JPH0150905B2 - - Google Patents
Info
- Publication number
- JPH0150905B2 JPH0150905B2 JP55127490A JP12749080A JPH0150905B2 JP H0150905 B2 JPH0150905 B2 JP H0150905B2 JP 55127490 A JP55127490 A JP 55127490A JP 12749080 A JP12749080 A JP 12749080A JP H0150905 B2 JPH0150905 B2 JP H0150905B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- photoconductive
- atoms
- intermediate layer
- electrophotography
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010410 layer Substances 0.000 claims description 223
- 239000000463 material Substances 0.000 claims description 33
- 125000005843 halogen group Chemical group 0.000 claims description 19
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000002345 surface coating layer Substances 0.000 claims description 9
- 239000000969 carrier Substances 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims 2
- 230000000903 blocking effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 86
- 239000000758 substrate Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 32
- 229910021417 amorphous silicon Inorganic materials 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 19
- 238000000151 deposition Methods 0.000 description 16
- 230000008021 deposition Effects 0.000 description 16
- -1 polyethylene Polymers 0.000 description 16
- 239000002994 raw material Substances 0.000 description 16
- 229910052750 molybdenum Inorganic materials 0.000 description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000011733 molybdenum Substances 0.000 description 12
- 239000000460 chlorine Substances 0.000 description 11
- 238000004544 sputter deposition Methods 0.000 description 11
- 125000004429 atom Chemical group 0.000 description 10
- 239000012535 impurity Substances 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000000470 constituent Substances 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical class [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 206010034972 Photosensitivity reaction Diseases 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000036211 photosensitivity Effects 0.000 description 4
- 229910052990 silicon hydride Inorganic materials 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910001120 nichrome Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical compound CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 108091008695 photoreceptors Proteins 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910003691 SiBr Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/09—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/095—Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
[産業上の利用分野]
本発明は、光(ここでは広義の光で、紫外光
線、可視光線、赤外光線、X線、γ線等を示す)
の様な電磁波に感受性のある電子写真用光導電部
材に関する。
[従来の技術]
像形成分野に於ける電子写真用像形成部材を構
成する光導電材料としては、高感度で、SN比
〔光電流(Ip)/暗電流(Id)〕が高く、照射する
電磁波のスペクトル特性を有すること、光応答性
が良好で、所望の暗抵抗値を有すること、使用時
に於いて人体に対して無公害である事等の特性が
要求される。殊に、事務機としてオフイスで使用
される電子写真装置内に組込まれる電子写真用像
形成部材の場合には、上記の使用時に於ける無公
害性は重要な点である。
この様な点に立脚して最近注目されている光導
電材料にアモルフアスシリコン(以後Siと記す)
があり、例えば、独国公開第2746967号公報、同
第2855718号公報には電子写真用像形成部材とし
て、特開昭55−39404号公報には光電変換読取装
置への応用が記載されてある。
[発明が解決しようとする問題点]
而乍ら、従来のa―Siで構成された光導電層を
有する電子写真用光導電部材は、暗抵抗値、光感
度、光応答性等の電気的、光学的、光導電的特性
及び耐湿性等の使用環境特性の点に於いて、更に
改良される可き点が存し、実用的な電子写真用像
形成部材には、生産性、量産性をも加味して仲々
有効に使用し得ないのが実情である。
例えば、電子写真用像形成部材に適用した場合
に、その使用時に於いて残留電位が残る場合が
度々観測され、この様な種の電子写真用光導電部
材は繰返し長時間使用し続けると、繰返し使用に
よる疲労の蓄積が起る。残像が生ずる所謂ゴース
ト現象を発する様になる等の不都合な点が少なく
なかつた。
更には例えば、本発明者等の多くの実験によれ
ば、電子写真用像形成部材の光導電層を構成する
材料としてのa―Siは、従来のSe,CdS,ZnO或
いはPVCzやTNF等のOPC(有機電子写真用光導
電部材)に較べて、数多くの利点を有するが、従
来の太陽電池用として使用する為の特性が付与さ
れたa―Siから成る単層構成の光導電層を有する
電子写真用像形成部材の上記光導電層に静電像形
成の為の帯電処理を施しても暗減衰(dark
decay)が著しく速く、通常の電子写真法が仲々
適用され難い事、及び多湿雰囲気中に於いては上
