JPS6341059B2 - - Google Patents

Info

Publication number
JPS6341059B2
JPS6341059B2 JP55134116A JP13411680A JPS6341059B2 JP S6341059 B2 JPS6341059 B2 JP S6341059B2 JP 55134116 A JP55134116 A JP 55134116A JP 13411680 A JP13411680 A JP 13411680A JP S6341059 B2 JPS6341059 B2 JP S6341059B2
Authority
JP
Japan
Prior art keywords
layer
photoconductive
atoms
gas
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55134116A
Other languages
Japanese (ja)
Other versions
JPS5758161A (en
Inventor
Isamu Shimizu
Shigeru Shirai
Hidekazu Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP55134116A priority Critical patent/JPS5758161A/en
Priority to US06/304,568 priority patent/US4394426A/en
Priority to GB8128841A priority patent/GB2087643B/en
Priority to AU75648/81A priority patent/AU554181B2/en
Priority to CA000386703A priority patent/CA1181628A/en
Priority to PCT/JP1981/000256 priority patent/WO1982001261A1/en
Priority to FR8118123A priority patent/FR2490839B1/en
Priority to NL8104426A priority patent/NL192142C/en
Priority to DE813152399A priority patent/DE3152399A1/en
Publication of JPS5758161A publication Critical patent/JPS5758161A/en
Publication of JPS6341059B2 publication Critical patent/JPS6341059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、光(ここでは広義の光で、紫外光
線、可視光線、赤外光線、X線、γ線等を示す)
の様な電磁波に感受性のある光導電部材に関す
る。 固体撮像装置、或いは像形成分野に於ける電子
写真用像形成部材や原稿読取装置等に於ける光導
電層を構成する光導電材料としては、高感度で、
SN比〔光電流(Ip)/暗電流(Id)〕が高く、照
射する電磁波のスペクトル特性を有すること、光
応答性が良好で、所望の暗低抗値を有すること、
使用時に於いて人体に対して無公害である事、更
には固体撮像装置に於いては、残像を所定時間内
に容易に処理する出来る事等の特性が要求され
る。殊に、事務機としてオフイスで使用される電
子写真装置内に組込まれる電子写真用像形成部材
の場合には、上記の使用時に於ける無公害性は重
要な点である。 この様な点に立脚して最近注目されている光導
電材料にアモルフアスシリコン(以後Siと記す)
があり、例えば、独国公開第2746967号公報、同
第2855718号公報には電子写真用像形成部材とし
て、特開昭55−39404号公報には光電変換読取装
置への応用が記載されてある。 局乍ら、従来のa―Siで構成された光導電層を
有する光導電部材は、暗低抗値、光感度、光応答
性等の電気的、光学的、光導電的特性及び耐湿性
等の使用環境特性の点に於いて、更に改良される
可き点が存し、実用的な固体撮像装置や読取装
置、電子写真用像形成部材等には、生産性、量産
性をも加味して仲々有効に使用し得ないのが実情
である。 例えば、電子写真用像形成部材や固体撮像装置
に適用した場合に、その使用時に於いて残留電位
が残る場合が度々観測され、この様な種の光導電
部材は繰返し長時間使用し続けると、繰返し使用
による疲労の蓄積が起る。残像が生ずる所謂ゴー
スト現像を発する様になる等の不都合な点が少な
くなかつた。 更には例えば、本発明者等の多くの実験によれ
ば、電子写真用像形成部材の光導電層を構成する
材料としてのa―Siは、従来のSe、CdS、ZnO或
いはPVCzやTNF等のOPC(有機光導電部材)に
較べて、数多くの利点を有するが、従来の太陽電
池用として使用する為の特性が付与されたa―Si
から成る単層構成の光導電層を有する電子写真用
像形成部材の上記光導電層に静電像形成の為の帯
電処理を施しても暗減衰(dark decay)が著し
く速く、通常の電子写真法が仲々適用され難い
事、及び多湿雰囲気中に於いては、上記傾向が著
しく、場合によつては現像時間まで帯電々荷を全
く保持し得ない事がある等、解決され得る可き点
が存在している事が判明している。 従つて、a―Si材料そのものの特性改良が計ら
れる一方で光導電部材を設計する際に、所望の電
気的、光学的及び光導電的特性が得られる様に工
夫される必要がある。 本発明は上記の諸点に鑑み成されたもので、a
―Siに就て電子写真用像形成部材や固体撮像装
置、読取装置等に使用される光導電部材としての
適用性とその応用性という観点から総括的に鋭意
研究検討を続けた結果、シリコン原子を母体とし
水素原子を含有するアモルフアス材料、所謂水素
化アモルフアスシリコン(以後a―Si;Hと記
す)から成る光導電層と、該光導電層を支持する
支持体との間に特定の中間層を介在させる層構成
に設計されて作製された光導電部材は実用的に充
分使用し得るばかりでなく、従来の光導電部材と
較べてみても殆んどの点に於いて凌駕しているこ
と、殊に電子写真用の光導電部材として著しく優
れた特性を有していることを見出した点に基いて
いる。 本発明は電気的、光学的、光導電的特性が常時
安定していて、殆んど使用環境に制限を受けない
全環境型であり、耐光疲労に著しく長け、繰返し
使用に際しても劣化現象を起さず、残留電位が全
く又は殆んど観測されない光導電部材を提供する
ことを主たる目的とする。 本発明の別の目的は、光感度が高く、分光感度
領域も略々全可視光域を覆つていて、且つ光応答
性の速い光導電部材を提供することである。 本発明の他の目的は、電子写真用の像形成部材
として適用させた場合通常の電子写真法が極めて
有効に適用され得る程度に、静電像形成の為の帯
電処理の際の電荷保持能が充分あり、且つ多湿雰
囲気中でもその特性の低下が殆んど観測されない
優れた電子写真特性を有する光導電部材を提供す
ることである。 本発明の更に他の目的は、濃度が高く、ハーフ
トーンが鮮明に出て且つ解像度の高い、高品質画
像を得る事が容易に出来る電子写真用の光導電部
材を提供することである。 本発明の光導電部材は支持体と、シリコン原子
を母体とし、水素原子を含むアモルフアス材料で
構成されている光導電層と、これ等の間に設けら
れ、前記支持体側から前記光導電層中へのキヤリ
アの注入を阻止し且つ電磁波照射によつて前記光
導電層中に生じ前記支持体側に向つて移動するキ
ヤリアの前記光導電層側から前記支持体側への通
過を許す機能を有する中間層とを備えた光導電部
材に於いて、前記中間層がシリコン原子と窒素原
子とハロゲン原子とを構成要素とするアモルフア
ス材料で構成されており、30〜1000Åの層厚を有
することを特徴とする。 上記した様な層構成を取る様にして設計された
光導電部材は、前記した諸問題の総てを解決し
得、極めてすぐれた電気的、光学的、光導電的特
性及び使用環境特性を示す。 殊に、電子写真用像形成部材或いは固体撮像装
置として適用させた場合には帯電処理の際の電荷
保持能に長け、画像形成への残留電位の影響が全
くなく、多湿雰囲気中でもその電気的特性が安定
しており高感度で、高SN比を有するものであつ
て耐光疲労、繰返し使用性に著しく長け、更に電
子写真用像形部材の場合には濃度が高く、ハーフ
トーンが鮮明に出て、且つ解像度の高い、高品質
の可視画像を得る事が、出来る。 又、電子写真用像形成部材に適用させる場合、
高暗低抗のa―Si:Hは光感度が低く、逆に光感
度の高いa―Si:Hは暗低抗が108Ωcm前後と低
く、いずれの場合にも、従来の層構成の光導電層
のままでは電子写真用の像形成部材には適用され
なかつたのに対して、本発明の場合には、比較的
抵抗低(5×109Ωcm以上)のa―Si:H層でも
電子写真用の光導電層を構成することができるの
で、抵抗は比較的低いが高感度であるa―Si:H
も充分使用し得、a―Si:Hの特性面からの制約
が軽減され得る。 以下、図面に従つて、本発明の光導電部材に就
て詳細に説明する。 第1図は、本発明の光導電部材の基本的な構成
例を説明する為に模式的に示した模式的構成図で
ある。 第1図に示す光導電部材100は、光導電部材
用としての支持体101の上に、中間層102、
該中間層102に直接接触した状態に設けられて
いる光導電層103とで構成される層構造を有
し、本発明の最も基本的な例である。 支持体101としては、導電性でも電気性でも
電気絶縁性であつても良い。導電性支持体として
は、例えば、NiCr、ステンレス,Ae,Cr,Mo,
Au,Nb,Ta,V,Ti,Pt,Pd等の金属又はこ
れ等の合金が挙げられる。 電気絶縁性支持体としては、ポリエステル,ポ
リエチレン,ポリカーボネート,セルローズアセ
テート,ポリプロピレン,ポリ塩化ビニル,ポリ
塩化ビニリデン,ポリスチレン,ポリアミド等の
合成樹脂のフイルム又はシート,ガラス,セラミ
ツク,紙等が通常使用される。これ等の電気絶縁
性支持体は、好適には少なくともその一方の表面
を導電処理され、該導電処理された表面側に他の
層が設けられるが望ましい。 例えば、ガラスであれば、その表面がNiCr,
Ae,Cr,Mo,Au,Ir,Nb,Ta,V,Ti,Pt,
Pd,In2O3,SnO2,ITO(In2O3+SnO2)等の薄
膜を設けることによつて導電処理され、或いはポ
リエステルフイルム等の合成樹脂フイルムであれ
ば、NiCr,Ae,Ag,Pb,Zn,Ni,Au,Cr,
Mo,Ir,Nb,Ta,V,Ti,Pt等の金属で真空
蒸着,電子ビーム蒸着,スパツタリング等で処理
し、又は前記金属でラミネート処理して、その表
面が導電処理される。支持体の形状としては、円
筒状,ベルト状,板状等,任意の形状とし得、所
望によつて、その形状は決定されるが、例えば、
第1図の光導電部材100を電子写真用像形成部
材として使用するのであれば連続高速複写の場合
には、無端ベルト状又は円筒状とするのが望まし
い。支持体の厚さは、所望通りの光導電部材が形
成される様に適宜決定されるが、光導電部材とし
て可撓性が要求される場合には、支持体としての
機能が充分発揮される範囲内であれば可能な限り
薄くされる。而乍ら、この様な場合支持体の製造
上及び取扱い上、機械的強度等の点から、通常
は、10μ以上とされる。 中間層102は、シリコン原子及び窒素原子と
を母体とし、ハロゲン原子(Xと記す)を含む非
光導電性のアモルフアス材料〔a―(SixN1-x
:X1-yと略記する。但し0<x<1,0<y<
1〕で構成され、支持体101の側から光導電層
103中へのキヤリアの流入を効果的に阻止し且
つ電磁波の照射によつて光導電層103中に生
じ、支持体101の側に向つて移動するフオトキ
ヤリアの光導電層103の側から支持体101の
側への通過を容易に許す機能を有するものであ
る。 a―(SixN1-xy:X1-yで構成される中間層1
02の形成はグロー放電法、スパツターリング
法、イオンインプランテーシヨン法、イオンプレ
ーテイング法、エレクトロンビーム法等によつて
成される。これ等の製造法は、製造条件、設備資
本投下の負荷程度、製造規模、作製される光導電
部材に所望される特性等の要因によつて適宜選択
されて採用されるのが、所望する特性を有する光
導電部材を製造する為の作製条件の制御が比較的
容易である、シリコン原子と共に窒素原子及びハ
ロゲン原子を、作製する中間層中に導入するのが
容易に行える等の利点からグロー放電法或いはス
パツターリング法が好適に採用される。 更に、本発明に於いては、グロー放電法とスパ
ツターリング法とを同一装置系内で併用して中間
層102を形成しても良い。 グロー放電法によつて中間層102を形成する
にはa―(SixN1-xy:X1-y形成用の原料ガスを、
必要に応じて稀釈ガスと所定量の混合比で混合し
て、支持体101の設置してある真空堆積用の堆
積室に導入し、導入されたガスを、グロー放電を
生起させることでガスプラズマ化して前記支持体
101上にa―(SixN1-xy:X1-yを堆積させれ
ば良い。 本発明に於いて、a―(SixN1-xy:X1-y形成
用の原料ガスとしては、Si,N,Xの中の少なく
とも1つを構成原子とするガス状の物質又はガス
化し得る物質をガス化したものの中の大概のもの
が使用され得る。 Si,N,Xの中の1つとしてSiを構成原子とす
る原料ガスを使用する場合は、例えばSiを構成原
子とする原料ガスと、Nを構成原子とする原料ガ
スと、Xを構成原子とする原料ガスとを所望の混
合比で混合して使用するか、又は、Siを構成原子
とする原料ガスと、N及びXを構成原子とする原
料ガスとを、これも又所望の混合比で混合して使
用することが出来る。 又、別には、SiとXとを構成原子とする原料ガ
スにNを構成原子とする原料ガスを混合して使用
しても良い。 本発明に於いて、ハロゲン原子Xとして好適な
のはF,Cl,Br,Iであり、殊にF,Clが望ま
しいものである。 本発明に於いて、中間層102は、a―(Six
N1-xy:X1-yで構成されるものであるが、中間
層102には更に水素原子を含有させることが出
来る。 中間層102への水素原子の含有は、光導電層
103との連続層形成の際には原料ガス種の一部
共通化を計ることが出来るので生産コスト面の上
で好都合である。 本発明に於いて、中間層102を形成するのに
有効に使用される原料ガスと成り得る出発物質と
しては、常温常圧に於いてガス状態のもの又は容
易にガス化し得る物質を挙げることが出来る。 この様な中間層形成用の出発物質としては、例
えば、窒素、窒化物、弗素化窒素及びアジ化物等
の窒素化合物,ハロゲン単体,ハロゲン化水素,
ハロゲン間化合物,ハロゲン化硅素,ハロゲン置
換水素化硅素,水素化硅素等を挙げる事が出来
る。 具体的には、窒素(N2)窒素化合物としては
アンモニア(NH3),ヒドラジン(H2NNH2),
三弗化窒素(F3N),四弗化窒素(F4N2),アジ
化水素(HN3),アジ化アンモニウム(NH4N3
等、ハロゲン単体としては、フツ素,塩素,臭
素,ヨウ素のハロゲンガス,ハロゲン化水素とし
ては、FH,HI,HCl,HBr,ハロゲン間化合物
としては、BrF,ClF,ClF3,ClF5,BrF5
BrF3,IF7,IF5,ICl,IBr,ハロゲン化硅素と
してはSiF4,Si2F6,SiCl4,SiCl3Br,SiCl2Br2
SiClBr3,SiCl3I,SiBr4,ハロゲン置換水素化硅
素としては、SiH2F2,SiH2Cl2,SiHCl3
SiH3Cl,SiH3Br,SiH2Br2,SiHBr3,水素化硅
素としては、SiH4,Si2H6,Si3H8,Si4H10等の
シラン(Silane)類、等々を挙げることが出来
る。 これ等の中間層形成用の出発物質は、形成され
る中間層中に、所定の組成比でシリコン原子,窒
素原子及びハロゲン原子と必要に応じて水素原子
とが含有される様に、中間層形成の際に所望に従
つて選択されて使用される。 例えば、シリコン原子と水素原子との含有が容
易に成し得て且つ所望の特性の中間層が形成され
得るSiH4やSi2H6と窒素原子を含有させるものと
してのN2又はNH3とハロゲン原子を含有させる
ものとしてのSiF4,SiH2F2,SiHCl3,SiCl4
SiH2Cl2,或いはSiH3Cl等を所定の混合比でガス
状態で中間層形成用の装置系内に導入してグロー
放電を生起させることによつてa―SixN1-x
X:Hから成る中間層を形成することが出来る。 或いは、形成される中間層にシリコン原子とハ
ロゲン原子とを含有させることが出来るSiF4等と
窒素原子を含有させるものとしてのN2等を所定
の混合比で、必要に応じてHe,Ne,Ar等の稀
ガスと共に中間層形成用の装置系内に導入してグ
ロー放電を生起させて、a―SixN1-x:Fから成
る中間層を形成することも出来る。 スパツターリング法によつて中間層102を形
成するには、単結晶又は多結晶のSiウエーハー又
はSi3N4ウエーハー又はSiとSi3N4が混合されて
形成されたウエーハーをターゲツトとして、これ
等をハロゲンと必要に応じて水素を構成要素とし
て含む種々のガス雰囲気中でスパツターリングす
ることによつて行えば良い。 例えば、Siウエーハーをターゲツトとして使用
すれば、NとXを導入する為の原料ガスを、必要
に応じて稀釈ガスで稀釈して、スパツター用の堆
積室中に導入し、これ等のガスのガスプラズマを
形成して前記Siウエーハーをスパツターリングす
れば良い。 又、別には、SiとSi3N4とは別々のターゲツト
として、又はSiとSi3N4の混合して形成した一枚
のターゲツトを使用することによつて、少なくと
もハロゲン原子を含有するガス雰囲気中でスパツ
ターリングすることによつて成される。N及び
X,必要に応じてHの導入用の原料ガスとなる物
質としては先述したグロー放電の例で示した中間
層形成用の出発物質がスパツターリング法の場合
にも有効な物質として使用され得る。 本発明に於いて、中間層102をグロー放電法
又はスパツターリング法で形成する際に使用され
る稀釈ガスとしては、所謂・稀ガス、例えばHe,
Ne,Ar等が好適なものとして挙げることが出来
る。 本発明に於ける中間層102は、その要求され
る特性が所望通りに与えられる様に注意深く形成
される。 即ち、Si,N,及びX,必要に応じてHを構成
原子とする物質は、その作成条件によつて構造的
には結晶からアモルフアスまでの形態を取り、電
気物性的には、導電性から半導体性、絶縁性まで
の間の性質を、又光導電的性質から非光導電的性
質までの間の性質を、各々示すので、本発明に於
いては、非光導電性のa―(SixN1-xy:X1-y
形成される様に、その作成条件の選択が厳密に成
される。 本発明の中間層102を構成するa―(Six
N1-xy:X1-yは、中間層102の機能が、支持
体101側から光導電層103中へのキヤリアの
流入を阻止し、且つ光導電層103中で発生した
フオトキヤリアが移動して支持体101側に通過
するのを容易に許すことを果すものであることか
ら、電気絶縁性的挙動を示すものとして形成され
る。 又、光導電層103中で発生したフオトキヤリ
アが中間層102中を通過する際、その通過がス
ムーズに成される程度に、通過するキヤリアに対
する易動度(mobility)の値を有するものとして
a―(SixN1-xy:X1-yが作成条件の中の重要な
要素として、作成時の支持体温度を挙げる事が出
来る。 即ち、支持体101の表面にa―(SixN1-x
:X1-yからなる中間層102を形成する際、層
形成中の支持体温度は、形成される層の構造及び
特性を左右する重要な因子であつて、本発明に於
いては、目的とする特性を有するa―(SixN1-x
y:X1-yが所望通りに作成され得る様に層作成時
の支持体温度が厳密に制御される。 本発明に於ける、所望の目的が効果的に達成さ
れる為の中間層102を形成する際際の支持体温
度としては、中間層102の形成法に併せて適宜
最適範囲が選択されて、中間層102の形成が実
行されるが、通常の場合、100〜300℃、好適には
150〜250℃とされるのが望ましいものである。中
間層102の形成には、同一系内で中間層102
から光導電層103、更には必要に応じて光導電
層103上に形成される第3の層まで連続的に形
成する事が出来る。各層を構成する原子の組成比
の微妙な制御や層厚の制御が他の方法に較べて比
較的容易である事等の為に、グロー放電法やスパ
ツターリング法の採用が有利であるが、これ等の
層形成法で中間層102を形成する場合には、前
記の支持体温度と同様に層形成の際の放電パワー
が作成されるa―(SixN1-xy:X1-yの特性を左
右する重要な因子の1つである。 本発明に於ける目的が達成される為の特性を有
するa―(SixN1-xy:X1-yが生産性良く効果的
に作成される為の放電パワー条件としては、通常
10〜300W,好適には20〜100Wである。 堆積室内のガス圧はグロー放電法にて層形成を
行う場合に於いて通常0.01〜5Torr,好適には、
0.1〜0.5Torr程度に、スパツタリング法にて層形
成を行う場合に於いては、通常10-3〜5×
10-2Torr、好適には8×10-3〜3×10-2Torr程
度とされるのが望ましい。 本発明の光導電部材に於ける中間層102に含
有される窒素原子及びハロゲン原子の量は、中間
層102の作製条件と同様本発明の目的を達成す
る所望の特性が得られる中間層が形成される重要
な因子である。 本発明に於ける中間層102に含有される窒素
原子の量は、通常は30〜60atomic%,好適には
40〜60atomic%,とされるのが望ましいもので
ある。ハロゲン原子の含有量としては、通常の場
合1〜20atomic%,好適には2〜15atomic%と
されるのが望ましく、これ等の範囲にハロゲン含
有量がある場合に作成される光導電部材を実際面
に充分適用させ得るものである。必要に応じて含
有される水素原子の含有量としては、通常の場合
19atomic%以下、好適には13atomic%以下とさ
れるのが望ましいものである。即ち先のa―
(SixN1-xy:X1-yの表示で行えばxが通常は0.43
〜0.60,好適には0.49〜0.43,yが通常0.99〜
0.80,好適には0.98〜0.85である。 ハロゲン原子と水素原子の両方が含まれる場
合、先と同様のa―(SixN1-xy:(H+X)1-y
表示で行えば、この場合のx,yの数値範囲もa
―(SixN1-xy:X1-yの場合と、略々同様である。 本発明に於ける中間層102の層厚の数値範囲
は、本発明の目的を効果的に達成する為の重要な
因子の1つである。 中間層102の層厚が充分過ぎる程に薄いと、
支持体101の側からの光導電層103へのキヤ
リアの流入を阻止する働きが充分果し得なくな
り、又、充分過ぎる程以上に厚いと、光導電層1
03中に於いて生ずるフオトキヤリアの支持体1
01の側への通過する確率が極めて小さくなり、
従つて、いずれの場合にも、本発明の目的を効果
的に達成され得なくなる。 本発明の目的を効果的に達成する為の中間層1
02の層厚としては、通常の場合、30〜1000Å好
適には、50〜600Åである。 本発明に於いて、その目的を効果的に達成する
為に、中間層102上に積層される光導電層10
3は下記に示す半導体特性を有するa―Si:Hで
構成される。 p型a―Si:H…アクセプターのみを含むも
の。或いは、ドーナとアクセプターとの両方を
含み、アクセプターの濃度(Na)が高いもの。 p-型a―Si:H…のタイプに於いてアクセ
プターの濃度(Na)が低い所謂p型不純物を
ライトリードブしたもの。 n型a―Si:H…ドナーのみを含むもの。或
いはドナーのアクセプターの両方を含み、ドナ
ーの濃度(Nd)が高いもの。 n-型a―Si:H…のタイプに於いてドナー
の濃度(Nd)が低い、所謂n型不純物をライ
トリードープしたもの。 i型a―Si:H…NaNdOのもの又は、
NaNdのもの。 本発明に於いては、中間層102を設けること
によつて前記した様に光導電層103を構成する
a―Si:Hは、従来に較べて比較的低抵抗のもの
も使用され得るものであるが、一層良好な結果を
得る為には、形成される光導電層103の暗抵抗
が好適には5×109Ωcm以上、最適には1010Ωcm
以上となる様に光導電層103が形成されるのが
望ましいものである。 殊に、この暗抵抗値の数値条件は、作製された
光導電部材を電子写真用像形成部材や、低照度領
域で使用される高感度の読取装置や固体撮像装
置、或いは光電変換装置として使用する場合には
重要な要素である。 本発明に於ける光導電層部材の光導電層の層厚
としては、読取装置、固体撮像装置或いは電子写
真用像形成部材等の適用するものの目的に適合さ
せて所望に従つて適宜決定される。 本発明に於いては、光導電層の層厚としては、
光導電層の機能及び中間層の機能が各々有効に活
されて本発明の目的が効果的に達成される様に中
間層との層厚関係に於いて適宜所望に従つて決め
られるものであり、通常の場合、中間層の層厚に
対して数百〜数千倍以上の層厚とされるのが好ま
しいものである。 具体的な値としては、通常1〜100μ、好適に
は2〜50μの範囲とされるのが望ましい。 本発明に於いて、光導電層を、a―Si:Hで構
成された層とするには、これ等の層を形成する
際、次の様な方法によつてHを層中に含有させ
る。 ここに於いて、「層中にHが含有されている」
ということは、「Hが、Siと結合した状態」「Hが
イオン化して層中に取り込まれている状態」又は
「H2として層中に取り込まれている状態」の何れ
かの又はこれ等の複合されている状態を意味す
る。 光導電層へのHの含有法としては、例えば層を
形成する際、堆積装置系内にSiH4,Si2H6
Si3H8,Si4H10等のシラン(Silane)類等のシリ
コン化合物の形で導入し、グロー放電分解法によ
つて、それらの化合物を分解して、層の成長に併
せて含有される。 このグロー放電法によつて、光導電層を形成す
る場合には、a―Siを形成する出発物質がSiH4
Si2H6,Si3H8,Si4H10等の水素化硅素ガス分解
して層が形成される際、Hは自動的に層中に含有
される。 反応スパツターリング法による場合にはHeや
Ar等の不活性ガス又はこれ等のガスをベースと
した混合ガス雰囲気中でSiをターゲートとしてス
パツターリングを行なう際にH2ガスを導入して
やるか又はSiH4,Si2H6,Si3H8,Si4H10等の水
素化硅素ガス、或いは、不純物のドーピングも兼
ねてB2H6,PH3等のガスを導入してやれば良い。 本発明者等の知見によれば、a―Si:Hで構成
される光導電層のHの含有量は、形成された光導
電部材が実際面に於いて充分適用され得るか否か
を左右する大きな要因の一つであつて極めて重要
であることが判明している。 本発明に於いて、形成される光導電部材が実際
面に充分適用させ得る為には、光導電層中に含有
されるHの量は通常の場合1〜40atomic%、好
適には5〜30atomic%とされるのが望ましい。 層中に含有されるHの量を制御するには、例え
ば堆積支持体温度又は/及びHを含有させる為に
使用される出発物質の堆積装置系内へ導入する
量、放電々力等を制御してやれば良い。 光導電層をn型又はp型とするには、グロー放
電法や反応スパツターリング法等による層形成の
際に、n型不純物又は、p型不純物、或いは両不
純物を形成される層中にその量を制御し乍らドー
ピングしてやる事によつて成される。 光導電層中にドーピングされる不純物として
は、光導電層をp型にするには、周期律表第族
Aの元素、例えば、B,Al,Ga,In,Tl等が好
適なものとして挙げられ、n型にする場合には、
周期律表第族Aの元素、例えばN,P,As,
Sb,Bi等が好適なものとして挙げられる。これ
等の不純物は、層中に含有される量がppmオーダ
ーであるので、光導電層を構成する主物質程その
公害性に注意を払う必要はないが出来る限り公害
性のないものを使用するのが好ましい。この様な
観点からすれば、形成される層の電気的・光学的
特性を加味して、例えば、B,Ga,P,Sb等が
最適である。この他に、例えば、熱拡散やインプ
ランテーシヨンによつてLi等がインターステイシ
アルドーピングされることでn型に制御すること
も可能である。 光導電層中にドーピングされる不純物の量は、
所望される電気的・光学的特性に応じて適宜決定
されるが、周期律表第族Aの不純物の場合に
は、通常10-6〜10-3atomic%、好適には10-5
10-4atomic%、周期律表第族Aの場合には通
常10-8〜10-3atomic%、好適には10-8
10-4atomic%とされるのが望ましい。 第2図には、本発明の光導電部材の別の実施態
様例の構成を説明する為の模式的構成図が示され
