 3.
44 to bring the pressure to atmospheric pressure and take out the substrate. In this case, the total thickness of the layer formed was approximately 10μ.
An image was formed on a transfer paper using the image forming member thus obtained under the same conditions and procedures as in Example 1.
The image quality was superior and extremely clear compared to images formed by corona discharge. From these results, it was found that the photoreceptor obtained in this example had charge polarity dependence. However, the charge polarity dependence was opposite to that of the image forming members obtained in Examples 4 and 5. Example 7 After forming an intermediate layer on a molybdenum substrate for 1 minute and forming a photoconductive layer for 5 hours under the same conditions and procedures as in Example 1, the high frequency power source 342 was turned on.
In the off state, the glow discharge is stopped.
The outflow valve 327 was closed and the outflow valve 326 was opened again to obtain the same conditions as during the formation of the intermediate layer. Then turn on the high frequency power supply again.
The glow discharge was restarted. The input power at that time was also 3W, the same as when forming the intermediate layer. After continuing the glow discharge for 2 minutes to form an upper layer on the photoconductive layer, the heating heater 308 is turned on.
off state, and the high frequency power supply 342 is also off state,
After the substrate temperature reaches 100°C, the outflow valves 325, 326 and the inflow valves 320-2, 3
21 and fully open the main valve 310.
After reducing the inside of the chamber 301 to 10 -5 torr or less, the main valve 310 is closed and the inside of the chamber 301 is closed using the leak valve 344.
The substrate was taken out at atmospheric pressure. The image forming member thus obtained was placed in a charging exposure experimental apparatus similar to that in Example 1, corona charging was performed at 6.0 KV for 0.2 seconds, and a light image was immediately irradiated. The light image is
Using a tungsten lamp light source, a light intensity of 1.01 ux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a charged developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good tone reproducibility was obtained. Example 8 When forming a photoconductive layer, an undiluted Si 2 H 6 cylinder 315 is used in place of the SiH 4 gas cylinder 311 diluted to 10 vol% with H 2 to form a Si 2 H 6 gas.
After forming an intermediate layer and a photoconductive layer on a molybdenum substrate under the same conditions and procedures as in Example 1, except that the flow rate ratio of B 2 H 6 /H 2 was set to 5:1,
When the image formation test was carried out by taking it out of the deposition chamber 301 and placing it in the charged exposure experimental apparatus in the same manner as in Example 1, it was found that the combination of the 5.5KV corona discharge chargeable developer showed extremely good quality and contrast. A high toner image was obtained on the transfer paper. Example 9 After forming an intermediate layer and a photoconductive layer on a molybdenum substrate under the same conditions and procedures as in Example 1, a fourth layer was formed.
Predetermined fixing member 403 in the deposition chamber 401 shown in the figure
The substrate 402 was fixed with the photoconductive layer facing down. The leak valve 411 was closed, the main valve 412 was opened, and the chamber was evacuated to 5×10 −7 torr. After that, the auxiliary valve 409 outflow valves 413 to 419,
After fully opening the inflow valves 427 to 433 and exhausting the gas in the system, the auxiliary valve 409, the outflow valves 413 to 419, and the inflow valves 427 to 433 were closed. Heater 404 inside fixing member 403
After turning ON and setting the temperature to a predetermined temperature, select the outlet valve (441 to 4
48), and the outlet pressure was set to 1 Kg/cm 2 (reading of outlet pressure gauges 434 to 440), and the flow rate of the gas flowing through the flow meters 420 to 426 was controlled to a predetermined value by the inflow valve and the outflow valve. After that, open the auxiliary valve 409 to let gas flow into the room,
Indoor pressure was controlled by main valve 412 (reading of Pirani gauge 410). After the flow rate and room pressure have stabilized, in the case of glow discharge decomposition, turn on shutter 4.
07 was closed, and in the case of sputtering, the shutter 407 was opened and the high frequency power source 408 was turned on to generate glow discharge in the room and form a layer. After forming the layer for a predetermined time, a high frequency power source 40
8 and the heater 404 were turned off, the auxiliary valve 409 was closed, and the main valve 412 was fully opened. After waiting for the substrate temperature to reach 100° C., the main valve 412 was closed, and the chamber was brought to atmospheric pressure using the leaf valve 411, and the substrate was taken out. In addition, when sputtering, target 40
In No. 5, polycrystalline Si, partially laminated graphite on polycrystalline Si, and Si 3 N 4 were used as necessary. Further, the types of gas in each cylinder in FIG. 4 are as follows. Cylinder 449: SiH 4 gas (diluted to 10 vol% with H 2 ), Cylinder 450: SiF 4 gas (contains 10 vol% of H 2 ), Cylinder 451: Si(CH 3 ) 4 (diluted to 10 vol% with H 2 ), Cylinder 452: C 2 H 4 gas (diluted to 10 vol% with H 2 ), Cylinder 453: NH 3 gas (10 vol % with H 2 )
diluted), cylinder 454: Ar gas, cylinder 45
5: N 2 gas Each of the image forming members A to H produced in this way was charged, exposed and transferred with respect to bipolarity in the same manner as in Example 1. An extremely clear toner image was obtained.