記傾向が著しく、場合によつては現像時間まで帯
電々荷を全く保持し得ない事がある等、解決され
得る可き点が存在している事が判明している。
従つて、a―Si材料そのものの特性改良が計ら
れる一方で電子写真用光導電部材を設計する際
に、所望の電気的、光学的及び光導電的特性が得
られる様に工夫される必要がある。
本発明は上記の諸点に鑑み成されたもので、a
―Siに就て電子写真用像形成部材に使用される電
子写真用光導電部材としての適用性とその応用性
という観点から総括性に鋭意研究検討を続けた結
果、シリコン原子を母体とし水素原子を含有する
アモルフアス材料、所謂水素化アモルフアスシリ
コン(以後a―Si;Hと記す)から成る光導電層
と、該光導電層を支持する支持体との間に特定の
中間層を介在させる層構成に設計されて作製され
た電子写真用光導電部材は実用的に充分使用し得
るばかりでなく、従来の電子写真用光導電部材と
較べてみても殆んどの点に於いて凌駕しているこ
と、殊に電子写真用光導電部材として著しく優れ
た特性を有していることを見出した点に基いてい
る。
[本発明の目的]
本発明は電気的、光学的、光導電的特性が常時
安定していて、殆んど使用環境に制限を受けない
全環境型であり、耐光疲労に著しく長け、繰返し
使用に際しても劣化現象を起さず、残留電位が全
く又は殆んど観測されない電子写真用光導電部材
を提供することを主たる目的とする。
本発明の別の目的は、光感度が高く、分光感度
領域も略々全可視光域を覆つていて、且つ光応答
性の速い電子写真用光導電部材を提供することで
ある。
本発明の他の目的は、電子写真用の像形成部材
として適用させた場合、通常の電子写真法が極め
て有効に適用され得る程度に、静電像形成の為の
帯電処理の際の電荷保持能が充分あり、且つ多湿
雰囲気中でもその特性の低下が殆んど観測されな
い優れた電子写真特性を有する電子写真用光導電
部材を提供することである。
本発明の更に他の目的は、濃度が高く、ハーフ
トーンが鮮明に出て且つ解像度の高い、高品質画
像を得る事が容易に出来る電子写真用の電子写真
用光導電部材を提供することである。
[本発明の構成]
本発明の電子写真用光導電部材は、支持体とシ
リコン原子を母体とし、水素原子を含むアモルフ
アス材料で構成されている光導電層と、これ等の
間に設けられ、支持体側から光導電層中へのキヤ
リアの流入を阻止し且つ電磁波照射によつて前記
光導電層中に生じ支持体側に向つて移動するキヤ
リアの光導電層側から支持体側への通過を許す機
能を有する中間層とを備えた電子写真用光導電部
材に於いて、
前記中間層を、シリコン原子及び40乃至
90atomic%の量の炭素原子とを母体とし、ハロ
ゲン原子を1乃至20atomic%の量又はハロゲン
原子と水素原子とを両者の和として1乃至
20atomic%の量含む非光導電性のアモルフアス
材料で構成する事を特徴とする。
以下、図面に従つて、本発明の電子写真用光導
電部材に就て詳細に説明する。
第1図は、本発明の電子写真用光導電部材の基
本的な構成例を説明する為に模式的に示した模式
的構成図である。
第1図に示す電子写真用光導電部材100は、
電子写真用光導電部材用としての支持体101の
上に、中間層102、該中間層102に直接接触
した状態に設けられている光導電層103とで構
成される層構造を有し、本発明の最も基本的な例
である。
支持体101としては、導電性でも電気性でも
電気絶縁性であつても良い。導電性支持体として
は、例えば、NiCr、ステンレス、Al,Cr,Mo,
Au,Nb,Ta,V,Ti,Pt,Pd等の金属又はこ
れ等の合金が挙げられる。
電気絶縁性支持体としては、ポリエステル、ポ
リエチレン、ポリカーボネート、セルローズ、ア
セテート、ポリプロピレン、ポリ塩化ビニル、ポ
リ塩化ビニリデン、ポリスチレン、ポリアミド等
の合成樹脂のフイルム又はシート、ガラス、セラ
ミツク、紙等が通常使用される。これ等の電気絶
縁性支持体は、好適には少なくともその一方の表
面を導電処理され、該導電処理された表面側に他
の層が設けられるのが望ましい。
例えば、ガラスであればその表面にNiCr,Al,
Cr,Mo,Au,Ir,Nb,Ta,V,Ti,Pt,Pd,
In2O3,SnO2,ITO(In2O3+SnO2)等の薄膜を
設けることによつて導電処理され、或いはポリエ
ステルフイルム等の合成樹脂フイルムであれば、
NiCr,Al,Ag,Pb,Zn,Ni,Au,Cr,Mo,
Ir,Nb,Ta,V,Ti,Pt等の金属で真空蒸着、
電子ビーム蒸着、スパツタリング等で処理し、又
は前記金属でラミネート処理して、その表面が導
電処理される。支持体の形状としては、円筒状、
ベルト状、板状等、任意の形状として得、所望に
よつて、その形状は決定されるが、例えば、第1
図の電子写真用光導電部材100を電子写真用像
形成部材として使用するのであれば連続高速複写
の場合には、無端ベルト状又は円筒状とするのが
望ましい。支持体の厚さは、所望通りの電子写真
用光導電部材が形成される様に適宜決定される
が、電子写真用光導電部材として可撓性が要求さ
れる場合には、支持体としての機能が充分発揮さ
れる範囲内であれば可能な限り薄くされる。而乍
ら、この様な場合支持体の製造上及び取扱い上、
機械的強度等の点から、通常は、10μm以上とさ
れる。
中間層102は、シリコン原子及び炭素原子と
を母体とし、ハロゲン原子(Xと記す)を含む非
光導電性のアモルフアス材料〔a―(SixC1-x)
y:X1-yと略記する。但し0<x<1,0<y<
1〕で構成され、支持体101の側から光導電層
103中へのキヤリアの流入を効果的に阻止し且
つ電磁波の照射によつて光導電層103中に生
じ、支持体101の側に向つて移動するフオトキ
ヤリアの光導電層103の側から支持体101の
側への通過を容易に許す機能を有するものであ
る。
a―(SixC1-x)y:X1-yで構成される中間層1
02の形成はグロー放電法、スパツターリング
法、イオンインプランテーシヨン法、イオンプレ
ーテイング法、エレクトロンビーム法等によつて
成される。これ等の製造法は、製造条件、設備資
本投下の負荷程度、製造規模、作製される電子写
真用光導電部材に所望される特性等の要因によつ
て適宜選択されて採用されるのが、所望する特性
を有する電子写真用光導電部材を製造する為の作
製条件の制御が比較的容易である、シリコン原子
と共に炭素原子及びハロゲン原子を、作製する中
間層中に導入するのが容易に行える等の利点から
グロー放電法或いはスパツターリング法が好適に
採用される。
更に、本発明に於いては、グロー放電法とスパ
ツターリング法とを同一装置系内で併用して中間
層102を形成しても良い。
グロー放電法によつて中間層102を形成する
には、a―(SixC1-x)y:X1-y形成用の原料ガス
を、必要に応じて稀釈ガスと所定量の混合比で混
合して、支持体101の設置してある真空堆積用
の堆積室に導入し、導入されたガスを、グロー放
電を生起させることでガスプラズマ化して前記支
持体101上にa―(SixC1-x)y:X1-yを堆積さ
せれば良い。
本発明に於いて、a―(SixC1-x)y:X1-y形成
用の原料ガスとしては、Si,C,Xの中の少なく
とも1つを構成原子とするガス状の物質又はガス
化し得る物質をガス化したものの中の大概のもの
が使用され得る。
Si,C,Xの中の1つとしてSiを構成原子とす
る原料ガスを使用する場合は、例えばSiを構成原
子とする原料ガスと、Cを構成原子とする原料ガ
スと、Xを構成原子とする原料ガスとを所望の混
合比で混合して使用するか、又は、Siを構成原子
とする原料ガスと、C及びXを構成原子とする原
料ガスとを、これも又所望の混合比で混合する
か、或いは、Siを構成原子とする原料ガスと、
Si,C及びXの3つを構成原子とする原料ガスと
を混合して使用することが出来る。
又、別には、SiとXとを構成原子とする原料ガ
スにCを構成原子とする原料ガスを混合して使用
しても良い。
本発明に於いて、ハロゲン原子Xとして好適な
のはF,Cl,Br,Iであり、殊にF,Clが望ま
しいものである。
本発明に於いて、中間層102はa―(Six
C1-x)y:X1-yで構成されるものであるが、中間層
102には更に水素原子を含有させることが出来
る。
中間層102への水素原子の含有は、光導電層