る。 第2図に示される光導部材200は、光導電層
203に上に、中間層202と同様の機能を有す
る上部層205を設けた以外は、第1図に示す光
導電部材100と同様の層構造を有するものであ
る。 即ち、光導電部材200は、支持体201の上
に中間層102と同様の材料で同様の機能を有す
る様に形成された中間層202と、a―Si:Hで
構成される光導電層203と、該光導電層203
上に設けられ自由表面204を有する上部層20
5を具備している。 上部層205は、例えば光導電部材200を自
由表面204に帯電処理を施して電荷像を形成す
る場合の様な使い方をする際、自由表面204に
保持される可き電荷が光導電層203中に流入す
るのを阻止し且つ、電磁波の照射を受けた際に
は、光導電層203中に発生したフオトキヤリア
と、電磁波の照射を受けた部分の帯電々荷とがリ
コンビネーシヨンを起す様に、フオトキヤリアの
通過又は帯電々荷の通過を容易に許す機能を有す
る。 上部層205は、中間層202と同様の特性を
有し、必要に応じて水素原子を含むa―(Six
N1-xy:X1-yで構成される他a―SiaC1-a,a―
(SiaC1-a)b:H1-b,a―(SiaC1-a)b:(H+
X)1-b,a―SicO1-c,a―(SicO1-c)d:H1-d
a―(SicO1-c)d:(H+X)1-d,a―SieN1-e
の光導電層を構成する母体原子であるシリコン原
子と窒素原子又は酸素原子とで構成されるか又
は、これ等の原子を母体として水素原子(H)又は/
及びロゲン原子(X)を含むアモルフアス材料、
Al3O3,等の無機絶縁性材料,ポリエステル,ポ
リパラキシリレン,ポリウレタン等の有機絶縁性
材料で構成することも出来る。 而乍ら、上部層205を構成する材料として
は、生産性、量産性、及び形成された層の電気的
及び使用環境的安定性等の点から、中間層202
と同様の特性を有するa―(SixN1-xy:X1-y
構成するか又は、a―(SiaC1-a)b:X1-b,a
―(SicN1-c)d:H1-d,a―(SieN1-e)f:
X1-f,a―(SigC1-g)h:H1-h或いはハロゲン
原子及び水素原子を含まないa―Six C1-x,a
―SizN1-zで構成するのが望ましい。上部層20
5を構成する材料としては、上記に挙げた物質の
他、好適なものとしては、シリコン原子と、C,
N,Oの中の少なくとも2つの原子を母体とし、
ハロゲン原子か又はハロゲン原子と水素原子とを
含むアモルフアス材料を挙げることが出来る。ハ
ロゲン原子としては、F,Cl,Br等が挙げられ
るが、熱的安定性の点から上記アモルフアス材料
の中Fを含有するものが有効である。 上部層205を構成する材料の選択及びその層
厚の決定は、上部層205側より光導電層203
の感受する電磁波を照射する様にして光導電部材
200を使用する場合には、照射される電磁波が
光導電層203に充分量到達して、効率良く、フ
オトキヤリアの発生を引起させ得る様に注意深く
成される。 上部層205は、中間層202と同様の手法
で、例えばグロー放電法や反応スパツターリング
法で形成することが出来る。 上層部205形成の際に使用される出発物質と
しては、中間層を形成するのに使用される前記の
物質が使用される他、炭素原子導入用に出発物質
として、例えば炭素数1〜4の飽和炭化水素、炭
素数1〜4のエチレン系炭化水素、炭素数2〜3
のアセチレン系炭化水素等を挙げることが出来
る。 具体的には、飽和炭化水素としてはメタン
(CH4),エタン(C2H6),プロパン(C3H8),n
―ブタン(n―C4H10),ペンタンC5H12),エチ
レン系炭化水素としては、エチレン(C2H4),プ
ロピレン(C3H6),ブテン―1(C4H8),プテン
―2(C4H8),イソブチレン(C4H8),ペンテン
(C5H10),アセチレン系炭化水素としては、アセ
チレン(C2H2),メチルアセチレン(C4H4),ブ
チン(C4H6)等が挙げられる。 酸素原子を上部層205中に含有させる為の出
発物質としては、例えば、酸素(O2),オゾン
(O3),一酸化炭素(CO),二酸化炭素(CO2),
一酸化窒素(NO),二酸化窒素(NO2),一酸化
二窒素(N2O)等を挙げることが出来る。 これ等の他に、上部層205形成用の出発物質
の1つとして、例えばCCl4,CHF3,CH2F2
CH3F,CH3Cl,CH3Br,CH3l,C2H3Cl等のハ
ロゲン置換パラフイン系炭化水素、SF4,SF6
のフツ素化硫黄化合物Si(CH34,Si(C2H54等の
ケイ化アルキルやSiCl(CH33,SiCl2(CH32
SiCl3CH3等のハロゲン含有ケイ化アルキル等の
シランの誘導体も有効なものとして挙げることが
出来る。 これ等の上部層205形成用の出発物質は、所
定の原子が構成原子として形成される上部層20
5中に含まれる様に、層形成の際に適宜選択され
て使用される。 例えば、グロー放電法を採用するのであれば、
Si(CH34,SiCl2(CH32等の単独ガス又はSiH4
―N2O系,SiH4―O2(―Ar)系,SiH4―NO2系,
SiH4―O2―N2系,SiCl4―CO2―H2系,SiCl4
NO―H2系,SiH4―NH3系、SiCl4―NH4系,
SiH4―N2系,SiH4―NH3―NO系,Si(CH34
SiH4系,SiCl2(CH32―SiH4系等の混合ガスを
上部層205形成用の出発物質として使用するこ
とが出来る。 本発明に於ける上部層205の層厚としては、
前述した機能が充分発揮される様に、層を構成す
る材料、層形成条件等によつて所望に従つて適宜
決定される。 本発明に於ける上部層205の層厚としては、
通常の場合、30〜1000Å好適には50〜600Åとさ
れるのが望ましいものである。 本発明の光導電部材を電子写真用像形成部材と
して使用する場合にある種の電子写真プロセスを
採用するのであれば、第1図又は第2図に示され
る層構成の光導電材の自由表面上に更に表面被覆
層を設ける必要がある。この場合の表面被覆層
は、例えば、特公昭42−23910号公報同43−24748
号公報に記載されているNP方式の様な電子写真
プロセスを適用するのであれば、電気的絶縁性で
あつて、帯電処理を受けた際の静電荷保持能が充
分あつて、ある程度以上の厚みがあることが要求
されるが、例えば、カールソンプロセスの如き電
子写真プロセスを適用するのであれば、静電像形
成後の明部の電位は非常に小さいことが望ましい
ので表面被覆層の厚さとしては非常に薄いことが
要求される。表面被覆層は、その所望される電気
的特性を満足するのに加えて、光導電層又は上部
層に化学的・物理的に悪影響を与えないこと、光
導電層又は上部層との電気的接触及び接着性、更
には耐湿性、耐摩耗性、クリーニング性等を考慮
して形成される。 表面被覆層の形成材料として有効に使用される
ものとして、その代表的なのは、ポリエチレンテ
レフタレート、ポリカーボネート、ポリプロピレ
ン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
ビニルアルコール、ポリスチレン、ポリアミド、
ポリ四弗化エチレン、ポリ三弗化塩化エチレン、
ポリ弗化ビニル、ポリ弗化ビニリデン、六弗化プ
ロピレン―四弗化エチレンコポリマー、三弗化エ
チレン―弗化ビニリデンコポリマー、ポリブデ
ン、ポリビニルブチラール、ポリウレタン、ポリ
パラキシリレン等の有機絶縁体、シリコン窒化
物、シリコン酸化物等の無機絶縁体等が挙げられ
る。これ等の合成樹脂又はセルロース誘導体はフ
イルム状とされて光導電層又は上部層の上に貼合
されても良く、又、それ等の塗布液を形成して、
光導電層又は上部層上のに塗布し、層形成しても
良い。表面被覆層の層厚は、所望される特性に応
じて、又、使用される材質によつて適宜決定され
るが、通常の場合、0.5〜70μ程度とされる。殊に
表面被覆層が先述した保護層としての機能が要求
される場合には、通常の場合、10μ以下とされ、
逆に電気的絶縁層としての機能が要求される場合
には、通常の場合10μ以上とされる。而乍ら、こ
の保護層と電気絶縁層とを差別する層厚は、使用
材料及び適用される電子写真プロセス、設計され
る像形成部材の構造によつて、変動するもので、
先の10μという値は絶対的なものではない。 又、この表面被覆層は、反射防止層としての役
目も荷わせれば、その機能が一層拡大されて効果
的となる。 実施例 1 完全にシールドされたクリーンルーム中に設置
された第3図に示す装置を用い、以下の如き操作
によつて電子写真用像形成部材を作製した。 表面が清浄にされた0.5mm厚10cm角のモリブデ
ン板(基板)309を支持台302上に静置され
たグロー放電堆積室301内の所定位置にある固
定部材303に堅固に固定した。基板309は、
固定部材303内の加熱ヒーター308によつて
±0.5℃の精度で加熱される。温度は、熱電対
(アルメル―クロメル)によつて基板裏面を直接
測定されるようになされた。次いで系内の全バル
ブが閉じられていることを確認してからメインバ
ルブ310を全開して、室301内が排気され、
約5×10-6torrの真空度にした。その後ヒーター
308の入力電圧を上昇させ、モリブデン基板温
度を検知しながら入力電圧を変化させ、200℃の
一定値になるまで安定させた。 その後、補助バルブ340、次いで流出バルブ
325,326,327,329及び流入バルブ
320―2,321,322,324を全開し、
フローメーター316,317,318,320
―1内も十分脱気真空状態にされた。補助バルブ
340、バルブ325,326,327,32
9,320―2,321,322,324を閉じ
た後、H2を10vol%含むSiF4ガス(以後SiF4/H2
と略す。純度99.99%)ボンベ311のバルブ3
30、N2ガス(純度99.999%)ボンベ312の
バルブ331を開け、出口圧ゲージ335,33
6の圧を1Kg/cm3に調整し、流入バルブ320―
2,321を徐々に開けてフローメーター31
6,317内へSiF4/H2ガス、N2ガスを流入さ
せた。引続いて、流出バルブ325,326を
徐々に開け、次いで補助バルブ340を徐々に開
けた。このときSiF4/H2ガス流量とN2ガス流量
比が1:90になるように流入バルブ320―2,
321を調整した。次にピラニーゲージ341の
読みを注視しながら補助バルブ340の開口を調
整し、室301内が1×10-2torrになるまで補助
バルブ340を開けた。室301内圧が安定して
から、メインバルブ310を徐々に閉じ、ピラニ
ゲージー341の指示が0.5torrになるまで開口
を絞つた。ガス流入が安定し内圧が安定するのを
確認した。続いて高周波電源342のスイツチを
ON状態にして、誘導コイル343に、13.56MHz
の高周波電力を投入しコイル部(室上部)の室3
01内にグロー放電を発生させ、60Wの入力電力
とした。上記条件で基板上に層を堆積させる為に
1分間条件を保つて中間層を形成した。その後、
高周波電源342をoff状態とし、グロー放電を
中止させた状態で、流出バルブ325,326を
閉じ、次にH2で50volppmに希釈されたB2H6
ス(以後B2H6/H2)と略す。)ボンベ313の
バルブ332、H2で10vol%の希釈されたSiH4
ス(以後SiH4/H2と略す。)ボンベ315のバル
ブ334を開け、出口圧ゲージ337,339の
圧を1Kg/cm3に調整し、流入バルブ322,32
4を徐々に開けてフローメーター318,320
―1内へB2H6/H2ガス、SiH4/H2ガスを流入
させた。引続いて流出バルブ327,329を
徐々に開けた。このときB2H6/H2ガス流量と
SiH4/H2ガス流量比が1:50になるように流入
バルブ322,324を調整した。次に中間層の
形成時と同様にピラニーゲージ341の指示が
0.5Torrになる様に補助バルブ340、メインバ
ルブ310の開口を調整し、安定化させた。 引き続き、再び高周波電源342をON状態に
して、グロー放電を再開させた。そのときの入力
電力を10Wにし以前より減少させた。こうしてグ
ロー放電を更に3時間持続させて光導電層を形成
した後、加熱ヒーター308をoff状態にし、高
周波電源342もoff状態とし、基板温度が100℃
になるのを待つてから流出バルブ327,329
及び流入バルブ320―2,321,322,3
24を閉じ、メインバルブ310を全開にして、
室301内を10-3torr以下にした後、メインバル
ブ310を閉じ、室301内をリークバルブ34
4によつて大気圧として基板を取り出した。この
場合、形成された層の全厚は約9μであつた。こ
うして得られた像形成部材を、帯電露光実験装置
に設置し、6.0KVで0.2sec間コロナ帯電を行な
い、直ちに光像を照射した。光像は、タングステ
ンランプ光源を用い、0.8lux・secの光量を透過
型のテストチヤートを通して照射させた。 その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)を部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、5.0KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、階調
再現性のよい鮮明な高濃度の画像が得られた。 次に上記像形成部材に就て、帯電露光実験装置
で5.5KVで0.2sec間のコロナ帯電を行ない、直
ちに0.8lux・secの光量で画像露光を行ない、そ
の後直ちに荷電性の現像剤を部材表面にカスケ
ードし、次に転写紙上に転写・定着したところ極
めて鮮明な画像が得られた。 この結果と先の結果から本実施例で得られた電
子写真用像形成部材は帯電極性に対する依存性が
なく、両極性像形成部材の特性を具備しているこ
とが判つた。 実施例 2 モリブデン基板上に中間層を形成する際のグロ
ー放電保持時間を、下記の第1表に示す様に種々
変化させた以外は実施例1と全く同様の条件及び
手順によつて試料No.〜で示される像形成部材
を作成し、実施例1と全く同様の帯電露光実験装
置に設置して同様の画像形成を行なつたところ下
記の第1表に示す如き結果を得た。 第1表に示される結果から判る様に、本発明の
目的を達成するには中間層の膜厚を30Å〜1000Å
の範囲で形成する必要がある。
The present invention relates to light (here, light in a broad sense, including ultraviolet rays, visible rays, infrared rays, X-rays, γ-rays, etc.)
It relates to photoconductive members sensitive to electromagnetic waves such as. As photoconductive materials constituting photoconductive layers in solid-state imaging devices, electrophotographic image forming members in the image forming field, document reading devices, etc., highly sensitive,
It has a high signal-to-noise ratio [photocurrent (Ip)/dark current (Id)], has the spectral characteristics of the electromagnetic waves to be irradiated, has good photoresponsiveness, and has a desired dark resistance value.
Solid-state imaging devices are required to have characteristics such as being non-polluting to the human body during use and being able to easily remove afterimages within a predetermined time. Particularly in the case of an electrophotographic image forming member incorporated into an electrophotographic apparatus used in an office as a business machine, the pollution-free nature during use is an important point. Based on these points, amorphous silicon (hereinafter referred to as Si) is a photoconductive material that has recently attracted attention.
For example, German Publication No. 2746967 and German Publication No. 2855718 describe its application as an image forming member for electrophotography, and JP-A-55-39404 describes its application to a photoelectric conversion/reading device. . However, conventional photoconductive members having a photoconductive layer composed of a-Si have poor electrical, optical, and photoconductive properties such as dark resistivity, photosensitivity, and photoresponsiveness, as well as moisture resistance. There are points that can be further improved in terms of the usage environment characteristics of The reality is that it cannot be used effectively. For example, when applied to electrophotographic image forming members or solid-state imaging devices, it is often observed that residual potential remains during use, and when such photoconductive members are used repeatedly for a long time, Accumulation of fatigue occurs due to repeated use. There have been many disadvantages such as so-called ghost development, which causes afterimages. Furthermore, for example, according to many experiments conducted by the present inventors, a-Si as a material constituting the photoconductive layer of an electrophotographic image forming member is superior to conventional Se, CdS, ZnO, PVCz, TNF, etc. Although it has many advantages compared to OPC (organic photoconductive material), a-Si has been given characteristics for use in conventional solar cells.
Even when the photoconductive layer of an electrophotographic image forming member having a single-layer photoconductive layer is subjected to charging treatment for electrostatic image formation, dark decay is extremely fast, compared to ordinary electrophotography. The above-mentioned tendency is remarkable in a humid atmosphere, and in some cases, it may not be possible to retain the electrostatic charge at all until the development time.There are some points that can be solved. is known to exist. Therefore, while efforts are being made to improve the properties of the a-Si material itself, it is necessary to take measures to obtain desired electrical, optical, and photoconductive properties when designing photoconductive members. The present invention has been made in view of the above points, and includes a
-As a result of intensive research and study on Si from the viewpoint of its applicability as a photoconductive material used in electrophotographic image forming members, solid-state imaging devices, reading devices, etc., we found that silicon atoms A specific intermediate layer is formed between a photoconductive layer made of an amorphous material containing hydrogen atoms, so-called hydrogenated amorphous silicon (hereinafter referred to as a-Si; H), and a support that supports the photoconductive layer. A photoconductive member designed and produced with a layer structure with intervening layers is not only usable for practical use, but also superior in most respects when compared with conventional photoconductive members. This is based on the discovery that it has particularly excellent properties as a photoconductive member for electrophotography. The present invention has stable electrical, optical, and photoconductive properties at all times, is suitable for all environments with almost no restrictions on usage environments, and has excellent resistance to light fatigue and does not cause deterioration even after repeated use. The main object of the present invention is to provide a photoconductive member in which no or almost no residual potential is observed. Another object of the present invention is to provide a photoconductive member that has high photosensitivity, has a spectral sensitivity range that covers substantially the entire visible light range, and has fast photoresponsiveness. Another object of the present invention is to have charge retention properties during charging processing for electrostatic image formation to such an extent that ordinary electrophotography can be applied very effectively when applied as an image forming member for electrophotography. It is an object of the present invention to provide a photoconductive member which has excellent electrophotographic properties with sufficient electrophotographic properties and whose properties hardly deteriorate even in a humid atmosphere. Still another object of the present invention is to provide a photoconductive member for electrophotography that can easily produce high-quality images with high density, clear halftones, and high resolution. The photoconductive member of the present invention is provided between a support, a photoconductive layer made of an amorphous material having silicon atoms as a matrix and containing hydrogen atoms, and is provided between the support and the photoconductive layer from the support side. an intermediate layer having a function of preventing carriers from being injected into the photoconductive layer and allowing carriers generated in the photoconductive layer and moving toward the support by electromagnetic wave irradiation to pass from the photoconductive layer side to the support side; The photoconductive member is characterized in that the intermediate layer is made of an amorphous material whose constituent elements are silicon atoms, nitrogen atoms, and halogen atoms, and has a layer thickness of 30 to 1000 Å. . A photoconductive member designed to have the above-mentioned layer structure can solve all of the above-mentioned problems, and exhibits extremely excellent electrical, optical, photoconductive properties, and use environment characteristics. . In particular, when applied as an image forming member for electrophotography or a solid-state imaging device, it has excellent charge retention ability during charging processing, has no influence of residual potential on image formation, and has excellent electrical properties even in a humid atmosphere. It is stable, has high sensitivity, has a high signal-to-noise ratio, and has excellent resistance to light fatigue and repeated use. Furthermore, in the case of electrophotographic image forming members, it has high density and clear halftones. , and it is possible to obtain high-quality visible images with high resolution. Moreover, when applied to an electrophotographic image forming member,