【表】 実施例 10 あらかじめN2ガスボンベをH2で10vol%に稀釈
したNH3ガスボンベに変えた上で実施例1と同
様な手順に従い、NH3/N2ガスとSiH4/H2ガス
の流量比を2:1として中間層を形成し、さらに
同様な条件及び手順のもとで光導電層を形成し
た。その基板を第5図に示す装置内の所定の固定
部材に固定し、実施例9と同様の手順により下記
の第5表に示す試料I〜Qを作製した。各々、実
施例1と同様にして、両極性に関して帯電、
露光及び転写を行なつたところ、いずれも帯電極
性に対する依存性がなく、極めて鮮明なトナー画
像が得られた。
[Table] Example 10 After changing the N 2 gas cylinder to an NH 3 gas cylinder diluted to 10 vol% with H 2 and following the same procedure as in Example 1, NH 3 /N 2 gas and SiH 4 /H 2 gas were mixed. An intermediate layer was formed using a flow rate ratio of 2:1, and a photoconductive layer was further formed under similar conditions and procedures. The substrate was fixed to a predetermined fixing member in the apparatus shown in FIG. 5, and samples I to Q shown in Table 5 below were produced by the same procedure as in Example 9. In the same manner as in Example 1, charging with respect to bipolarity,
When exposure and transfer were performed, extremely clear toner images were obtained that were free of dependence on charging polarity.

【表】 実施例 11 光学研磨されたガラス板上に通常の方法で酸化
スズ透明電極を設けた基体上に実施例1と同様に
して中間層及び光導電層を形成した。但し、光導
電層の形成に際しては、作成時間を短縮して、層
厚が約2μとなる様にした。次に通常の蒸着装置
に移してArガスの5×10-3Torrの真空下で三硫
化アンチモンをビームランデイング層として80n
mの厚さに前記光導電層上に蒸着形成した。 この様に作成された光導電部材をビジユン型撮
像管の受光面として用いたところ、ターゲツト印
加電圧55Vで白色光121uxを照射した時に信号電
流650mA、暗電流0.8mA以下、残像特性3フイ
ールド後に8%という良好な特性が得られた。
[Table] Example 11 An intermediate layer and a photoconductive layer were formed in the same manner as in Example 1 on a substrate in which a tin oxide transparent electrode was provided on an optically polished glass plate using a conventional method. However, when forming the photoconductive layer, the preparation time was shortened so that the layer thickness was approximately 2 μm. Next, it was transferred to a regular evaporation apparatus and 80N of antimony trisulfide was used as a beam landing layer under a vacuum of 5×10 -3 Torr using Ar gas.
The photoconductive layer was deposited to a thickness of m. When the photoconductive member prepared in this way was used as the light receiving surface of a visual image pickup tube, when white light 121ux was irradiated with a target applied voltage of 55V, the signal current was 650mA, the dark current was less than 0.8mA, and the afterimage characteristic was 8 after 3 fields. %, good characteristics were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は各々本発明の電子写真用像
形成部材の好適な実施態様例の構成を説明する為
の模式的構成図、第3図、第4図は各々本発明の
電子写真用光導電部材を製造する場合の装置の一
例を示す模式的説明図である。 100,200……電子写真用光導電部材、1
01,102……支持体、102,202……中
間層、103,203……光導電層、104,2
04……自由表面、205……上部層。
1 and 2 are schematic configuration diagrams for explaining the configuration of preferred embodiments of the electrophotographic image forming member of the present invention, and FIGS. 3 and 4 are respectively schematic diagrams of the electrophotographic image forming member of the present invention. It is a typical explanatory view showing an example of the apparatus in the case of manufacturing a photoconductive member for use. 100,200...Photoconductive member for electrophotography, 1
01,102...Support, 102,202...Intermediate layer, 103,203...Photoconductive layer, 104,2
04...free surface, 205...upper layer.