103との連続層形成の際に原料ガス種の一部共
通化を計ることが出来るので生産コスト面の上で
好都合である。
本発明に於いて、中間層102を形成するのに
有効に使用される原料ガスと成り得るものとして
は、常温常圧に於いてガス状態のもの又は容易に
ガス化し得る物質を挙げることが出来る。
この様な中間層形成用の物質としては、例えば
炭素数1〜4の飽和炭化水素、炭素数2〜4のエ
チレン系炭化水素、炭素数2〜3のアセチレン系
炭化水素、ハロゲン単体、ハロゲン化水素、ハロ
ゲン間化合物、ハロゲン化硅素、ハロゲン置換水
素化硅素、水素化硅素等を挙げる事が出来る。
具体的には、飽和炭化水素としては、メタン
(CH4)、エタン(C2H6)、プロパン(C3H8)、n
―ブタン(n―C4H10)、ペンタン(C5H12)、エ
チレン系炭化水素としては、エチレン(C2H4)、
プロピレン(C3H6)、ブテン―1(C4H8)、ブテ
ン―2(C4H8)、イソブチレン(C4H8)、ペンテ
ン(C5H10)、アセチレン系炭化水素としては、
アセチレン(C2H2)、メチルアセチレン
(C3H4)、ブチン(C4H6)、ハロゲン単体として
は、フツ素、塩素、臭素、ヨウ素のハロゲンガ
ス、ハロゲン化水素としては、FH,HI,HCl,
HBr、ハロゲン間化合物としては、BrF,ClF,
ClF3,ClF5,BrF5,BrF3,IF7,IF5,ICl,IBr、
ハロゲン化硅素としては、SiF4,Si2F6,SiCl4,
SiCl3Br,SiCl2Br2,SiClBr3,SiCl3I,SiBr4、
ハロゲン置換水素化硅素としては、SiH2F2,
SiH2Cl2,SiHCl3,SiH3Cl,SiH3Br,SiH2Br2,
SiHBr3、水素化硅素としては、SiH4,Si2H6,
Si3H8,Si4H10等のシラン(Silane)類、等々を
挙げることが出来る。
これ等の他に、CCl4,CHF3,CH2F2,CH3F,
CH3Cl,CH3Br,CH3I,C2H5Cl等のハロゲン置
換パラフイン系炭化水素、SF4,SF6等のフツ素
化硫黄化合物、Si(CH3)4,Si(C2H5)4等のケイ化
アルキルやSiCl(CH3)3,SiCl2(CH3)2,
SiCl3CH3等のハロゲン含有ケイ化アルキル等の
シランの誘導体も有効なものとして挙げることが
出来る。
これ等の中間層形成物質は、形成される中間層
中に、所定の組成比でシリコン原子、炭素原子及
びハロゲン原子と必要に応じて水素原子とが含有
される様に、中間層形成の際に所望に従つて選択
されて使用される。
例えば、シリコン原子と炭素原子と水素原子と
の含有が容易に成し得て且つ所望の特性の中間層
が形成され得るSi(CH3)4とハロゲン原子を含有
させるものとしてのSiHCl3,SiCl4,SiH2Cl2或
いはSiH3Cl等を所定の混合比でガス状態で中間
層形成用の装置系内に導入してグロー放電を生起
させることによつてa―SixC1-x:Cl:Hから成
る中間層を形成することが出来る。
スパツターリング法によつて中間層102を形
成するには、単結晶又は多結晶のSiウエーハー又
はCウエーハー又はSiとCが混合されて含有され
ているウエーハーをターゲツトとして、これ等を
ハロゲンと必要に応じて水素を構成要素として含
む種々のガス雰囲気中でスパツターリングするこ
とによつて行えば良い。
例えば、Siウエーハーをターゲツトとして使用
すれば、CとXを導入する為の原料ガスを、必要
に応じて稀釈ガスで稀釈して、スパツター用の堆
積室中に導入し、これ等のガスのガスプラズマを
形成して前記Siウエーハーをスパツターリングす
れば良い。
又、別には、SiとCとは別々のターゲツトとし
て、又はSiとCの混合した一枚のターゲツトを使
用することによつて、少なくともハロゲン原子を
含有するガス雰囲気中でスパツターリングするこ
とによつて成される。C及びX、必要に応じてH
の導入用の原料ガスとなる物質としては、先述し
たグロー放電の例で示した中間層形成用の物質が
スパツターリング法の場合にも有効な物質として
使用され得る。
本発明に於いて、中間層102をグロー放電法
又はスパツターリング法で形成する際に使用され
る稀釈ガスとしては、所謂・希ガス、例えばHe,
Ne,Ar等が好適なものとして挙げることが出来
る。
本発明に於ける中間層102は、その要求され
る特性が所望通りに与えられる様に注意深く形成
される。
即ち,Si,C、及びX、必要に応じてHを構成
原子とする物質は、その作成条件によつて構造的
には結晶からアモルフアスまでの形態を取り、電
気物性的には、導電性から半導体性、絶縁性まで
の間の性質を、又光導電的性質から非光導電的性
質までの間の性質を、各々示すので、本発明に於
いては非光導電性のa―(SixC1-x)y:X1-yが形
成される様に、その作成条件の選択が厳密に成さ
れる。
本発明の中間層102を構成するa―(Six
C1-x)y:X1-yは、中間層102の機能が支持体1
01側から光導電層103中へのキヤリアの流入
を阻止し、且つ光導電層103中で発生したフオ
トキヤリアが移動して支持体101側に通過する
のを容易に許すことを果すものであることから、
電気絶縁性的挙動を示すものとして形成される。
又、光導電層103中で発生したフオトキヤリ
アが中間層102中を通過する際、その通過がス
ムーズに成される程度に、通過するキヤリアに対
する易動度(mobility)の値を有するものとして
a―(SixC1-x)y:X1-yが作成条件の中の重要な
要素として、作成時の支持体温度を挙げる事が出
来る。
即ち、支持体101の表面にa―(SixC1-x)
y:X1-yからなる中間層102を形成する際、層
形成中の支持体温度は、形成される層の構造及び
特性を左右する重要な因子であつて、本発明に於
いては、目的とする特性を有するa―(SixC1-x)
y:X1-yが所望通りに作成され得る様に層作成時
の支持体温度が厳密に制御される。
本発明に於ける所望の目的が効果的に達成され
る為の中間層102を形成する際の支持体温度と
しては、中間層102の形成法に併せて適宜最適
範囲が選択されて、中間層102の形成が実行さ
れるが、通常の場合100℃〜300℃、好適には150
℃〜250℃とされるのが望ましいものである。中
間層102の形成には、同一系内で中間層102
から光導電層103、更には必要に応じて光導電
層103上に形成される第3の層まで連続的に形
成することが出来る、各層を構成する原子の組成
比の微妙な制御や層厚の制御が他の方法に較べて
比較的容易である事等の為に、グロー放電法やス
パツターリング法の採用が有利であるが、これ等
の層形成法で中間層102を形成する場合には、
前記の支持体温度と同様に層形成の際の放電パワ
ーが作成されるa―(SixC1-x)y:X1-yの特性を
左右する重要な因子の1つである。
本発明に於ける目的が達成される為の特性を有
するa―(SixC1-x)y:X1-yが生産性良く効果的
に作成される為の放電パワー条件としては、通常
10〜200W、好適には20〜100Wである。
堆積室内のガス圧は、通常0.01〜1Torr、好適
には0.1〜0.5Torr程度とされるのが望ましい。
本発明の電子写真用光導電部材に於ける中間層
102に含有される炭素原子及びハロゲン原子の
量は、中間層102の作製条件と同様、本発明の
目的を達成する所望の特性が得られる中間層が形
成される重要な因子である。
本発明に於ける中間層102に含有される炭素
原子の量は、通常は40〜90atomic%、好適には
50〜90atomic%、最適には60〜80atomic%とさ
れるのが望ましいものである。ハロゲン原子の含
有量としては、通常の場合1〜20atomic%、好
適には2〜15atomic%とされるのが望ましく、
これ等の範囲にハロゲン含有量がある場合に作成
される電子写真用光導電部材を実際面に充分適用
させ得るものである。必要に応じて含有される水
素原子の含有量としては、通常の場合19atomic
%以下、好適には13atomic%以下とされるのが
望ましいものである。即ち、先のa―(SixC1-x)
y:X1-yの表示で行えばxが通常は0.1〜0.47、好
適には0.1〜0.35、最適には0.15〜0.30、yが通常