a-Si:H, which has high dark resistance and low resistance, has low photosensitivity, and conversely, a-Si:H, which has high photosensitivity, has a low dark resistance of around 10 8 Ωcm, and in both cases, the conventional layer structure Whereas the photoconductive layer could not be used as an electrophotographic image forming member, in the case of the present invention, an a-Si:H layer with relatively low resistance (5×10 9 Ωcm or more) was used. However, a-Si:H, which has relatively low resistance but high sensitivity, can form a photoconductive layer for electrophotography.
can also be used satisfactorily, and restrictions from the characteristics of a-Si:H can be alleviated. Hereinafter, the photoconductive member of the present invention will be explained in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram schematically shown to explain a basic configuration example of a photoconductive member of the present invention. The photoconductive member 100 shown in FIG. 1 has an intermediate layer 102,
This layer structure includes a photoconductive layer 103 provided in direct contact with the intermediate layer 102, and is the most basic example of the present invention. The support 101 may be conductive, electrical, or electrically insulating. Examples of the conductive support include NiCr, stainless steel, Ae, Cr, Mo,
Examples include metals such as Au, Nb, Ta, V, Ti, Pt, and Pd, and alloys thereof. As the electrically insulating support, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used. . Preferably, at least one surface of these electrically insulating supports is conductively treated, and another layer is preferably provided on the conductively treated surface side. For example, if it is glass, its surface may be NiCr,
Ae, Cr, Mo, Au, Ir, Nb, Ta, V, Ti, Pt,
If it is conductive treated by providing a thin film of Pd, In 2 O 3 , SnO 2 , ITO (In 2 O 3 +SnO 2 ), or if it is a synthetic resin film such as polyester film, NiCr, Ae, Ag, Pb, Zn, Ni, Au, Cr,
The surface is treated with a metal such as Mo, Ir, Nb, Ta, V, Ti, or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal, so that the surface thereof is conductive. The shape of the support may be any shape such as cylindrical, belt-like, plate-like, etc., and the shape is determined as desired, but for example,
If the photoconductive member 100 of FIG. 1 is used as an electrophotographic image forming member, it is preferably in the form of an endless belt or a cylinder for continuous high-speed copying. The thickness of the support is determined appropriately so that a desired photoconductive member is formed, but if flexibility is required as a photoconductive member, the support can sufficiently function as a support. It is made as thin as possible within this range. However, in such cases, the thickness is usually set to 10μ or more in view of manufacturing and handling of the support, mechanical strength, etc. The intermediate layer 102 is made of a non-photoconductive amorphous material [a-(Si x N 1-x ) containing silicon atoms and nitrogen atoms as a matrix and halogen atoms (denoted as X).
y : Abbreviated as X1 -y . However, 0<x<1, 0<y<
1], which effectively prevents carriers from flowing into the photoconductive layer 103 from the support 101 side, and which is generated in the photoconductive layer 103 by electromagnetic wave irradiation and directed toward the support 101 side. It has a function of easily allowing the photo carrier moving along the substrate to pass from the side of the photoconductive layer 103 to the side of the support 101. a-(Si x N 1-x ) y : Intermediate layer 1 composed of X 1-y
02 is formed by a glow discharge method, a sputtering method, an ion implantation method, an ion plating method, an electron beam method, or the like. These manufacturing methods are appropriately selected and adopted depending on factors such as manufacturing conditions, amount of equipment capital investment, manufacturing scale, and characteristics desired for the photoconductive member to be manufactured. Glow discharge has advantages such as it is relatively easy to control the manufacturing conditions for manufacturing a photoconductive member having a A sputtering method or a sputtering method is preferably employed. Furthermore, in the present invention, the intermediate layer 102 may be formed by using a glow discharge method and a sputtering method in the same apparatus system. To form the intermediate layer 102 by the glow discharge method, the raw material gas for forming a-(Si x N 1-x ) y :X 1-y is
If necessary, the gas is mixed with a dilution gas at a predetermined mixing ratio and introduced into a deposition chamber for vacuum deposition in which the support 101 is installed, and the introduced gas is caused to generate a gas plasma by causing a glow discharge. It is sufficient to deposit a-(Si x N 1-x ) y :X 1-y on the support 101 by converting it into In the present invention, the raw material gas for forming a-(Si x N 1-x ) y :X 1-y is a gaseous substance containing at least one of Si, N, and X as a constituent atom. Alternatively, most gasified substances can be used. When using a raw material gas containing Si as one of Si, N, and X, for example, a raw material gas containing Si as a constituent atom, a raw material gas containing N as a constituent atom, and a raw material gas containing Alternatively, a raw material gas containing Si and a raw material gas containing N and X may be mixed at a desired mixing ratio. Can be used by mixing. Alternatively, a raw material gas containing Si and X as constituent atoms may be mixed with a raw material gas containing N as constituent atoms. In the present invention, preferred halogen atoms X are F, Cl, Br, and I, with F and Cl being particularly preferred. In the present invention, the intermediate layer 102 is a-(Si x
N 1-x ) y :Although it is composed of X 1-y , the intermediate layer 102 can further contain hydrogen atoms. The inclusion of hydrogen atoms in the intermediate layer 102 is advantageous in terms of production costs since it is possible to share some of the raw material gas types when forming a continuous layer with the photoconductive layer 103. In the present invention, starting materials that can be used as raw material gases that can be effectively used to form the intermediate layer 102 include those in a gaseous state or substances that can be easily gasified at normal temperature and normal pressure. I can do it. Examples of starting materials for forming such an intermediate layer include nitrogen, nitrides, nitrogen compounds such as fluorinated nitrogen and azides, simple halogens, hydrogen halides,
Examples include interhalogen compounds, silicon halides, halogen-substituted silicon hydrides, and silicon hydrides. Specifically, nitrogen (N 2 ) nitrogen compounds include ammonia (NH 3 ), hydrazine (H 2 NNH 2 ),
Nitrogen trifluoride (F 3 N), nitrogen tetrafluoride (F 4 N 2 ), hydrogen azide (HN 3 ), ammonium azide (NH 4 N 3 )
etc., halogen gases include fluorine, chlorine, bromine, and iodine, hydrogen halides include FH, HI, HCl, HBr, and interhalogen compounds include BrF, ClF, ClF 3 , ClF 5 , BrF. Five ,
BrF 3 , IF 7 , IF 5 , ICl, IBr, silicon halides include SiF 4 , Si 2 F 6 , SiCl 4 , SiCl 3 Br, SiCl 2 Br 2 ,
SiClBr 3 , SiCl 3 I, SiBr 4 , halogen-substituted silicon hydrides include SiH 2 F 2 , SiH 2 Cl 2 , SiHCl 3 ,
SiH 3 Cl, SiH 3 Br, SiH 2 Br 2 , SiHBr 3 , silicon hydride includes silanes such as SiH 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 , etc. I can do it. These starting materials for forming the intermediate layer are selected such that the intermediate layer to be formed contains silicon atoms, nitrogen atoms, halogen atoms, and hydrogen atoms as necessary in a predetermined composition ratio. They are selected and used as desired during formation. For example, SiH 4 or Si 2 H 6 can easily contain silicon atoms and hydrogen atoms and form an intermediate layer with desired characteristics, and N 2 or NH 3 can contain nitrogen atoms. SiF 4 , SiH 2 F 2 , SiHCl 3 , SiCl 4 as substances containing halogen atoms,
By introducing SiH 2 Cl 2 or SiH 3 Cl, etc. in a gaseous state at a predetermined mixing ratio into the intermediate layer forming equipment system and causing a glow discharge, a-Si x N 1-x :
An intermediate layer consisting of X:H can be formed. Alternatively, SiF 4 , etc., which can contain silicon atoms and halogen atoms, and N 2 , etc., which can contain nitrogen atoms, at a predetermined mixing ratio, and if necessary, He, Ne, It is also possible to form an intermediate layer made of a-Si x N 1-x :F by introducing it together with a rare gas such as Ar into an apparatus system for forming an intermediate layer to generate a glow discharge. To form the intermediate layer 102 by the sputtering method, a single crystal or polycrystalline Si wafer, a Si 3 N 4 wafer, or a wafer formed by mixing Si and Si 3 N 4 is used as a target. etc., by sputtering in various gas atmospheres containing halogen and optionally hydrogen as constituent elements. For example, if a Si wafer is used as a target, the raw material gas for introducing N and The Si wafer may be sputtered by forming plasma. Alternatively, by using Si and Si 3 N 4 as separate targets or by using a single target formed by mixing Si and Si 3 N 4 , a gas containing at least halogen atoms can be produced. This is done by sputtering in an atmosphere. As the raw material gas for introducing N, X, and H if necessary, the starting material for forming the intermediate layer shown in the glow discharge example mentioned above is also used as an effective material in the sputtering method. can be done. In the present invention, a so-called rare gas, such as He,
Preferable examples include Ne and Ar. The intermediate layer 102 in the present invention is carefully formed to provide the desired properties. In other words, substances whose constituent atoms are Si, N, X, and optionally H have a structure ranging from crystalline to amorphous depending on the conditions for their creation, and electrical properties ranging from conductivity to amorphous. In the present invention, non-photoconductive a-(Si x N 1-x ) y : The conditions for creating it are strictly selected so that X 1-y is formed. a-(Si x
N 1-x ) y :X 1-y indicates that the function of the intermediate layer 102 is to prevent carriers from flowing into the photoconductive layer 103 from the support 101 side, and to prevent photocarriers generated in the photoconductive layer 103. It is formed to exhibit electrically insulating behavior because it allows the material to easily move and pass through to the support body 101 side. Further, when the photocarrier generated in the photoconductive layer 103 passes through the intermediate layer 102, a has a mobility value for the passing carrier to such an extent that the photocarrier passes through the intermediate layer 102 smoothly. -(Si x N 1-x ) y :X 1-y is an important factor in the production conditions, including the temperature of the support during production. That is, a-(Si x N 1-x ) is formed on the surface of the support 101.
When forming the intermediate layer 102 consisting of y:X1 -y , the temperature of the support during layer formation is an important factor that influences the structure and properties of the formed layer. a-(Si x N 1-x ) having the desired properties