Claims (1)

【特許請求の範囲】 1 支持体と、シリコン原子を母体とし、水素原
子を含むアモルフアス材料で構成され、該水素原
子の含有量が1〜40atomic%である光導電層と、
これ等の間に設けられ、シリコン原子を母体と
し、窒素原子と水素原子を含むアモルフアス材料
で構成され、前記支持体側から前記光導電層中へ
のキヤリアの流入を阻止し且つ電磁波照射によつ
て前記光導電層中に生じ前記支持体側に向つて移
動するキヤリアの前記光導電層側から前記支持体
側への通過を許す中間層とを有し、該中間層に於
ける窒素原子の量が25〜55atomic%、水素原子
の量が0.25〜35atomic%であることを特徴とする
電子写真用光導電部材。 2 前記光導電層上に上部層を更に有する特許請
求の範囲第1項に記載の電子写真用光導電部材。 3 前記上部層は、シリコン原子を母体とし、酸
素原子、窒素原子及び炭素原子の中の少なくとも
一種を含むアモルフアス材料で構成されている特
許請求の範囲第2項に記載の電子写真用光導電部
材。 4 前記上部層を構成するアモルフアス材料は、
水素原子又はハロゲン原子の少なくとも一方を含
む特許請求の範囲第3項に記載の電子写真用光導
電部材。 5 前記上部層は、無機絶縁材料で構成されてい
る特許請求の範囲第2項に記載の電子写真用光導
電部材。 6 前記中間層の層厚が30〜1000Åである特許請
求の範囲第1項に記載の電子写真用光導電部材。 7 前記上部層の層厚が30〜1000Åである特許請
求の範囲第2項に記載の電子写真用光導電部材。 8 前記光導電層は、n型不純物及びp型不純物
のいずれか一方を含有している特許請求の範囲第
1項に記載の電子写真用光導電部材。 9 前記n型不純物は、周期律表第族に属する
元素である特許請求の範囲第8項に記載の電子写
真用光導電部材。 10 前記p型不純物は、周期律表第族に属す
る元素である特許請求の範囲第8項に記載の電子
写真用光導電部材。
[Scope of Claims] 1. A support, a photoconductive layer made of an amorphous material containing silicon atoms as a matrix and containing hydrogen atoms, and having a hydrogen atom content of 1 to 40 atomic%;
It is provided between these and is made of an amorphous material containing silicon atoms as a matrix and nitrogen atoms and hydrogen atoms, and prevents carriers from flowing into the photoconductive layer from the support side and prevents carriers from flowing into the photoconductive layer by electromagnetic wave irradiation. an intermediate layer that allows carriers generated in the photoconductive layer and moving toward the support to pass from the photoconductive layer side to the support side, the intermediate layer having an amount of nitrogen atoms of 25 A photoconductive member for electrophotography, characterized in that the amount of hydrogen atoms is 0.25 to 35 atomic%. 2. The photoconductive member for electrophotography according to claim 1, further comprising an upper layer on the photoconductive layer. 3. The photoconductive member for electrophotography according to claim 2, wherein the upper layer is made of an amorphous material having silicon atoms as a matrix and containing at least one of oxygen atoms, nitrogen atoms, and carbon atoms. . 4 The amorphous material constituting the upper layer is
The electrophotographic photoconductive member according to claim 3, which contains at least one of a hydrogen atom and a halogen atom. 5. The photoconductive member for electrophotography according to claim 2, wherein the upper layer is made of an inorganic insulating material. 6. The photoconductive member for electrophotography according to claim 1, wherein the intermediate layer has a layer thickness of 30 to 1000 Å. 7. The photoconductive member for electrophotography according to claim 2, wherein the upper layer has a layer thickness of 30 to 1000 Å. 8. The photoconductive member for electrophotography according to claim 1, wherein the photoconductive layer contains either an n-type impurity or a p-type impurity. 9. The photoconductive member for electrophotography according to claim 8, wherein the n-type impurity is an element belonging to Group 3 of the periodic table. 10. The photoconductive member for electrophotography according to claim 8, wherein the p-type impurity is an element belonging to Group 1 of the periodic table.
JP55134115A 1980-09-25 1980-09-25 Photoconductive member Granted JPS5758160A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP55134115A JPS5758160A (en) 1980-09-25 1980-09-25 Photoconductive member
US06/304,568 US4394426A (en) 1980-09-25 1981-09-22 Photoconductive member with α-Si(N) barrier layer
GB8128841A GB2087643B (en) 1980-09-25 1981-09-24 Photoconductive member
AU75648/81A AU554181B2 (en) 1980-09-25 1981-09-24 Photoconductive device
CA000386703A CA1181628A (en) 1980-09-25 1981-09-25 Photoconductive member including non-photoconductive layer containing amorphous silicon matrix containing nitrogen
NL8104426A NL192142C (en) 1980-09-25 1981-09-25 Photoconductive organ.
FR8118123A FR2490839B1 (en) 1980-09-25 1981-09-25 PHOTOCONDUCTIVE ELEMENT
PCT/JP1981/000256 WO1982001261A1 (en) 1980-09-25 1981-09-25 Photoconductive member
DE813152399A DE3152399A1 (en) 1980-09-25 1981-09-25 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55134115A JPS5758160A (en) 1980-09-25 1980-09-25 Photoconductive member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP57077667A Division JPS5811949A (en) 1982-05-10 1982-05-10 Photoconductive member