0.99〜0.80、好適には0.99〜0.82、最適には0.98〜
0.85である。
ハロゲン原子と水素原子の両方が含まれる場合
先と同様のa―(SixC1-x)y:(H+X)1-yの表示
で行えば、この場合のx,yの数値範囲もa―
(SixC1-x)y:X1-yの場合と、略々同様である。
本発明に於ける中間層102の層厚の数値範囲
は、本発明の目的を効果的に達成する為の重要な
因子の1つである。
中間層102の層厚が充分過ぎる程に薄いと、
支持体101の側からの光導電層103へのキヤ
リアの流入を阻止する働きが充分果たし得なくな
り、又、充分過ぎる程以上に厚いと、光導電層1
03中に於いて生ずるフオトキヤリアの支持体1
01の側への通過する確率が極めて小さくなり、
従つて、いずれの場合にも、本発明の目的を効果
的に達成され得なくなる。
本発明の目的を効果的に達成する為の中間層1
02の層厚としては通常の場合30〜1000Å、好適
には50〜600Åである。
本発明に於いて、その目的を効果的に達成る為
に、中間層102上に積層される光導電層103
は下記に示す半導体特性を有するa―Siで構成さ
れる。
p型a―Si:H…アクセプターのみを含むも
の。或いは、ドナーとアクセプターとの両方を
含み、アクセプターの濃度(Na)が高いもの。
p-型a―Si:H…のタイプに於いてアクセ
プターの濃度(Na)が低い所謂p型不純物を
ライトリードープしたもの。
n型a―Si:H…ドナーのみを含むもの。或
いはドナーとアクセプターの両方を含み、ドナ
ー濃度の(Nd)が高いもの。
n-型a―Si:H…のタイプに於いてドナー
の濃度(Nd)が低い、所謂n型不純物をライ
トリードープしたもの。
i型a―Si:H…NaNdOのもの又は、
NaNdのもの。
本発明に於いては、中間層102を設けること
によつて前記した様に光導電層103を構成する
a―Si:Hは、従来に較べて比較的低抵抗のもの
も使用され得るものであるが、一層良好な結果を
得る為には、形成される光導電層103の暗抵抗
が好適には5×109Ωcm以上、最適には1010Ωcm
以上となる様に光導電層103が形成されるのが
望ましいものである。
殊に、この暗抵抗値の数値条件は、作製された
電子写真用光導電部材を電子写真用像形成部材と
して使用する場合には重要な要素である。
本発明に於ける電子写真用光導電部材の光導電
層の層厚としては、目的に適合させて所望に従つ
て適宜決定される。
本発明に於いては、光導電層の層厚としては、
光導電層の機能及び中間層の機能が各々有効に活
されて本発明の目的が効果的に達成される様に中
間層との層厚関係に於いて適宜所望に従つて決め
られるものであり、通常の場合、中間層の層厚に
対して数百〜数千倍以上のの層厚とされるのが好
ましいものである。
具体的な値としては、通常1〜100μm、好適に
は2〜50μmの範囲とされるのが望ましい。
本発明に於いて、光導電層を、a―Si:Hで構
成された層とするには、これ等の層を形成する
際、次の様な方法によつてHを層中に含有させ
る。
ここに於いて、「層中にHが含有されている」
ということは、「Hが、Siと結合した状態」「Hが
イオン化して層中に取り込まれている状態」又は
「H2として層中に取り込まれている状態」の何ら
かの又はこれ等の複合されている状態を意味す
る。
光導電層へのHの含有法としては、例えば層を
形成する際、堆積装置系内にSiH4,Si2H6,
Si3H8,Si4H10等のシラン(Silane)類等のシリ
コン化合物の形で導入し、グロー放電分解法によ
つて、それらの化合物を分解して、層の成長に併
せて含有される。
このグロー放電法によつて、光導電層を形成す
る場合には、a―Siを形成する出発物質がSiH4,
Si2H6,Si3H8,Si4H10等の水素化硅素ガスが分
解して層が形成される際、Hは自動的に層中に含
有される。
反応スパツターリング法による場合にはHeや
Ar等の不活性ガス又はこれ等のガスをベースと
した混合ガス雰囲気中でSiをターゲツトとしてス
パツターリングを行う際にH2ガスを導入してや
るか又はSiH4,Si2H6,Si3H8,Si4H10等の水素
化硅素ガス、或いは、不純物のドーピングも兼ね
てB2H6,PH3等のガスを導入してやれば良い。
本発明者等の知見によれば、a―Si:Hで構成
される光導電層のHの含有量は、形成された電子
写真用光導電部材が実際面に於いて充分適用され
得るか否かを左右する大きな要因の一つであつて
極めて重要であることが判明した。
本発明に於いて、形成される電子写真用光導電
部材が実際面に充分適用され得る為には、光導電
層中に含有されるHの量は通常の場合1〜
40atomic%、好適には5〜30atomic%とされる
のが望ましい。
層中に含有されるHの量を制御するには、例え
ば堆積支持体温度又は/及びHを含有させる為に
使用される出発物質の堆積装置系内へ導入する
量、放電々力等を制御してやれば良い。
光導電層をn型又はp型とするには、グロー放
電法や反応スパツターリング法等による層形成の
際に、n型不純物又はp型不純物、或いは両不純
物を形成される層中にその量を制御し乍らドーピ
ングしてやる事によつて成される。
光導電層中にドーピングされる不純物として
は、光導電層をp型にするには、周期律表第族
Aの元素、例えば,B、Al,Ga,In,Tl等が好
適なものとして挙げられ、n型にする場合には、
周期律表第族Aの元素、例えばN,P,As,
Sb,Bi等が好適なものとして挙げられる。これ
等の不純物は、層中に含有される量がppmオーダ
ーであるので、光導電層を構成する主物質程その
公害性に注意を払う必隣はないが、出来る限り公
害性のないものを使用するのが好ましい。この様
な観点からすれば、形成される層の電気的・光学
的特性を加味して、例えば,B,As,P,Sb等
が最適である。この他に、例えば熱拡散やイオプ
ランテーシヨンによつてLi等がインターステイア
シルドーピングされることでn型に制御すること
も可能である。
光導電層中にドーピングされる不純物の量は、
所望される電気的・光学的特性に応じて適宜決定
されるが、周期律表第族Aの不純物の場合に
は、通常10-6〜10-3atomic%、好適には10-5〜
10-4atomic%、周期律表第族Aの場合には通
常10-8〜10-3atomic%、好適には10-8〜
10-4atomic%とされるのが望ましい。
第2図には、本発明の電子写真用光導電部材の
別の実施態様例の構成を説明する為の模式的構成
図が示される。
第2図に示される電子写真用光導電部材200
は、光導電層203の上に、中間層202と同様
の機能を有する上部層205を設けた以外は、第
1図に示す電子写真用光導電部材100と同様の
層構造を有するものである。
即ち、電子写真用光導電部材200は、支持体
201の上に中間層102と同様の材料で同様の
機能を有する様に形成された中間層202と、a
―Si:Hで構成される光導電層203と、該光導
電層203上に設けられ自由表面204を有する
上部層205を具備している。
上部層205は、例えば電子写真用光導電部材
200を自由表面204に帯電処理を施して電荷
像を形成する場合の様な使い方をする際、自由表
面204に保持される可き電荷が光導電層203
中に流入するのを阻止し且つ、電磁波の照射を受
けた際には、光導電層203中に発生したフオト
キヤリアと、電磁波の照射を受けた部分の帯電電
荷とがリコンビネーシヨンを起す様に、フオトキ
ヤリアの通過又は帯電電荷の通過を容易に許す機
能を有する。
上部層205は、中間層202と同様の特性を
有する必要に応じて水素原子を含むa―(Six
C1-x)y:X1-yで構成される他a―SiaN1-a,a―
(SiaN1-a)b:H1-b,a―(SiaN1-a)b:(H+X)1
−b,a―SicO1-c,a―(SicO1-c)d:H1-d,a―
(SicO1-c)d:(H+X)1-d等の光導電層を構成する
母体原子であるシリコン原子と窒素原子又は酸素
原子とで構成されるか又は、これ等の原子を母体
とし水素原子(H)又は/及びハロゲン原子(X)を
含むアモルフアス材料、SiNO、Al3O3等の無機
絶縁性材料、ポリエステル、ポリパラキシリレ
ン、ポリウレタン等の有機絶縁性材料で構成する
ことも出来る。
而乍ら、上部層205を構成する材料として