The temperature of the support during layer formation is strictly controlled so that y : X 1-y can be formed as desired. In the present invention, in order to effectively achieve the desired purpose, the temperature of the support when forming the intermediate layer 102 is appropriately selected in an optimal range in accordance with the method of forming the intermediate layer 102. Formation of the intermediate layer 102 is carried out, typically at 100-300°C, preferably
The temperature is preferably 150 to 250°C. For forming the intermediate layer 102, the intermediate layer 102 is formed in the same system.
The photoconductive layer 103 can be formed continuously from the photoconductive layer 103 to the third layer formed on the photoconductive layer 103 if necessary. Glow discharge method and sputtering method are advantageous because delicate control of the composition ratio of atoms constituting each layer and control of layer thickness are relatively easy compared to other methods. , when forming the intermediate layer 102 using these layer forming methods, the discharge power during layer formation is created in the same manner as the support temperature described above . It is one of the important factors that influences the characteristics of 1-y . The discharge power conditions for effectively producing a-(Si x N 1 - x ) y :
It is 10-300W, preferably 20-100W. The gas pressure in the deposition chamber is usually 0.01 to 5 Torr, preferably 0.01 to 5 Torr when layer formation is performed using the glow discharge method.
When layer formation is performed by sputtering method to about 0.1 to 0.5 Torr, it is usually 10 -3 to 5×
10 -2 Torr, preferably about 8 x 10 -3 to 3 x 10 -2 Torr. The amounts of nitrogen atoms and halogen atoms contained in the intermediate layer 102 in the photoconductive member of the present invention are the same as the manufacturing conditions of the intermediate layer 102, so that an intermediate layer can be obtained that achieves the desired characteristics to achieve the object of the present invention. This is an important factor. The amount of nitrogen atoms contained in the intermediate layer 102 in the present invention is usually 30 to 60 atomic%, preferably
A desirable value is 40 to 60 atomic%. The content of halogen atoms is usually 1 to 20 atomic%, preferably 2 to 15 atomic%, and photoconductive members produced when the halogen content is in this range are actually used. It can be applied to many surfaces. The content of hydrogen atoms that are included as necessary is usually
It is desirable that the content be 19 atomic % or less, preferably 13 atomic % or less. That is, the previous a-
(Si x N 1-x ) y : If expressed as X 1-y , x is usually 0.43
~0.60, preferably 0.49~0.43, y usually 0.99~
0.80, preferably 0.98 to 0.85. If both halogen atoms and hydrogen atoms are included, the numerical range of x and y in this case can also be calculated by using the same expression a-(Si x N 1-x ) y : (H+X) 1- y as before. a
-(Si x N 1-x ) y : Almost the same as the case of X 1-y . The numerical range of the layer thickness of the intermediate layer 102 in the present invention is one of the important factors for effectively achieving the object of the present invention. If the layer thickness of the intermediate layer 102 is too thin,
If the thickness is too thick, the photoconductive layer 1 will not be able to sufficiently prevent carriers from flowing into the photoconductive layer 103 from the side of the support 101.
Photocarrier support 1 produced in 03
The probability of passing to the 01 side becomes extremely small,
Therefore, in either case, the object of the present invention cannot be effectively achieved. Intermediate layer 1 for effectively achieving the object of the present invention
The layer thickness of 02 is usually 30 to 1000 Å, preferably 50 to 600 Å. In the present invention, in order to effectively achieve the purpose, a photoconductive layer 10 laminated on an intermediate layer 102 is used.
3 is composed of a-Si:H having the semiconductor properties shown below. p-type a-Si:H... Contains only acceptor. Or one that contains both donor and acceptor and has a high concentration of acceptor (Na). p - type a-Si: H...type with a write-read bleed of the so-called p-type impurity, which has a low acceptor concentration (Na). n-type a-Si:H...Contains only a donor. Or one that contains both donor and acceptor and has a high donor concentration (Nd). n - type a-Si:H...type with low donor concentration (Nd), lightly doped with so-called n-type impurities. i-type a-Si:H...NaNdO or,
NaNd stuff. In the present invention, by providing the intermediate layer 102, a-Si:H that constitutes the photoconductive layer 103 as described above can be used with a relatively low resistance compared to the conventional one. However, in order to obtain better results, the dark resistance of the photoconductive layer 103 to be formed is preferably 5×10 9 Ωcm or more, most preferably 10 10 Ωcm.
It is desirable that the photoconductive layer 103 be formed as described above. In particular, this numerical condition for the dark resistance value is required when the manufactured photoconductive member is used as an image forming member for electrophotography, a highly sensitive reading device or solid-state imaging device used in a low-light region, or a photoelectric conversion device. This is an important element when doing so. The layer thickness of the photoconductive layer of the photoconductive layer member in the present invention is appropriately determined according to the purpose of the application, such as a reading device, a solid-state imaging device, or an electrophotographic image forming member. . In the present invention, the layer thickness of the photoconductive layer is as follows:
The thickness relationship between the photoconductive layer and the intermediate layer can be appropriately determined as desired so that the functions of the photoconductive layer and the intermediate layer can be effectively utilized and the objects of the present invention can be effectively achieved. In normal cases, the layer thickness is preferably several hundred to several thousand times or more than the thickness of the intermediate layer. A specific value is usually 1 to 100μ, preferably 2 to 50μ. In the present invention, in order to make the photoconductive layer a layer composed of a-Si:H, when forming these layers, H is contained in the layer by the following method. . Here, "H is contained in the layer"
This means that "a state in which H is combined with Si", "a state in which H is ionized and incorporated into the layer", or "a state in which H is incorporated into the layer as H 2 " or the like. It means a state of being a combination of. As a method for incorporating H into the photoconductive layer, for example, when forming the layer, SiH 4 , Si 2 H 6 ,
It is introduced in the form of silicon compounds such as silanes such as Si 3 H 8 and Si 4 H 10 , and these compounds are decomposed by a glow discharge decomposition method to remove the contained substances as the layer grows. Ru. When forming a photoconductive layer by this glow discharge method, the starting materials for forming a-Si are SiH 4 ,
When a layer is formed by decomposing silicon hydride gas such as Si 2 H 6 , Si 3 H 8 , Si 4 H 10, etc., H is automatically contained in the layer. When using the reaction sputtering method, He or
H 2 gas is introduced when sputtering is performed using Si as a target in an inert gas such as Ar or a mixed gas atmosphere based on these gases, or SiH 4 , Si 2 H 6 , Si 3 H Silicon hydride gas such as 8 , Si 4 H 10 , or a gas such as B 2 H 6 or PH 3 which also serves as impurity doping may be introduced. According to the findings of the present inventors, the H content of the photoconductive layer composed of a-Si:H influences whether the formed photoconductive member can be sufficiently applied in practice. It has been found that this is one of the major factors and is extremely important. In the present invention, in order for the photoconductive member to be formed to be sufficiently applicable to practical applications, the amount of H contained in the photoconductive layer is usually 1 to 40 atomic%, preferably 5 to 30 atomic%. It is preferable to set it as %. The amount of H contained in the layer can be controlled, for example, by controlling the temperature of the deposition support, the amount of starting material used to incorporate H into the deposition system, the discharge force, etc. Just do it. In order to make the photoconductive layer n-type or p-type, an n-type impurity, a p-type impurity, or both impurities are added to the formed layer during layer formation using a glow discharge method, a reactive sputtering method, etc. This is achieved by doping while controlling the amount. As impurities to be doped into the photoconductive layer, elements of group A of the periodic table, such as B, Al, Ga, In, Tl, etc., are preferably used to make the photoconductive layer p-type. and when making it n-type,
Elements of group A of the periodic table, such as N, P, As,
Preferable examples include Sb and Bi. Since the amount of these impurities contained in the layer is on the order of ppm, it is not necessary to pay as much attention to their pollution properties as the main materials constituting the photoconductive layer, but use materials that are as non-polluting as possible. is preferable. From this point of view, B, Ga, P, Sb, etc. are optimal, taking into consideration the electrical and optical characteristics of the layer to be formed. In addition, it is also possible to control the material to be n-type by, for example, interstitial doping with Li or the like by thermal diffusion or implantation. The amount of impurity doped into the photoconductive layer is
It is determined as appropriate depending on the desired electrical and optical properties, but in the case of impurities in Group A of the periodic table, it is usually 10 -6 to 10 -3 atomic%, preferably 10 -5 to 10 -3 atomic%.
10 -4 atomic%, usually 10 -8 to 10 -3 atomic% in the case of group A of the periodic table, preferably 10 -8 to
It is desirable to set it to 10 -4 atomic%. FIG. 2 shows a schematic configuration diagram for explaining the configuration of another embodiment of the photoconductive member of the present invention. The light guide member 200 shown in FIG. 2 has the same layers as the photoconductive member 100 shown in FIG. It has a structure. That is, the photoconductive member 200 includes an intermediate layer 202 formed on a support 201 using the same material as the intermediate layer 102 and having the same function, and a photoconductive layer 203 composed of a-Si:H. and the photoconductive layer 203
a top layer 20 provided thereon and having a free surface 204;
It is equipped with 5. When the upper layer 205 is used, for example, when the free surface 204 of the photoconductive member 200 is subjected to charging treatment to form a charge image, the charge that can be held on the free surface 204 is transferred to the photoconductive layer 203. When the photoconductive layer 203 is irradiated with electromagnetic waves, the photocarriers generated in the photoconductive layer 203 and the electrostatic charges in the portions irradiated with the electromagnetic waves are recombined. In addition, it has the function of easily allowing the passage of photo carriers or charged charges. The upper layer 205 has the same characteristics as the intermediate layer 202, and optionally contains a-(Si x
N 1-x ) y : Composed of X 1-y and a-Si a C 1-a , a-
(Si a C 1-a )b:H 1-b ,a-(Si a C 1-a )b:(H+
X) 1-b , a-Si c O 1-c , a-(Si c O 1-c ) d: H 1-d ,
a-(Si c O 1-c ) d: (H+X) 1-d , a-Si e N 1-e , etc. Composed of a silicon atom, which is the host atom, and a nitrogen atom or an oxygen atom or hydrogen atoms (H) or / using these atoms as parent atoms.
and an amorphous material containing a rogen atom (X),
It can also be composed of an inorganic insulating material such as Al 3 O 3 or an organic insulating material such as polyester, polyparaxylylene, or polyurethane. However, the material constituting the upper layer 205 is selected from the middle layer 202 in terms of productivity, mass production, and electrical and usage environmental stability of the formed layer.
or a-(Si a C 1-a ) b : X 1 - b , a with the same characteristics as
―(Si c N 1-c ) d: H 1-d , a―(Si e N 1-e ) f:
X 1-f , a-(Si g C 1-g )h: H 1-h or a-Si x C 1-x , a that does not contain a halogen atom or a hydrogen atom
- It is desirable to consist of Si z N 1-z . Upper layer 20
In addition to the substances listed above, suitable materials for forming 5 include silicon atoms, C,