Publications (2)

Publication Number Publication Date
JPS5758160A JPS5758160A (en) 1982-04-07
JPS649625B2 true JPS649625B2 (en) 1989-02-17

Family

ID=15120802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55134115A Granted JPS5758160A (en) 1980-09-25 1980-09-25 Photoconductive member

Country Status (1)

Country Link
JP (1) JPS5758160A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824148A (en) * 1981-08-06 1983-02-14 Seiko Epson Corp Electrophotographic receptor
JPS5995541A (en) * 1982-11-25 1984-06-01 Tomoegawa Paper Co Ltd Electrophotographic photosensitive body and its production
US4675263A (en) 1984-03-12 1987-06-23 Canon Kabushiki Kaisha Member having substrate and light-receiving layer of A-Si:Ge film and A-Si film with non-parallel interface with substrate
JPS60256151A (en) * 1984-05-31 1985-12-17 Fujitsu Ltd Electrophotographic sensitive body
US4678733A (en) 1984-10-15 1987-07-07 Canon Kabushiki Kaisha Member having light receiving layer of A-Si: Ge (C,N,O) A-Si/surface antireflection layer with non-parallel interfaces
JPS6289064A (en) 1985-10-16 1987-04-23 Canon Inc Light receiving material
JPS6290663A (en) 1985-10-17 1987-04-25 Canon Inc Light receiving member
JPS62106468A (en) 1985-11-01 1987-05-16 Canon Inc Light receiving member
JPS62106470A (en) 1985-11-02 1987-05-16 Canon Inc Light receiving member
JPH0769622B2 (en) * 1988-03-08 1995-07-31 富士通株式会社 Optical backside recording photoreceptor and image forming apparatus

Also Published As

Publication number Publication date
JPS5758160A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
US4414319A (en) Photoconductive member having amorphous layer containing oxygen
US4539283A (en) Amorphous silicon photoconductive member
JPH0150904B2 (en)
JPS6410069B2 (en)
JPH0411860B2 (en)
JPS6348054B2 (en)
JPS628783B2 (en)
JPS628781B2 (en)
JPS649625B2 (en)
US5382487A (en) Electrophotographic image forming member
JPS6247303B2 (en)
JPS6348057B2 (en)
JPS6410068B2 (en)
JPH0150905B2 (en)
JPS6341059B2 (en)
JPS6410064B2 (en)
JPS6410066B2 (en)
JPS6410067B2 (en)
JPS628782B2 (en)
JPS6341060B2 (en)
JPS6345582B2 (en)
JPS6335979B2 (en)
JPH0215061B2 (en)
JPS6346408B2 (en)
JPS5811949A (en) Photoconductive member