は、生産性、量産性及び形成された層の電気的及
び使用環境的安定性等の点から、中間層202と
同様の特性を有するa―(SixC1-x)y:X1-yで構
成するか又は、ハロゲン原子を含まないa―Six
C1-xで構成するのが望ましい。上部層205を構
成する材料としては、上記に挙げた物質の他好適
なものとしては、シリコン原子と、C,N,Oの
中の少なくとも2つの原子を母体とし、ハロゲン
原子か又はハロゲン原子と水素原子とを含むアモ
ルフアス材料を挙げることが出来る。ハロゲン原
子としては、F,Cl,Br等が挙げられるが、熱
的安定性の点から上記アモルフアス材料の中Fを
含有するものが有効である。
上部層205を構成する材料の選択及びその層
厚の決定は、上部層205側より光導電層203
の感受する電磁波を照射する様にして電子写真用
光導電部材200を使用する場合には、照射され
る電磁波が光導電層203に充分量到達して、効
率良く、フオトキヤリアの発生を引き起させ得る
様に注意深く成される。
本発明に於ける上部層205の層厚としては、
前述した機能が充分発揮される様に、層を構成す
る材料、層形成条件等によつて所望に従つて適宜
決定される。
本発明に於ける上部層205の層厚としては、
通常の場合30〜1000Å、好適には50〜600Åとさ
れるのが望ましいものである。
本発明の電子写真用光導電部材を電子写真用像
形成部材として使用する場合にある種の電子写真
プロセスを採用するのであれば、第1図又は第2
図に示される層構成の光導電材の自由表面上に更
に表面被覆層を設ける必要がある。この場合の表
面被覆層は、例えば、特公昭42―23910号公報、
同43―24748号公報に記載されているNP方式の
様な電子写真プロセスを適用するのであれば、電
気的絶縁性であつて、帯電処理を受けた際の静電
荷保持能が充分あつて、ある程度以上の厚みがあ
ることが要求されるが、例えば、カールソンプロ
セスの如き電子写真プロセスを適用するのであれ
ば、静電像形成後の明部の電位は非常に小さいこ
とが望ましいので表面被覆層の厚さとしては非常
に薄いことが要求される。表面被覆層は、その所
望される電気的特性を満足するのに加えて、光導
電層又は上部層に化学的・物理的に悪影響を与え
ないこと、光導電層又は上部層との電気的接触及
び接着性、更には耐湿性、耐摩耗性、クリーニン
グ性等を考慮して形成される。
表面被覆層の形成部材として有効に使用される
ものとして、その代表的なのは、ポリエチレンテ
レフタレート、ポリカーボネート、ポリプロピレ
ン、ポリ塩化ビニル、ポリ塩化ピニリデン、ポリ
ビニルアルコール、ポリスチレン、ポリアミド、
ポリ四弗化エチレン、ポリ三弗化塩化エチレン、
ポリ弗化ビニル、ポリ弗化ピニリデン、六弗化プ
ロピレン―四弗化エチレンコポリマー、三弗化エ
チレン―弗化ビニリデンコポリマー、ポリブデ
ン、ポリビニルブチラール、ポリウレタン、ポリ
パラキシリレン等の有機絶縁体、シリコン窒化
物、シリコン酸化物等の無機絶縁体等が挙げられ
る。これ等の合成樹脂又はセルロース誘導体はフ
イルム状とされて光導電層又は上部層の上に貼合
されても良く、又、それ等の塗布液を形成して、
光導電層又は上部層上に塗布し、層形成しても良
い。表面被覆層の層厚は、所望される特性に応じ
て、又、使用される材質によつて適宜決定される
が、通常の場合、0.5〜40μm程度とされる。殊に
表面被覆層が先述した保護層としての機能が要求
される場合には、通常の場合10μm以下とされ、
逆に電気的絶縁層としての機能が要求される場合
には、通常の場合10μm以上とされる。而乍ら、
この保護層と電気絶縁層とを差別する層厚は、使
用材料及び適用される電子写真プロセス、設計さ
れる像形成部材の構造によつて、変動するもの
で、先の10μmという値は絶対的なものではない。
又、この表面被覆層は、反射防止層としての役
目も荷わせれば、その機能が一層拡大されて効果
的となる。
実施例 1
完全にシールドされたクリーンルーム中に設置
された第3図に示す装置を用い、以下の如き操作
によつて電子写真用像形成部材を作製した。
表面が清浄にされた0.5mm厚10cm角のモリブデ
ン板(基板)309を支持台302上に静置され
たグロー放電堆積室301内の所定位置にある固
定部材303に堅固に固定した。基板309は、
固定部材303内の加熱ヒーター308によつて
±0.5℃の精度で加熱される。温度は、熱電対
(アルメルークロメル)によつて基板裏面を直接
測定されるようになされた。次いで系内の全バル
ブが閉じられていることを確認してからメインバ
ブ310を全開して、堆積室301内が排気さ
れ、約5×10-6Torrの真空度にした。その後ヒ
ーター308の入力電圧を上昇させ、モリブデン
基板温度を検知しながら入力電圧を変化させ、
200℃の一定値になるまで安定させた。
その後、補助バルブ340、次いで流出バルブ
325,326,327,329、及び流入バル
ブ320,321,322,324を全開し、フ
ローメーター316,317,318,320内
を十分脱気真空状態にされた。補助バルブ34
0、バルブ325,326,327,329,3
20,321,322,324を閉じた後、H2
で70vol%に稀釈されたSiF4ガス(純度99.999%)
ボンベ311のバルブ330、H2で10vol%に稀
釈されたC2H4ガスボンベ312のバルブ331
を開け、出口圧ゲージ335,336の圧を1
Kg/cm2に調整し、流入バルブ320,321を
徐々に開けてフローメーター316,317内へ
SiF6ガス、C2H4ガスを流入させた。引続いて、
流出バルブ325,326を徐々に開け、次いで
補助バルブ340を徐々に開けた。このときSiF4
ガス流量とC2H4ガス流量比が1:60になるよう
に流入バルブ320,321を調整した。次にピ
ラニーゲージ341の読みを注視しながら補助バ
ルブ340の開口を調整し、室301内が1×
10-2Torrになるまで補助バルブ340を開けた。
堆積室301内圧が安定してから、メインバルブ
310を徐々に閉じ、ピラニーゲージ341の指
示が0.5Torrになるまで開口を絞つた。ガス流入
が安定し内圧が安定するのを確認した。続いて高
周波電源342のスイツチをON状態にして、誘
導コイル343に13.56MHzの高周波電力を投入
し、コイル部(室上部)の堆積室301内にグロ
ー放電を発生させ、60Wの入力電力とした。上記
条件で基板上に堆積させる為に1分間条件を保つ
て中間層を形成した。その後、高周波電源342
をoff状態とし、グロー放電を中止させた状態で、
流出バルブ325,326を閉じ、次にH2で
50volppmに希釈されたB2H6ガスボンベ313の
バルブ332、H2で10vol%に希釈されたSiH4ボ
ンベ315のバルブ334を開け、出口圧ゲージ
337,339の圧力を1Kg/cm2に調整し、流入
バルブ322,324を徐々に開けてフローメー
ター318,320内へB2H6ガス,SiH4ガスを
流入させた。引続いて流出バルブ327,329
を徐々に開けた。このときB2H6ガス流量とSiH4
ガス流量比が1:50になるように流入バルブ32
2,324を調整した。次に中間層の形成時と同
様にピラニーゲージ341の指示が0.5Torrにな
る様に補助バルブ340、メインバルブ310の
開口を調整し、安定化させた。
引き続き、再び高周波電源342をon状態に
して、グロー放電を再開させた。このときの入力
電力を10Wにし以前より減少させた。こうしてグ
ロー放電を更に3時間持続させて光導電層を形成
した後、加熱ヒーター308をoff状態にし、高
周波電源342もoff状態とし、基板温度が100℃
になるのを待つてから流出バルブ327,329
及び流入バルブ320,321,322,324
を閉じ、メインバルブ310を全開にして、堆積
室301内を10-3Torr以下にした後、メインバ
ルブ310を閉じ、堆積室301内をリークバル
ブ343によつて大気圧として基板を取り出し
た。この場合、形成された層の全厚は約9μmであ
つた。こうして得られた電子写真用像形成部材
を、帯電露光実験装置に設置し、6.0KVで
0.2sec間コロナ帯電を行い、直ちに光像を照射し
た。光像は、タングステンランプ光源を用い、
0.8lux・secの光量を透過型のテストチヤートを