At least two atoms among N and O are used as a parent body,
Examples include amorphous materials containing halogen atoms or halogen atoms and hydrogen atoms. Examples of the halogen atom include F, Cl, Br, etc. Among the above amorphous materials, those containing F are effective from the viewpoint of thermal stability. The selection of the material constituting the upper layer 205 and the determination of its layer thickness are carried out from the upper layer 205 side to the photoconductive layer 203.
When the photoconductive member 200 is used in such a way as to irradiate electromagnetic waves that are sensitive to done carefully. The upper layer 205 can be formed using the same method as the intermediate layer 202, such as a glow discharge method or a reactive sputtering method. As starting materials used in forming the upper layer 205, in addition to the above-mentioned materials used for forming the intermediate layer, starting materials for introducing carbon atoms include, for example, carbon atoms having 1 to 4 carbon atoms. Saturated hydrocarbon, ethylene hydrocarbon having 1 to 4 carbon atoms, 2 to 3 carbon atoms
Examples include acetylene hydrocarbons and the like. Specifically, saturated hydrocarbons include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), n
-butane (n-C 4 H 10 ), pentane (C 5 H 12 ), ethylene hydrocarbons include ethylene (C 2 H 4 ), propylene (C 3 H 6 ), butene-1 (C 4 H 8 ) , putene-2 (C 4 H 8 ), isobutylene (C 4 H 8 ), pentene (C 5 H 10 ), acetylene hydrocarbons include acetylene (C 2 H 2 ), methylacetylene (C 4 H 4 ). , butyne (C 4 H 6 ), and the like. Examples of starting materials for containing oxygen atoms in the upper layer 205 include oxygen (O 2 ), ozone (O 3 ), carbon monoxide (CO), carbon dioxide (CO 2 ),
Examples include nitric oxide (NO), nitrogen dioxide (NO 2 ), and dinitrogen monoxide (N 2 O). In addition to these, as one of the starting materials for forming the upper layer 205, for example, CCl 4 , CHF 3 , CH 2 F 2 ,
Halogen-substituted paraffinic hydrocarbons such as CH 3 F, CH 3 Cl, CH 3 Br, CH 3 l, C 2 H 3 Cl, fluorinated sulfur compounds such as SF 4 , SF 6 , Si(CH 3 ) 4 , Si Alkyl silicides such as (C 2 H 5 ) 4 , SiCl (CH 3 ) 3 , SiCl 2 (CH 3 ) 2 ,
Derivatives of silanes such as halogen-containing alkyl silicides such as SiCl 3 CH 3 may also be mentioned as useful. These starting materials for forming the upper layer 205 are used to form the upper layer 205 in which predetermined atoms are formed as constituent atoms.
5, they are appropriately selected and used during layer formation. For example, if you use the glow discharge method,
Single gas such as Si(CH 3 ) 4 , SiCl 2 (CH 3 ) 2 or SiH 4
-N 2 O system, SiH 4 -O 2 (-Ar) system, SiH 4 -NO 2 system,
SiH 4 ―O 2 ―N 2 system, SiCl 4 ―CO 2 ―H 2 system, SiCl 4
NO―H 2 system, SiH 4 -NH 3 system, SiCl 4 -NH 4 system,
SiH 4 ―N 2 system, SiH 4 ―NH 3 ―NO system, Si(CH 3 ) 4
Mixed gases such as SiH 4 series, SiCl 2 (CH 3 ) 2 -SiH 4 series, etc. can be used as a starting material for forming the upper layer 205 . The layer thickness of the upper layer 205 in the present invention is as follows:
In order to fully exhibit the above-mentioned functions, it is determined as desired depending on the material constituting the layer, the layer formation conditions, etc. The layer thickness of the upper layer 205 in the present invention is as follows:
In normal cases, the thickness is preferably 30 to 1000 Å, preferably 50 to 600 Å. If a certain type of electrophotographic process is employed when the photoconductive member of the present invention is used as an electrophotographic imaging member, the free surface of the photoconductive member in the layer configuration shown in FIG. 1 or FIG. It is necessary to further provide a surface coating layer. In this case, the surface coating layer is, for example, disclosed in Japanese Patent Publication No. 42-23910, No. 43-24748.
If an electrophotographic process such as the NP method described in the publication is to be applied, it must be electrically insulating, have sufficient ability to retain static charge when subjected to charging treatment, and be thicker than a certain level. However, if an electrophotographic process such as the Carlson process is applied, it is desirable that the potential in the bright area after electrostatic image formation is very small, so the thickness of the surface coating layer should be is required to be very thin. In addition to satisfying its desired electrical properties, the surface coating layer must not have any adverse chemical or physical effects on the photoconductive layer or the upper layer, and must not have electrical contact with the photoconductive layer or the upper layer. It is formed in consideration of adhesion, moisture resistance, abrasion resistance, cleanability, etc. Typical materials effectively used for forming the surface coating layer include polyethylene terephthalate, polycarbonate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polystyrene, polyamide,
Polytetrafluoroethylene, polytrifluorochloroethylene,
Organic insulators such as polyvinyl fluoride, polyvinylidene fluoride, propylene hexafluoride-ethylene tetrafluoride copolymer, ethylene trifluoride-vinylidene fluoride copolymer, polybutene, polyvinyl butyral, polyurethane, polyparaxylylene, silicon nitride and inorganic insulators such as silicon oxide. These synthetic resins or cellulose derivatives may be made into a film and laminated onto the photoconductive layer or the upper layer, or a coating solution may be formed,
It may be coated on the photoconductive layer or the upper layer to form a layer. The thickness of the surface coating layer is appropriately determined depending on the desired characteristics and the material used, but is usually about 0.5 to 70 μm. In particular, when the surface coating layer is required to function as the above-mentioned protective layer, it is usually 10μ or less,
On the other hand, when a function as an electrically insulating layer is required, the thickness is usually set to 10μ or more. However, the layer thickness differentiating between the protective layer and the electrically insulating layer varies depending on the materials used, the applied electrophotographic process, and the designed structure of the imaging member.
The above value of 10μ is not an absolute value. Furthermore, if this surface coating layer also serves as an antireflection layer, its function will be further expanded and it will become more effective. Example 1 Using the apparatus shown in FIG. 3 installed in a completely shielded clean room, an electrophotographic image forming member was produced by the following operations. A 0.5 mm thick, 10 cm square molybdenum plate (substrate) 309 whose surface was cleaned was firmly fixed to a fixing member 303 at a predetermined position in a glow discharge deposition chamber 301 placed on a support stand 302 . The substrate 309 is
It is heated with an accuracy of ±0.5° C. by a heater 308 inside the fixed member 303. Temperature was measured directly on the backside of the substrate by a thermocouple (alumel-chromel). Next, after confirming that all valves in the system are closed, the main valve 310 is fully opened to exhaust the inside of the chamber 301.
The degree of vacuum was set at approximately 5×10 -6 torr. Thereafter, the input voltage to the heater 308 was increased, and the input voltage was varied while detecting the temperature of the molybdenum substrate until it stabilized at a constant value of 200°C. After that, fully open the auxiliary valve 340, then the outflow valves 325, 326, 327, 329 and the inflow valves 320-2, 321, 322, 324,
Flow meter 316, 317, 318, 320
-1 was also sufficiently degassed and vacuumed. Auxiliary valve 340, valves 325, 326, 327, 32
After closing 9,320-2,321,322,324, SiF 4 gas containing 10 vol% H 2 (hereinafter referred to as SiF 4 /H 2
It is abbreviated as Purity 99.99%) Valve 3 of cylinder 311
30. Open the valve 331 of the N2 gas (99.999% purity) cylinder 312, and check the outlet pressure gauges 335, 33.
Adjust the pressure of 6 to 1Kg/cm 3 and open the inflow valve 320-
Gradually open 2,321 and check the flow meter 31.
SiF 4 /H 2 gas and N 2 gas were flowed into 6,317. Subsequently, the outflow valves 325 and 326 were gradually opened, and then the auxiliary valve 340 was gradually opened. At this time, the inflow valve 320-2 ,
321 was adjusted. Next, the opening of the auxiliary valve 340 was adjusted while observing the reading on the Pirani gauge 341, and the auxiliary valve 340 was opened until the inside of the chamber 301 became 1×10 −2 torr. After the internal pressure of the chamber 301 became stable, the main valve 310 was gradually closed and the opening was throttled until the Pirani gauge 341 indicated 0.5 torr. It was confirmed that the gas inflow was stable and the internal pressure was stable. Next, turn on the high frequency power supply 342.
Turn it ON and connect the induction coil 343 to 13.56MHz.
high-frequency power is applied to chamber 3 of the coil section (upper chamber).
A glow discharge was generated in 01, and the input power was 60W. In order to deposit a layer on the substrate under the above conditions, the conditions were maintained for 1 minute to form an intermediate layer. after that,
With the high frequency power supply 342 turned off and glow discharge stopped, the outflow valves 325 and 326 are closed, and then B 2 H 6 gas diluted to 50 volppm with H 2 (hereinafter referred to as B 2 H 6 /H 2 ) It is abbreviated as ) Open the valve 332 of the cylinder 313 and the valve 334 of the SiH 4 gas (hereinafter abbreviated as SiH 4 /H 2 ) diluted with 10 vol% H 2 cylinder 315, and set the pressure of the outlet pressure gauges 337 and 339 to 1 Kg/cm. 3 , inlet valve 322, 32
4 gradually open the flow meters 318 and 320.
-B 2 H 6 /H 2 gas and SiH 4 /H 2 gas were flowed into the chamber. Subsequently, the outflow valves 327, 329 were gradually opened. At this time, B 2 H 6 /H 2 gas flow rate and
The inflow valves 322 and 324 were adjusted so that the SiH 4 /H 2 gas flow rate ratio was 1:50. Next, the instructions on the Pirani gauge 341 are as same as when forming the intermediate layer.
The openings of the auxiliary valve 340 and main valve 310 were adjusted to stabilize the pressure to 0.5 Torr. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was reduced to 10W compared to before. After continuing the glow discharge for another 3 hours to form a photoconductive layer, the heating heater 308 is turned off, the high frequency power supply 342 is also turned off, and the substrate temperature reaches 100°C.
Wait until the outflow valves 327, 329
and inflow valve 320-2, 321, 322, 3
24 and fully open the main valve 310.
After reducing the inside of the chamber 301 to 10 -3 torr or less, the main valve 310 is closed, and the inside of the chamber 301 is closed by the leak valve 34.
4 to bring the pressure to atmospheric pressure and take out the substrate. In this case, the total thickness of the layer formed was approximately 9μ. The image forming member thus obtained was placed in a charging exposure experimental device, corona charged at 6.0 KV for 0.2 seconds, and immediately irradiated with a light image. The optical image was created using a tungsten lamp light source, and a light intensity of 0.8 lux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a charged developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Next, the image forming member was corona charged at 5.5 KV for 0.2 seconds using a charging exposure experiment device, and image exposure was immediately performed at a light intensity of 0.8 lux・sec, and then a charging developer was immediately applied to the surface of the member. When the image was transferred and fixed onto transfer paper, an extremely clear image was obtained. From this result and the previous results, it was found that the electrophotographic image forming member obtained in this example had no dependence on charge polarity and had the characteristics of a bipolar image forming member. Example 2 Sample No. An image forming member shown in . . . . was prepared, and when it was installed in the same electrostatic exposure experimental apparatus as in Example 1 and the same image formation was performed, the results shown in Table 1 below were obtained. As can be seen from the results shown in Table 1, in order to achieve the purpose of the present invention, the thickness of the intermediate layer is 30 Å to 1000 Å.
It is necessary to form within the range of .

【表】 ◎:優、○:良、△:実用上使用し得る
、×:不可、中間層の膜堆積速
度:1Å/sec
実施例 3 モリブデン基板上に中間層を形成する際に
SiF4/H2ガス流量とN2ガス流量比を下記の第2
表に示す様に種々変化させた以外は実施例1と全
く同様の条件及び手順によつて試料No.〜で示
される像形成部材を作成し、実施例1と全く同様
の帯電露光実験装置に設置して同様の画像形成を
行なつたところ、下記の第2表に示す如き結果を
得た。試料〜に関して、オージエ電子分光分
析法により分析したところ、第3表に示す如き結
果を得た。第2、3表の結果から本発明の目的を
達成するには中間層におけるSiとNの組成比Xを
0.43〜0.60の範囲内で形成する必要がある。
[Table] ◎: Excellent, ○: Good, △: Practically usable, ×: Not possible, intermediate layer film deposition rate
Degree: 1Å/sec
Example 3 When forming an intermediate layer on a molybdenum substrate
The SiF 4 /H 2 gas flow rate and N 2 gas flow rate ratio are
Image forming members indicated by sample numbers ~ were prepared under the same conditions and procedures as in Example 1, except for making various changes as shown in the table, and were placed in the same electrostatic exposure experimental apparatus as in Example 1. When the same image formation was carried out using the same apparatus, the results shown in Table 2 below were obtained. Samples ~ were analyzed by Auger electron spectroscopy, and the results shown in Table 3 were obtained. From the results in Tables 2 and 3, in order to achieve the purpose of the present invention, the composition ratio X of Si and N in the intermediate layer is
It must be formed within the range of 0.43 to 0.60.