通して照射させた。
その後、直ちに、荷電性の現像剤(トナーと
キヤリアーを含む)を部材表面にカスケードする
ことによつて、部材表面上に良好なトナー画像を
得た。部材上のトナー画像を、5.0KVのコロナ
帯電で転写紙上に転写した処、解像力に優れ、階
調再現性のよい鮮明な高濃度の画像が得られた。
次に上記像形成部材に就て、帯電露光実験装置
で5.5KVで0.2sec間のコロナ帯電を行い、直ち
に0.8lux・secの光量で画像露光を行い、その後
直ちに荷電性の現像剤を部材表面にカスケード
し、次に転写紙上に転写・定着したところ極めて
鮮明な画像が得られた。
この結果と先の結果から本実施例で得られた電
子写真用像形成部材は帯電極地に対する依存性が
なく、両極性像形成部材の特性を具備しているこ
とが判つた。
実施例 2
モリブデン基板上に中間層を形成する際のグロ
ー放電保持時間を、下記の第1表に示す様に種々
変化させた以外は実施例1と全く同様の条件及び
手順によつて試料No.〜で示される電子写真用
像形成部材を作成し、実施例1と全く同様の帯電
露光実験装置に設置して同様の画像形成を行つた
ところ下記の第1表に示す如き結果を得た。
第1表に示される結果から判る様に、本発明の
目的を達成するには中間層の膜厚を30Å〜1000Å
の範囲で形成する必要がある。
[Industrial Application Field] The present invention is directed to light (here, light in a broad sense, including ultraviolet rays, visible rays, infrared rays, X-rays, γ-rays, etc.)
The present invention relates to photoconductive members for electrophotography that are sensitive to electromagnetic waves such as. [Prior Art] Photoconductive materials constituting image forming members for electrophotography in the image forming field are highly sensitive, have a high signal-to-noise ratio [photocurrent (Ip)/dark current (Id)], and are suitable for irradiation. It is required to have characteristics such as having electromagnetic wave spectral characteristics, good photoresponsiveness, a desired dark resistance value, and being non-polluting to the human body during use. Particularly in the case of an electrophotographic image forming member incorporated into an electrophotographic apparatus used in an office as a business machine, the pollution-free nature during use is an important point. Based on these points, amorphous silicon (hereinafter referred to as Si) is a photoconductive material that has recently attracted attention.
For example, German Publication No. 2746967 and German Publication No. 2855718 describe its application as an image forming member for electrophotography, and JP-A-55-39404 describes its application to a photoelectric conversion/reading device. . [Problems to be Solved by the Invention] However, conventional photoconductive members for electrophotography having a photoconductive layer composed of a-Si have poor electrical properties such as dark resistance, photosensitivity, and photoresponsiveness. There are points that can be further improved in terms of usage environment characteristics such as optical and photoconductive properties and moisture resistance, and practical electrophotographic imaging members have improved productivity and mass production. The reality is that it cannot be used effectively, taking into account the following. For example, when applied to electrophotographic image forming members, it is often observed that residual potential remains during use, and such photoconductive members for electrophotography may repeatedly be used for long periods of time. Accumulation of fatigue occurs due to use. There have been many disadvantages, such as a so-called ghost phenomenon in which an afterimage occurs. Furthermore, for example, according to many experiments conducted by the present inventors, a-Si as a material constituting the photoconductive layer of an electrophotographic image forming member is superior to conventional Se, CdS, ZnO, PVCz, TNF, etc. It has many advantages compared to OPC (organic electrophotographic photoconductive material), but it has a single-layer photoconductive layer made of a-Si that has properties suitable for use in conventional solar cells. Even if the photoconductive layer of an electrophotographic image forming member is subjected to charging treatment for electrostatic image formation, dark decay (dark decay) remains.