【表】【table】

【表】 実施例 4 実施例1と同様にモリブデン基板を設置し続い
て、実施例1と同様の操作によつてグロー放電堆
積室301内を5×10-6Torrの真空となし、基
板温度は200℃に保たれた後実施例1と同様の操
作によつてSiF4,N2,SiH4のガス流入系を5×
10-6torrの真空となし、その後補助バルブ340
及び各流出バルブ325,326,329各流入
バルブ320―2,321,324を閉じた後、
H2を10vol%含むSiF4/H2ガスボンベ311のバ
ルブ330,N2ガスボンベ312のバルブ33
1を開け、出口圧ゲージ335,336の圧を1
Kg/cm2に調整し、流入バルブ320―2,321
を徐々に開けてフローメーター316,317内
へSiF4/H2ガスN2ガスを流入させた。引続い
て、流出バルブ325,326を徐々に開け、次
いで補助バルブ340を徐々に開けた。このとき
SiF4/H2ガス流量とN2ガス流量比が1:90にな
るように流入バルブ320―2,321を調整し
た。次にピラニーゲージ341の読みを注視しな
がら補助バルブ340の開口を調整し、室301
内が1×10-2Torrになるまで補助バルブ340
を開けた。室301内圧が安定してから、メイン
バルブ310を徐々に閉じ、ピラニーゲージ34
1の指示が0.5Torrになるまで開口を絞つた。ガ
ス流入が安定し室内圧が一定となり、基板温度が
200℃に安定してから、実施例1と同様に高周波
電源342をON状態として、60Wの入力電力で
グロー放電を開始させ、1分間同条件を保つて基
板上に中間層を形成した後、高周波電源342を
off状態とし、グロー放電を、中止させた状態で
流出バルブ325,326,322を閉じ、次に
H2で10vol%に希釈されたSiH4/H2ガスボンベ
315のバルブ334を開け、出口圧ゲージ33
9の圧を1Kg/cm2に調整し流入バルブ324を
徐々に開けてフローメーター320―1内へ
SiH4/H2ガスを流入させた。引き続いて流出バ
ルブ329を徐々に開けた。次に中間層の形成時
と同様にピラニーゲージ341の指示が0.5Torr
になる様に補助バルブ340、メインバルブ31
0の開口を同整し安定化させた。 引き続き、再び高周波電源342をON状態に
して、グロー放電を再開させた。そのときの入力
電力を10Wにし、以前により減少させた。 こうしてグロー放電を更に5時間持続させて光
導電層を形成した後、加熱ヒーター308をoff
状態にし、高周波電源342もoff状態とし、基
板温度が100℃になるのを待つてから流出バルブ
329及び流入バルブ320―2,321,32
4を閉じ、メインバルブ310を全開にして、室
301内を10-5torr以下にした後、メインバルブ
310を閉じ室301内をリークバルブ344に
よつて大気圧として基板を取り出した。この場
合、形成された層の全厚は約15μであつた。この
像形成部材に就て、実施例1と同様の条件及び手
順で転写紙上に画像を形成したところコロナ放
電を行なつて画像形成した方がコロナ放電を行
なつて画像形成したよりもその画質が優れてお
り、極めて鮮明であつた。この結果より本実施例
で得られた感光体には帯電機能の依存性が認めら
れた。 実施例 5 実施例1と同様な条件及び手順によつてモルブ
デン基板上に1分間の中間層の形成を行なつた
後、高周波電源342をoff状態とし、グロー放
電を中止させた状態で流出バルブ325,326
を閉じ、次にH2で25vol ppmに希釈されたPH3
ガス(以後PH3/H2と略す。)ボンベ314のバ
ルブ333,H2で10vol%に希釈されたSiH4
H2ボンベ315のバルブ334を開け出口圧ゲ
ージ338,339の圧を1Kg/cm2に調整し流入
バルブ323,324を徐々に開けてフローメー
ター319,320―1内へPH3/H2ガス、
SiH4/H2ガスを流入させた。引き続いて流出バ
ルブ328,329を徐々に開けた。このとき
PH3/H2ガス流量とSiH4/H2ガス流量比が1:
50になる様に流入バルブ323,324を調整し
た。 次に中間層の形成時と同様にピラニーゲージ3
41の指示が0.5torrになる様に補助バルブ34
0,メインバルブ310の開口を調整し安定化さ
せた。 引き続き、再び高周波電源342をon状態に
して、グロー放電を再開させた。そのときの入力
電力を10Wにした。こうしてグロー放電を更に4
時間持続させて光導電層を形成した後、加熱ヒー
ター308をoff状態にし、高周波電源342も
off状態とし、基板温度が100℃になるのを待つて
から流出バルブ328,329及び流入バルブ3
20―2,321,323,324を閉じ、メイ
ンバルブ310を全開にして、室301内を
10-5torr以下にした後、メインバルブ310を閉
じ室301内をリークバルブ344によつて大気
圧として基板を取り出した。この場合、形成され
た層の全厚は約11μであつた。こうして得られた
像形成部材を、実施例1と同様の条件及び手順で
転写紙上に画像を形成したところコロナ放電を
行なつて画像形成した方が、コロナ放電を行な
つて画像形成したよりもその画質が優れており極
めて鮮明であつた。この結果より本実施例で得ら
れた感光体には帯電極性の依存性が認められた。 実施例 6 モリブデン基板上に中間層を形成した後、引き
続いて光導電層を形成する際B2H6/H2ガス流量
をSiH4/H2ガス流量の1/10になるようにした以
外は実施例1と同様な条件及び手順によつて中間
層、光導電層をモリブデン基板上に形成した。こ
のようにして得られた像形成部材を実施例1と同
様の条件及び手順で転写紙上に画像を形成したと
ころコロナ放電を行なつて画像形成した方が、
コロナ放電を行なつて画像形成したよりもその
画質が優れており極めて鮮明であつた。この結果
より本実施例で得られた感光体には帯電極性の依
存性が認められた。而し、その帯電極性依存性は
実施例4,5で得られた像形成部材とは逆であつ
た。 実施例 7 実施例1と同様な条件及び手順によつて、モリ
ブデン基板上に1分間の中間層の形成、5時間の
光導電層の形成を行なつた後、高周波電源342
をoff状態としてグロー放電を中止させた状態で
流出バルブ327,329を閉じ、そして再び流
出バルブ325,326を開き、中間層の形成時
と同様の条件になるようにした。引き続き再び高
周波電源をon状態にしてグロー放電を再開させ
た。そのときの入力電力も中間層形成時と同様の
60Wとした。こうしてグロー放電を2分間持続さ
せて光導電層上に上部層を形成した後加熱ヒータ
ー308をorr状態にし、高周波電源342もoff
状態とし、基板温度が100℃になるのを待つてか
ら流出バルブ325,326及び流入バルブ32
0―2,321,322,324を閉じ、メイン
バルブ310を全開にして、室301内を
10-5torr以下にした後、メインバルブ310を閉
じ室301内をリークバルブ344によつて大気
圧として基板を取り出した。こうして得られた像
形成部材を実施例1と同様の帯電露光実験装置に
設置し、6.0KVで0.2sec間コロナ帯電を行な
い、直ちに光像を照射した。光像は、タングステ
ンランプ光源を用い、1.0lux・secの光量を透過
型のテストチヤートを通して照射させた。 その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)を部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、5.0KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、階調
再現性のよい鮮明な高濃度の画像が得られた。 実施例 8 像形成部材の形成に先立つて第3図に示される
装置のN2ガスボンベ312をH2で10vol%に希釈
されたNH3/H2ガス(純度99.999%)ボンベに
変えた。次に表面が清浄にされた、コーニング
7059ガラス(1mm厚、4×4cm、明面研磨したも
の)表面の一方に、電子ビーム蒸着法によつて
ITOを1000Å蒸着したものを、実施例1と同様の
装置(第3図)の固定部材303上にITO蒸着面
を上面にして設置した。以上のようにN2ガスボ
ンベを、NH3/H2ガスボンベに、モリブチン基
板を、ITO基板に変えた以外は、実施例1と同様
の操作並びに手順によつて中間層、光導電層を形
成して、像形成部材を得た。こうして得られた像
形成部材を、帯電露光実験装置に設置し、
6.0KVで0.2sec間のコロナ帯電を行ない、直ちに
光像を照射した。光像は、タングステンランプ光
源を用い、1.0lux.secの光量を透過型のテストチ
ヤートを通して照射させた。 その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)の部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、5.0KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、階調
再現性のよい鮮明な高濃度の画像が得られた。 又、コロナ帯電極性をに、現像剤極性をに
変えても同様に鮮明で良好な画像が実施例1と同
様に得られた。 実施例 9 H2で10vol%に希釈されたSiH4ボンベ315を
希釈されていないSi2H6ボンベに、H2で50vol
ppmに希釈されたB2H6ボンベ313を、H2
500vol ppmに希釈されたB2H6ボンベに変えた以
外は実施例1と同様の条件及び手順によつて中間
層、光導電層をモリブデン基板上に形成した後堆
積室301外に取り出し実施例1と同様に帯電露
光の実験装置に静置して画像形成の試験をした所
5.5KVのコロナ放電、荷電性現像剤の組み合
せの場合に、極めて良質の、コントラストの高い
トナー画像が転写紙上に得られた。 実施例 10 第4図に示す装置を用い、以下の如き操作によ
つてモリブデン基板上に中間層を形成した。 表面が清浄にされた0.5mm厚10cm角のモリブデ
ン板(基板)402を堆積室401内の所定位置
にある固定部材406に堅固に固定した。基板4
02は固定部材406内の加熱ヒーター407に
よつて±0.5℃の精度で加熱される。温度は熱電
対(アルメルークロメル)によつて基板裏面を直
接測定されるようになされた。次いで系内の全バ
ルブが閉じられていることを確認してからメイン
バルブ427を全開して室401内が排気され、
約5×10-6torrの真空度にした。その後ヒーター
407の入力電圧を上昇させモリブデン基板温度
を検知しながら入力電圧を変化させ200℃の一定
値になるまで安定させた。 その後、補助バルブ425、次いで流出バルブ
421,424及び流入バルブ417,420を
全開し、フローメーター432,435内も十分
脱気真空状態にされた。補助バルブ425,バル
ブ417,420,421,424を閉じた後、
F3Nガス(純度99.999%)ボンベ412のバルブ
416及びArガスボンベ409のバルブ413
を開け、出口圧ゲージ428,431の圧を1
Kg/cm2に調整し、流入バルブ417,420を
徐々に開けてフローメーター432,435内へ
各々F3Nガス、Arガスを流入させた。引き続い
て、流出バルブ421,424を徐々に開け、次
いで補助バルブ425を徐々に開けた。この時
F3Nガス流量比が1:1になるように流入バルブ
417,420を調整した。次にピラニーゲージ
436の読みを注視しながら補助バルブ425の
開口を調整し、室401内が5×10-4torrになる
まで補助バルブ425を開けた。室401内圧が
安定してからメインバルブ427を徐々に閉じピ
ラニーゲージ436の指示が1×10-2torrになる
まで開口を絞つた。シヤツター操作棒403を、
操作して、シヤツター408を開として、フロー
メーター432,435が安定するのを確認して
から、高周波電源437をon状態にし、多結晶
高純度シリコンターゲツト、404および固体部
材406間に13.56MHz、100Wの交流電力が入力
された。この条件で安定した放電を続ける様にマ
ツチングを取りながら層を形成した。この様にし
て2分間放電を続けて100Å厚のa―SixN1-x
Fを形成した。その後高周波電源437をoff状
態にし、放電を一旦中止させた。引き続いて流出
バルブ421,424を閉じメインバルブ427
を全開して室401内のガスを抜き、5×
10-7torrまで真空にした。次にH2で10vol%に希
釈したSiH4/H2ガス(純度99.999%)ボンベ4
10のバルブ414、H2で50vol ppmに希釈し
たB2H6/H2ガスボンベ411のバルブ415を
開け、出口圧ゲージ429,430の圧を1Kg/
cm2に調整し、流入バルブ418,149を徐々に
開けてフローメーター433,434内へ
SiH4/H2ガス、B2H6/H2ガスを流入させた。
引続いて、流出バルブ422,423を徐々に開
け、次いで補助バルブ425を徐々に開けた。こ
のときSiH4/H2ガス流量とB2H6/H2ガス流量
比が50:1になるように流入バルブ418,14
9を調整した。次にピラニーゲージ436の読み
を注視しながら補助バルブ425の開口を調整
し、室401内が1×10-2torrになるまで補助バ
ルブ425を開けた。室401内圧が安定してか
ら、メインバルブ427を徐々に閉じ、ピラニー
ゲージ436の指示が0.5torrになるまで開口を
絞つた。ガス流入が安定し内圧が安定するのを確
認し、シヤツター408を閉とし、続いて高周波
電源437のスイツチをON状態にして、電極4
07,408間に13.56MHzの高周波電力を投入
し室401内にグロー放電を発生させ、10Wの入
力電力とした。グロー放電を3時間持続させて光
導電層を形成した後、加熱ヒーター407をoff
状態にし、高周波電源437もoff状態とし、基
板温度が100℃になるのを待つてから流出バルブ
422,423及び流入バルブ418,419を
閉じ、メインバルブ427を全開にして、室40
1内を10-5torr以下にした後、メインバルブ42
7を閉じ室401内をリークバルブ426によつ
て大気圧として基板を取り出した。この場合、形
成された層の全厚は約9μであつた。こうして得
られた像形成部材を、帯電露光実験装置に設置
し、6.0KVで0.2sec間コロナ帯電を行ない、直
ちに光像を照射した。光像は、タングステンラン
プ光源を用い、0.8lux・secの光量を透過型のテ
ストチヤートを通して照射させた。 その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)の部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、5.0KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、階調
再現性のよい鮮明な高濃度の画像が得られた。 次に上記像形成部材に就て、帯電露光実験装置
で5.5KVで0.2sec間のコロナ帯電を行ない、直
ちに0.8lux・secの光量で画像露光を行ない、そ
の後直ちに荷電性の現像剤を部材表面にカスケ
ードし、次に転写紙上に転写定着したところ極め
て鮮明な画像が得られた。 この結果を先の結果から本実施例で得られた電
子写真感光体は帯電極性に対する依存性がなく両
極性像形成部材の特性を具備していることが判つ
た。 実施例 11 実施例1と同様の操作、条件にて形成された像
形成部材を6枚作成し、第4図に示す装置に光導
電層を下にして固定部材406に堅固に固定し、
基板402とした。 光導電層上に形成する上部層を第4表に示す如
く条件で各々の基板上にA〜F迄形成し、各々の
上部層を有する像形成部材を6枚作成した。 尚、スパツタリング法にて上部層Aを形成する
際にはターゲツト404を多結晶シリコンターゲ
ツト上に部分的にグラフアイトターゲツトが積層
されたもの、上部層Eを形成する際には、ターゲ
ツトをSi3N4ターゲツトに、Arガスボンベ409
をArで50%に希釈されたN2ガスボンベに変え
た。 又、グロー放電法にて上部層Bを形成する際に
は、B2H6ガスボンベ411をH2で10vol%に希
釈されたC2H4ガスボンベに、上部層Cを形成す
る際にはB2H6ガスボンベ411をH2で10vol%
に希釈されたSi(CH34ボンベに、上部層Dを
[Table] Example 4 A molybdenum substrate was installed in the same manner as in Example 1, and then a vacuum of 5×10 -6 Torr was created in the glow discharge deposition chamber 301 by the same operation as in Example 1, and the substrate temperature was was maintained at 200°C, and then the SiF 4 , N 2 , and SiH 4 gas inflow system was heated 5× in the same manner as in Example 1.
10 -6 torr vacuum and then auxiliary valve 340
and after closing each outflow valve 325, 326, 329 and each inflow valve 320-2, 321, 324,
Valve 330 of SiF 4 /H 2 gas cylinder 311 containing 10 vol% H 2 , valve 33 of N 2 gas cylinder 312
1, and the pressure of the outlet pressure gauges 335 and 336 is set to 1.
Adjust to Kg/cm 2 , inflow valve 320-2,321
were gradually opened to allow SiF 4 /H 2 gas and N 2 gas to flow into the flow meters 316 and 317. Subsequently, the outflow valves 325 and 326 were gradually opened, and then the auxiliary valve 340 was gradually opened. At this time
The inflow valves 320-2 and 321 were adjusted so that the ratio of SiF 4 /H 2 gas flow rate to N 2 gas flow rate was 1:90. Next, while watching the reading on the Pirani gauge 341, adjust the opening of the auxiliary valve 340, and
Auxiliary valve 340 until the inside becomes 1×10 -2 Torr.
I opened it. After the internal pressure of the chamber 301 becomes stable, the main valve 310 is gradually closed and the Pirani gauge 34 is closed.
The aperture was narrowed down until the instruction in step 1 was 0.5 Torr. The gas inflow is stable, the indoor pressure is constant, and the substrate temperature is
After the temperature stabilized at 200°C, the high frequency power supply 342 was turned on as in Example 1, glow discharge was started with an input power of 60W, and the same conditions were maintained for 1 minute to form an intermediate layer on the substrate. High frequency power supply 342
off state, close the outflow valves 325, 326, 322 while stopping the glow discharge, and then
Open the valve 334 of the SiH 4 /H 2 gas cylinder 315 diluted to 10 vol% with H 2 and check the outlet pressure gauge 33.
Adjust the pressure at 9 to 1Kg/cm 2 and gradually open the inflow valve 324 to enter the flow meter 320-1.
SiH 4 /H 2 gas was introduced. Subsequently, the outflow valve 329 was gradually opened. Next, the indication of the Pirani gauge 341 is 0.5 Torr as in the case of forming the intermediate layer.
Auxiliary valve 340, main valve 31 so that
0 openings were aligned and stabilized. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was set to 10W, which was lower than before. After continuing the glow discharge for another 5 hours to form a photoconductive layer, the heater 308 is turned off.
After turning off the high frequency power supply 342 and waiting for the substrate temperature to reach 100°C, the outflow valve 329 and the inflow valve 320-2, 321, 32 are turned off.
4 was closed and the main valve 310 was fully opened to bring the inside of the chamber 301 to 10 -5 torr or less.The main valve 310 was then closed and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 15μ. Regarding this image forming member, an image was formed on a transfer paper under the same conditions and procedures as in Example 1, and the image quality was better when the image was formed using corona discharge than when the image was formed using corona discharge. The image quality was excellent and extremely clear. From this result, it was confirmed that the photoreceptor obtained in this example had a dependence on charging function. Example 5 After forming an intermediate layer on a molybdenum substrate for 1 minute under the same conditions and procedures as in Example 1, the high frequency power source 342 was turned off and the outflow valve was opened with the glow discharge stopped. 325,326
Close and then PH3 diluted to 25vol ppm with H2
Gas (hereinafter abbreviated as PH 3 /H 2 ) valve 333 of cylinder 314, SiH 4 /H 2 diluted to 10 vol% with H 2
Open the valve 334 of the H 2 cylinder 315, adjust the pressure of the outlet pressure gauges 338, 339 to 1 Kg/cm 2 , and gradually open the inflow valves 323, 324 to allow PH 3 /H 2 gas into the flow meters 319, 320-1. ,
SiH 4 /H 2 gas was introduced. Subsequently, the outflow valves 328, 329 were gradually opened. At this time
PH 3 /H 2 gas flow rate and SiH 4 /H 2 gas flow rate ratio is 1:
The inflow valves 323 and 324 were adjusted so that the value was 50. Next, in the same way as when forming the intermediate layer, Pirani gauge 3
Auxiliary valve 34 so that the instruction of 41 becomes 0.5torr
0. The opening of the main valve 310 was adjusted and stabilized. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was 10W. In this way, the glow discharge is further increased by 4
After forming the photoconductive layer for a certain period of time, the heating heater 308 is turned off, and the high frequency power source 342 is also turned off.
After setting the off state and waiting for the substrate temperature to reach 100°C, open the outflow valves 328, 329 and the inflow valve 3.
20-2, 321, 323, 324 are closed, the main valve 310 is fully opened, and the inside of the chamber 301 is
After reducing the pressure to below 10 -5 torr, the main valve 310 was closed and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 11μ. An image was formed on a transfer paper using the image forming member thus obtained under the same conditions and procedures as in Example 1. The image quality was excellent and extremely clear. From this result, it was found that the photoreceptor obtained in this example had charge polarity dependence. Example 6 After forming an intermediate layer on a molybdenum substrate, when subsequently forming a photoconductive layer, the B 2 H 6 /H 2 gas flow rate was set to 1/10 of the SiH 4 /H 2 gas flow rate. An intermediate layer and a photoconductive layer were formed on a molybdenum substrate under the same conditions and procedures as in Example 1. An image was formed on a transfer paper using the image forming member thus obtained under the same conditions and procedures as in Example 1.
The image quality was superior to images formed by corona discharge, and they were extremely clear. From this result, it was found that the photoreceptor obtained in this example had charge polarity dependence. However, its charge polarity dependence was opposite to that of the image forming members obtained in Examples 4 and 5. Example 7 After forming an intermediate layer on a molybdenum substrate for 1 minute and forming a photoconductive layer for 5 hours under the same conditions and procedures as in Example 1, a high frequency power source 342 was applied.
The outflow valves 327 and 329 were closed while the was turned off to stop glow discharge, and the outflow valves 325 and 326 were opened again to obtain the same conditions as when forming the intermediate layer. Subsequently, the high frequency power supply was turned on again to restart the glow discharge. The input power at that time is the same as when forming the intermediate layer.
It was set to 60W. After continuing the glow discharge for 2 minutes to form an upper layer on the photoconductive layer, the heating heater 308 is turned to the ORR state, and the high frequency power source 342 is also turned off.
After waiting for the substrate temperature to reach 100°C, open the outflow valves 325, 326 and the inflow valve 32.
0-2, 321, 322, 324 are closed, the main valve 310 is fully opened, and the inside of the chamber 301 is
After reducing the pressure to below 10 -5 torr, the main valve 310 was closed and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. The image forming member thus obtained was placed in a charging exposure experimental apparatus similar to that in Example 1, corona charging was performed at 6.0 KV for 0.2 seconds, and a light image was immediately irradiated. The optical image was created using a tungsten lamp light source, and a light intensity of 1.0 lux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a charged developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Example 8 Prior to forming the imaging member, the N 2 gas cylinder 312 of the apparatus shown in FIG. 3 was replaced with a NH 3 /H 2 gas cylinder (99.999% purity) diluted to 10 vol % with H 2 . The surface was then cleaned, Corning
7059 glass (1 mm thick, 4 x 4 cm, brightly polished) on one side by electron beam evaporation.
ITO was deposited to a thickness of 1000 Å and placed on the fixing member 303 of the same device as in Example 1 (FIG. 3) with the ITO deposited surface facing upward. The intermediate layer and photoconductive layer were formed by the same operations and procedures as in Example 1, except that the N 2 gas cylinder was replaced with an NH 3 /H 2 gas cylinder and the molybutin substrate was replaced with an ITO substrate as described above. An image forming member was obtained. The image forming member thus obtained is placed in a charging exposure experiment device,
Corona charging was performed at 6.0 KV for 0.2 seconds, and a light image was immediately irradiated. The optical image was created using a tungsten lamp light source, and a light intensity of 1.0 lux.sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a charged developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Further, even when the corona charge polarity was changed to 1 and the developer polarity was changed to 1, a clear and good image was obtained in the same manner as in Example 1. Example 9 315 SiH 4 cylinders diluted to 10 vol% with H 2 are added to undiluted Si 2 H 6 cylinders with 50 vol of H 2
313 B 2 H 6 cylinders diluted to ppm with H 2
An intermediate layer and a photoconductive layer were formed on a molybdenum substrate under the same conditions and procedures as in Example 1, except that the B 2 H 6 cylinder diluted to 500 vol ppm was used, and then taken out of the deposition chamber 301. Similar to 1, image formation was tested by placing the sample in an electrostatic exposure experimental device.
In the case of the 5.5 KV corona discharge, chargeable developer combination, very good quality, high contrast toner images were obtained on the transfer paper. Example 10 Using the apparatus shown in FIG. 4, an intermediate layer was formed on a molybdenum substrate by the following operations. A 0.5 mm thick, 10 cm square molybdenum plate (substrate) 402 whose surface was cleaned was firmly fixed to a fixing member 406 at a predetermined position in the deposition chamber 401 . Board 4
02 is heated with an accuracy of ±0.5° C. by a heater 407 within a fixed member 406. Temperature was measured directly on the backside of the substrate by a thermocouple (Almeru Cromel). Next, after confirming that all valves in the system are closed, the main valve 427 is fully opened to exhaust the inside of the chamber 401.
The degree of vacuum was set at approximately 5×10 -6 torr. Thereafter, the input voltage of the heater 407 was increased, and the input voltage was varied while detecting the temperature of the molybdenum substrate until it stabilized at a constant value of 200°C. Thereafter, the auxiliary valve 425, then the outflow valves 421, 424, and the inflow valves 417, 420 were fully opened, and the insides of the flow meters 432, 435 were also sufficiently degassed to a vacuum state. After closing the auxiliary valve 425, valves 417, 420, 421, 424,
Valve 416 of F 3 N gas (99.999% purity) cylinder 412 and valve 413 of Ar gas cylinder 409
Open the outlet pressure gauges 428, 431 to 1.
Kg/cm 2 , and the inflow valves 417 and 420 were gradually opened to allow F 3 N gas and Ar gas to flow into the flow meters 432 and 435, respectively. Subsequently, the outflow valves 421 and 424 were gradually opened, and then the auxiliary valve 425 was gradually opened. At this time
The inflow valves 417 and 420 were adjusted so that the F 3 N gas flow rate ratio was 1:1. Next, the opening of the auxiliary valve 425 was adjusted while observing the reading on the Pirani gauge 436, and the auxiliary valve 425 was opened until the inside of the chamber 401 reached 5×10 −4 torr. After the internal pressure of the chamber 401 became stable, the main valve 427 was gradually closed and the opening was throttled until the reading on the Pirani gauge 436 became 1×10 −2 torr. Shutter operation rod 403,
After opening the shutter 408 and confirming that the flow meters 432 and 435 are stable, the high frequency power source 437 is turned on to generate a 13.56 MHz signal between the polycrystalline high purity silicon target 404 and the solid member 406. 100W AC power was input. Under these conditions, the layers were formed while performing matching so that stable discharge could continue. Continue discharging in this way for 2 minutes to form a 100 Å thick a-SixN 1-x :
F was formed. Thereafter, the high frequency power supply 437 was turned off to temporarily stop the discharge. Subsequently, the outflow valves 421 and 424 are closed, and the main valve 427
Fully open to remove the gas in chamber 401, and
Vacuum was applied to 10 -7 torr. Next, SiH 4 /H 2 gas (purity 99.999%) diluted to 10 vol% with H 2 cylinder 4
10 valve 414 and the valve 415 of the B 2 H 6 /H 2 gas cylinder 411 diluted with H 2 to 50 vol ppm, the pressure on the outlet pressure gauges 429 and 430 was adjusted to 1 Kg/
cm 2 and gradually open the inflow valves 418 and 149 to enter the flow meters 433 and 434.
SiH 4 /H 2 gas and B 2 H 6 /H 2 gas were introduced.
Subsequently, the outflow valves 422, 423 were gradually opened, and then the auxiliary valve 425 was gradually opened. At this time, the inflow valves 418 and 14 are adjusted so that the SiH 4 /H 2 gas flow rate and B 2 H 6 /H 2 gas flow rate ratio is 50:1.
9 was adjusted. Next, the opening of the auxiliary valve 425 was adjusted while observing the reading on the Pirani gauge 436, and the auxiliary valve 425 was opened until the inside of the chamber 401 reached 1×10 −2 torr. After the internal pressure of the chamber 401 became stable, the main valve 427 was gradually closed and the opening was throttled until the reading on the Pirani gauge 436 reached 0.5 torr. After confirming that the gas inflow is stable and the internal pressure is stable, close the shutter 408, then turn on the high frequency power source 437, and turn on the electrode 4.
Between 07 and 408, high frequency power of 13.56MHz was applied to generate glow discharge in the chamber 401, resulting in an input power of 10W. After continuing the glow discharge for 3 hours to form a photoconductive layer, the heating heater 407 is turned off.
After turning off the high frequency power supply 437 and waiting for the substrate temperature to reach 100°C, close the outflow valves 422, 423 and the inflow valves 418, 419, fully open the main valve 427, and open the chamber 40.
After reducing the inside of 1 to 10 -5 torr or less, main valve 42
7 was closed, the inside of the chamber 401 was brought to atmospheric pressure by the leak valve 426, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 9μ. The image forming member thus obtained was placed in a charging exposure experimental device, corona charged at 6.0 KV for 0.2 seconds, and immediately irradiated with a light image. The optical image was created using a tungsten lamp light source, and a light intensity of 0.8 lux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a chargeable developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Next, the image forming member was corona charged at 5.5 KV for 0.2 seconds using a charging exposure experiment device, and image exposure was immediately performed at a light intensity of 0.8 lux sec, after which a charging developer was immediately applied to the surface of the member. When the image was transferred and fixed onto transfer paper, an extremely clear image was obtained. From the above results, it was found that the electrophotographic photoreceptor obtained in this example had no dependence on charging polarity and had the characteristics of a bipolar image forming member. Example 11 Six image forming members were formed using the same operations and conditions as in Example 1, and were firmly fixed to a fixing member 406 in the apparatus shown in FIG. 4 with the photoconductive layer facing down.
A substrate 402 was used. Upper layers A to F to be formed on the photoconductive layer were formed on each substrate under the conditions shown in Table 4, and six image forming members having each upper layer were produced. When forming the upper layer A by the sputtering method, the target 404 is a polycrystalline silicon target with a partially laminated graphite target, and when forming the upper layer E, the target is Si 3 . Ar gas cylinder 409 for N4 target
was replaced with a N2 gas cylinder diluted to 50% with Ar. In addition, when forming the upper layer B by the glow discharge method, the B 2 H 6 gas cylinder 411 is replaced with a C 2 H 4 gas cylinder diluted with H 2 to 10 vol%, and when forming the upper layer C, the B 2 H 6 gas cylinder 411 is 2 H6 gas cylinder 411 with H2 at 10vol%
Add the upper layer D to a Si(CH 3 ) 4 cylinder diluted to

【表】 形成する際には、上部層Bの形成の際と同様に
B2H6ガスボンベ411をC2H4ガスボンベに、
F3Nガスボンベ412を、H2を10vol%含むSiF4
ガスボンベに、上部層F2Gを形成する際にはF3N
ガスボンベをN2ガスボンベ、H2で10vol%に希釈
されたNH3ガスボンベに夫々変えた。 実施例1と同様の中間層、光導電層に第4表に
示す中間層A〜Fを有する像形成部材6枚を各々
実施例1と同様の操作、条件にて像形成を行つて
転写紙に転写したところ、何れも帯電極性に対す
る依存性がなく極めて鮮明なトナー像が得られ
た。 実施例 12 実施例8と同様の操作、条件にて形成された像
形成部材を6枚作成し第4図に示す装置に光導電
層を下にし固定部材406に堅固し固定して基板
402とした。 光導電層上に形成する上部層を実施例11と同様
にして形成した第4表に示す上部層A〜Fを有す
る像形成部材6枚を各々実施例1と同様の操作、
条件にて像形成を行つて転写紙に転写したところ
何れも帯電極性に対する依存性がなく極めて鮮明
なトナー像が得られた。 実施例 13 実施例10と同様の操作、条件にて形成された像
形成部材を6枚作成し、第4図に示す装置に光導
電層を下にして固定部材406に堅固に固定して
基板402とした。 光導電層上に形成する上部層を実施例11と同様
にして形成した第4表に示す上部層A〜Fを有す
る像形成部材6枚を、各々実施例1と同様の操作
条件にて像形成を行つて転写紙に転写したところ
何れも帯電極性に対する依存性がなく極めて鮮明
なトナー像が得られた。
[Table] When forming, follow the same steps as when forming upper layer B.
B 2 H 6 gas cylinder 411 to C 2 H 4 gas cylinder,
F 3 N gas cylinder 412, SiF 4 containing 10 vol% H 2
When forming the upper layer F 2 G on the gas cylinder, use F 3 N
The gas cylinders were changed to N 2 gas cylinders and NH 3 gas cylinders diluted to 10 vol% with H 2 . Six image forming members each having the same intermediate layer as in Example 1 and the photoconductive layer having intermediate layers A to F shown in Table 4 were subjected to image formation under the same operations and conditions as in Example 1 to form a transfer paper. When the toner images were transferred to a toner image, extremely clear toner images were obtained that were independent of charging polarity. Example 12 Six image forming members were formed using the same operations and conditions as in Example 8, and were firmly fixed to a fixing member 406 with the photoconductive layer facing down in the apparatus shown in FIG. did. The upper layer formed on the photoconductive layer was formed in the same manner as in Example 11. Six image forming members having upper layers A to F shown in Table 4 were each subjected to the same operations as in Example 1,
When images were formed under these conditions and transferred to transfer paper, very clear toner images were obtained that had no dependence on charging polarity. Example 13 Six image forming members were formed using the same operations and conditions as in Example 10, and were firmly fixed to a fixing member 406 with the photoconductive layer facing down in the apparatus shown in FIG. It was set to 402. Six image forming members each having upper layers A to F shown in Table 4, each having an upper layer formed on the photoconductive layer formed in the same manner as in Example 11, were imaged under the same operating conditions as in Example 1. When the toner images were formed and transferred to transfer paper, extremely clear toner images were obtained that were independent of charging polarity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は各々本発明の光導電部材の
好適な実施態様例の構成を説明する為の模式的構
成図、第3図、第4図は各々本発明の光導電部材
を製造する場合の装置の一例を示す模式的説明図
である。 100,200…光導電部材、101,201
…支持体、102,202…中間層、103,2
03…光導電層、104,204…自由表面、2
05…上部層。
FIGS. 1 and 2 are schematic configuration diagrams for explaining the configuration of preferred embodiments of the photoconductive member of the present invention, and FIGS. 3 and 4 each illustrate the manufacture of the photoconductive member of the present invention. FIG. 100,200...Photoconductive member, 101,201
...Support, 102,202...Intermediate layer, 103,2
03...Photoconductive layer, 104,204...Free surface, 2
05... Upper layer.

Claims (1)

【特許請求の範囲】 1 支持体と、シリコン原子を母体とし、水素原
子を含むアモルフアス材料で構成されている光導
電層と、これ等の間に設けられ、前記支持体側か
ら前記光導電層中へのキヤリアの注入を阻止し且
つ電磁波照射によつて前記光導電層中に生じ前記
支持体側に向つて移動するキヤリアの前記光導電
層側から前記支持体側への通過を許す機能を有す
る中間層とを備えた光導電部材に於いて、前記中
間層がシリコン原子と窒素原子とハロゲン原子と
を構成要素とするアモルフアス材料で構成されて
おり、30〜1000Åの層厚を有することを特徴とす
る光導電部材。 2 前記光導電層の上部表面に、シリコン原子を
母体とし、水素原子及びハロゲン原子の少なくと
もいずれか一方と、炭素原子、窒素原子、及び酸
素原子の中の少なくとも一つと、を含むアモルフ
アス材料で構成された上部層を有する特許請求の
範囲第1項の光導電部材。 3 前記光導電層の上部表面に、無機絶縁材料又
は有機絶縁材料からなる上部層を有する特許請求
の範囲第1項の光導電部材。 4 前記光導電層の上部表面に、電荷像形成面と
なる自由表面を有し、0.5〜70μの層厚を有する表
面被覆層が設けてある特許請求の範囲第1項の光
導電部材。
[Scope of Claims] 1. A support, a photoconductive layer made of an amorphous material having silicon atoms as a matrix and containing hydrogen atoms, and a photoconductive layer provided between these, from the support side into the photoconductive layer. an intermediate layer having a function of preventing carriers from being injected into the photoconductive layer and allowing carriers generated in the photoconductive layer and moving toward the support by electromagnetic wave irradiation to pass from the photoconductive layer side to the support side; The photoconductive member is characterized in that the intermediate layer is made of an amorphous material whose constituent elements are silicon atoms, nitrogen atoms, and halogen atoms, and has a layer thickness of 30 to 1000 Å. Photoconductive member. 2. The upper surface of the photoconductive layer is made of an amorphous material that has silicon atoms as its base material and includes at least one of hydrogen atoms and halogen atoms, and at least one of carbon atoms, nitrogen atoms, and oxygen atoms. A photoconductive member according to claim 1, having a top layer of 3. The photoconductive member according to claim 1, which has an upper layer made of an inorganic insulating material or an organic insulating material on the upper surface of the photoconductive layer. 4. The photoconductive member according to claim 1, wherein a surface coating layer having a free surface serving as a charge image forming surface and having a layer thickness of 0.5 to 70 μm is provided on the upper surface of the photoconductive layer.
JP55134116A 1980-09-25 1980-09-25 Photoconductive member Granted JPS5758161A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP55134116A JPS5758161A (en) 1980-09-25 1980-09-25 Photoconductive member
US06/304,568 US4394426A (en) 1980-09-25 1981-09-22 Photoconductive member with α-Si(N) barrier layer
GB8128841A GB2087643B (en) 1980-09-25 1981-09-24 Photoconductive member
AU75648/81A AU554181B2 (en) 1980-09-25 1981-09-24 Photoconductive device
CA000386703A CA1181628A (en) 1980-09-25 1981-09-25 Photoconductive member including non-photoconductive layer containing amorphous silicon matrix containing nitrogen
PCT/JP1981/000256 WO1982001261A1 (en) 1980-09-25 1981-09-25 Photoconductive member
FR8118123A FR2490839B1 (en) 1980-09-25 1981-09-25 PHOTOCONDUCTIVE ELEMENT
NL8104426A NL192142C (en) 1980-09-25 1981-09-25 Photoconductive organ.
DE813152399A DE3152399A1 (en) 1980-09-25 1981-09-25 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55134116A JPS5758161A (en) 1980-09-25 1980-09-25 Photoconductive member

Publications (2)

Publication Number Publication Date
JPS5758161A JPS5758161A (en) 1982-04-07
JPS6341059B2 true JPS6341059B2 (en) 1988-08-15

Family

ID=15120827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55134116A Granted JPS5758161A (en) 1980-09-25 1980-09-25 Photoconductive member

Country Status (1)

Country Link
JP (1) JPS5758161A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675263A (en) 1984-03-12 1987-06-23 Canon Kabushiki Kaisha Member having substrate and light-receiving layer of A-Si:Ge film and A-Si film with non-parallel interface with substrate
JPS6187160A (en) * 1984-10-05 1986-05-02 Fuji Electric Co Ltd Electrophotographic sensitive body
US4678733A (en) 1984-10-15 1987-07-07 Canon Kabushiki Kaisha Member having light receiving layer of A-Si: Ge (C,N,O) A-Si/surface antireflection layer with non-parallel interfaces
JPS6289064A (en) 1985-10-16 1987-04-23 Canon Inc Light receiving material
JPS6290663A (en) 1985-10-17 1987-04-25 Canon Inc Light receiving member
JPS62106468A (en) 1985-11-01 1987-05-16 Canon Inc Light receiving member
JPS62106470A (en) 1985-11-02 1987-05-16 Canon Inc Light receiving member

Also Published As

Publication number Publication date
JPS5758161A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
JPH0150904B2 (en)
JPS6233304B2 (en)
JPS6410069B2 (en)
JPH0411860B2 (en)
JPS59119359A (en) Photoconductive material
JPS6348054B2 (en)
JPS628781B2 (en)
JPS628783B2 (en)
JPS649625B2 (en)
JPS6247303B2 (en)
JPS6348057B2 (en)
JPS6341059B2 (en)
JPS6410068B2 (en)
JPH0150905B2 (en)
JPS6341060B2 (en)
JPS6410064B2 (en)
JPS6345582B2 (en)
JPS6335979B2 (en)
JPS6410066B2 (en)
JPH0215061B2 (en)
JPS628782B2 (en)
JPS6410067B2 (en)
JPS6341056B2 (en)
JPS6346408B2 (en)
JPS6335980B2 (en)