(decay) is extremely fast, making it difficult to apply normal electrophotographic methods, and the above tendency is significant in humid atmospheres, and in some cases, it may not be possible to retain the charged charge at all until the development time. It has been found that there are possible points that can be solved. Therefore, while efforts are being made to improve the properties of the a-Si material itself, it is necessary to take measures to obtain desired electrical, optical, and photoconductive properties when designing photoconductive members for electrophotography. be. The present invention has been made in view of the above points, and includes a
-As a result of intensive research and study on Si from the viewpoint of its applicability as a photoconductive member for electrophotography used in image forming members for electrophotography and its applicability, we found that silicon atoms are used as a matrix and hydrogen atoms are used as a matrix. A layer in which a specific intermediate layer is interposed between a photoconductive layer made of an amorphous material containing hydrogenated amorphous silicon (hereinafter referred to as a-Si; H) and a support that supports the photoconductive layer. The photoconductive member for electrophotography designed and manufactured according to the structure is not only usable for practical use, but also superior in most respects when compared with conventional photoconductive members for electrophotography. This is based on the discovery that it has particularly excellent properties as a photoconductive member for electrophotography. [Objective of the present invention] The present invention has stable electrical, optical, and photoconductive properties at all times, is applicable to all environments with almost no restrictions on usage environments, is extremely resistant to light fatigue, and is suitable for repeated use. The main object of the present invention is to provide a photoconductive member for electrophotography that does not cause any deterioration phenomenon and has no or almost no residual potential observed. Another object of the present invention is to provide a photoconductive member for electrophotography which has high photosensitivity, has a spectral sensitivity region that covers substantially the entire visible light region, and has fast photoresponsiveness. Another object of the present invention is to maintain charge retention during charging processing for electrostatic image formation to such an extent that ordinary electrophotography can be applied very effectively when applied as an image forming member for electrophotography. It is an object of the present invention to provide a photoconductive member for electrophotography, which has sufficient performance and excellent electrophotographic properties with almost no deterioration of the properties observed even in a humid atmosphere. Still another object of the present invention is to provide a photoconductive member for electrophotography that can easily obtain high-quality images with high density, clear halftones, and high resolution. be. [Structure of the present invention] The photoconductive member for electrophotography of the present invention is provided between a support, a photoconductive layer made of an amorphous material having silicon atoms as a matrix and containing hydrogen atoms, and A function of preventing carriers from flowing into the photoconductive layer from the support side and allowing carriers generated in the photoconductive layer and moving toward the support side by electromagnetic wave irradiation to pass from the photoconductive layer side to the support side. In a photoconductive member for electrophotography, the intermediate layer comprises silicon atoms and 40 to 40
Carbon atoms in an amount of 90 atomic% as a base, and halogen atoms in an amount of 1 to 20 atomic%, or halogen atoms and hydrogen atoms in an amount of 1 to 20 atomic% as the sum of both.
It is characterized by being composed of a non-photoconductive amorphous material containing 20 atomic%. DESCRIPTION OF THE PREFERRED EMBODIMENTS The electrophotographic photoconductive member of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic configuration diagram schematically shown for explaining a basic configuration example of a photoconductive member for electrophotography according to the present invention. The electrophotographic photoconductive member 100 shown in FIG.
The present invention has a layer structure consisting of an intermediate layer 102 and a photoconductive layer 103 provided in direct contact with the intermediate layer 102 on a support 101 for use as a photoconductive member for electrophotography. This is the most basic example of the invention. The support 101 may be conductive, electrical, or electrically insulating. Examples of the conductive support include NiCr, stainless steel, Al, Cr, Mo,
Examples include metals such as Au, Nb, Ta, V, Ti, Pt, and Pd, and alloys thereof. As the electrically insulating support, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose, acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used. Ru. Preferably, at least one surface of these electrically insulating supports is conductively treated, and another layer is preferably provided on the conductively treated surface side. For example, if the surface is glass, NiCr, Al, etc.
Cr, Mo, Au, Ir, Nb, Ta, V, Ti, Pt, Pd,
If it is conductive treated by providing a thin film of In 2 O 3 , SnO 2 , ITO (In 2 O 3 + SnO 2 ), or a synthetic resin film such as polyester film,
NiCr, Al, Ag, Pb, Zn, Ni, Au, Cr, Mo,
Vacuum deposition of metals such as Ir, Nb, Ta, V, Ti, Pt, etc.
The surface is made conductive by processing by electron beam evaporation, sputtering, etc., or by laminating with the metal. The shape of the support body is cylindrical,
It can be obtained in any shape such as a belt shape or a plate shape, and the shape is determined depending on the desire.
If the photoconductive member 100 for electrophotography shown in the figure is used as an image forming member for electrophotography, it is preferable that the photoconductive member 100 be in the shape of an endless belt or a cylinder in the case of continuous high-speed copying. The thickness of the support is appropriately determined so as to form a desired photoconductive member for electrophotography, but if flexibility is required as a photoconductive member for electrophotography, the thickness of the support may be determined as desired. It is made as thin as possible within the range where its functions can be fully demonstrated. However, in such cases, in manufacturing and handling of the support,
In terms of mechanical strength, etc., the thickness is usually 10 μm or more. The intermediate layer 102 is made of a non-photoconductive amorphous material [a-(Si x C 1-x ) containing silicon atoms and carbon atoms and halogen atoms (denoted as X).
y : Abbreviated as X1 -y . However, 0<x<1, 0<y<
1], which effectively prevents carriers from flowing into the photoconductive layer 103 from the support 101 side, and which is generated in the photoconductive layer 103 by electromagnetic wave irradiation and directed toward the support 101 side. It has a function of easily allowing the photo carrier moving along the substrate to pass from the side of the photoconductive layer 103 to the side of the support 101. a-(Si x C 1-x ) y : Intermediate layer 1 composed of X 1-y
02 is formed by a glow discharge method, a sputtering method, an ion implantation method, an ion plating method, an electron beam method, or the like. These manufacturing methods are appropriately selected and adopted depending on factors such as manufacturing conditions, amount of equipment capital investment, manufacturing scale, and desired characteristics of the photoconductive member for electrophotography to be manufactured. It is relatively easy to control the manufacturing conditions for manufacturing a photoconductive member for electrophotography having desired characteristics. Carbon atoms and halogen atoms can be easily introduced into the intermediate layer to be manufactured along with silicon atoms. Due to these advantages, the glow discharge method or the sputtering method is preferably employed. Furthermore, in the present invention, the intermediate layer 102 may be formed by using a glow discharge method and a sputtering method in the same apparatus system. In order to form the intermediate layer 102 by the glow discharge method, the raw material gas for forming a-(Si x C 1 -x ) y : The mixed gas is introduced into a deposition chamber for vacuum deposition in which the support 101 is installed, and the introduced gas is turned into gas plasma by generating a glow discharge to form a-(Si) on the support 101. x C 1-x ) y : Just deposit X 1-y . In the present invention, the raw material gas for forming a-(Si x C 1-x ) y :X 1-y is a gaseous substance containing at least one of Si, C, and X as a constituent atom. Alternatively, most gasified substances can be used. When using a raw material gas containing Si as one of Si, C, and X, for example, a raw material gas containing Si as a constituent atom, a raw material gas containing C as a constituent atom, and a raw material gas containing Alternatively, a raw material gas containing Si and a raw material gas containing C and X may be mixed at a desired mixing ratio. or with a raw material gas containing Si as a constituent atom,
It is possible to use a mixture of a raw material gas whose constituent atoms are Si, C, and X. Alternatively, a raw material gas containing Si and X as constituent atoms may be mixed with a raw material gas containing C as constituent atoms. In the present invention, preferred halogen atoms X are F, Cl, Br, and I, with F and Cl being particularly preferred. In the present invention, the intermediate layer 102 is a-(Si x
C 1-x ) y :Although it is composed of X 1-y , the intermediate layer 102 can further contain hydrogen atoms. The inclusion of hydrogen atoms in the intermediate layer 102 is advantageous in terms of production costs since it is possible to share some of the raw material gas types when forming a continuous layer with the photoconductive layer 103. In the present invention, raw material gases that can be effectively used to form the intermediate layer 102 include gaseous materials or substances that can be easily gasified at room temperature and normal pressure. . Such substances for forming the intermediate layer include, for example, saturated hydrocarbons having 1 to 4 carbon atoms, ethylene hydrocarbons having 2 to 4 carbon atoms, acetylene hydrocarbons having 2 to 3 carbon atoms, simple halogens, and halogenated hydrocarbons. Examples include hydrogen, interhalogen compounds, silicon halides, halogen-substituted silicon hydrides, and silicon hydrides. Specifically, saturated hydrocarbons include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), n
-Butane (n-C 4 H 10 ), pentane (C 5 H 12 ), ethylene hydrocarbons include ethylene (C 2 H 4 ),
Propylene (C 3 H 6 ), butene-1 (C 4 H 8 ), butene-2 (C 4 H 8 ), isobutylene (C 4 H 8 ), pentene (C 5 H 10 ), acetylenic hydrocarbons ,
Acetylene (C 2 H 2 ), methylacetylene (C 3 H 4 ), butyne (C 4 H 6 ), halogen gases include fluorine, chlorine, bromine, and iodine; hydrogen halides include FH, HI, HCl,
HBr, interhalogen compounds include BrF, ClF,
ClF 3 , ClF 5 , BrF 5 , BrF 3 , IF 7 , IF 5 , ICl, IBr,
Examples of silicon halides include SiF 4 , Si 2 F 6 , SiCl 4 ,
SiCl 3 Br, SiCl 2 Br 2 , SiClBr 3 , SiCl 3 I, SiBr 4 ,
Examples of halogen-substituted silicon hydride include SiH 2 F 2 ,
SiH 2 Cl 2 , SiHCl 3 , SiH 3 Cl, SiH 3 Br, SiH 2 Br 2 ,
SiHBr 3 , as silicon hydride, SiH 4 , Si 2 H 6 ,
Examples include silanes such as Si 3 H 8 and Si 4 H 10 . In addition to these, CCl 4 , CHF 3 , CH 2 F 2 , CH 3 F,
Halogen-substituted paraffinic hydrocarbons such as CH 3 Cl, CH 3 Br, CH 3 I, C 2 H 5 Cl, fluorinated sulfur compounds such as SF 4 and SF 6 , Si(CH 3 ) 4 , Si(C 2 Alkyl silicides such as H 5 ) 4 , SiCl (CH 3 ) 3 , SiCl 2 (CH 3 ) 2 ,
Derivatives of silanes such as halogen-containing alkyl silicides such as SiCl 3 CH 3 may also be mentioned as useful. These intermediate layer forming substances are used during the formation of the intermediate layer so that the intermediate layer to be formed contains silicon atoms, carbon atoms, halogen atoms, and hydrogen atoms as necessary in a predetermined composition ratio. be selected and used as desired. For example, SiHCl 3 and SiCl contain Si(CH 3 ) 4 and halogen atoms, which can easily contain silicon atoms, carbon atoms, and hydrogen atoms, and form an intermediate layer with desired characteristics. 4 , SiH 2 Cl 2 or SiH 3 Cl, etc. in a gaseous state at a predetermined mixing ratio is introduced into the intermediate layer forming apparatus system to generate a glow discharge, thereby producing a-Si x C 1-x : An intermediate layer consisting of Cl:H can be formed. To form the intermediate layer 102 by the sputtering method, a monocrystalline or polycrystalline Si wafer, a C wafer, or a wafer containing a mixture of Si and C is targeted, and these are combined with halogen. Depending on the requirements, sputtering may be performed in various gas atmospheres containing hydrogen as a constituent. For example, if a Si wafer is used as a target, the raw material gas for introducing C and The Si wafer may be sputtered by forming plasma. Alternatively, sputtering can be carried out in a gas atmosphere containing at least halogen atoms by using separate targets for Si and C or by using a single target in which Si and C are mixed. It is accomplished by doing so. C and X, H as necessary
As the material serving as the raw material gas for introduction, the material for forming the intermediate layer shown in the glow discharge example described above can also be used as an effective material in the sputtering method. In the present invention, a so-called rare gas, such as He,
Preferable examples include Ne and Ar. The intermediate layer 102 in the present invention is carefully formed to provide the desired properties. In other words, substances whose constituent atoms are Si, C, X, and optionally H have a structure ranging from crystalline to amorphous depending on the conditions for their creation, and electrical properties ranging from conductivity to amorphous. In the present invention, non-photoconductive a-(Si x The creation conditions are strictly selected so that C 1-x ) y :X 1-y is formed. a-(Si x
C 1-x ) y :X 1-y indicates that the function of the intermediate layer 102 is that of the support 1
This serves to prevent carriers from flowing into the photoconductive layer 103 from the 01 side, and to easily allow photocarriers generated in the photoconductive layer 103 to move and pass to the support 101 side. Therefore,
It is formed to exhibit electrically insulating behavior. Further, when the photocarrier generated in the photoconductive layer 103 passes through the intermediate layer 102, a has a mobility value for the passing carrier to such an extent that the photocarrier passes through the intermediate layer 102 smoothly. -(Si x C 1-x ) y :X 1-y is an important factor in the production conditions, including the temperature of the support during production. That is, a-(Si x C 1-x ) is formed on the surface of the support 101.
When forming the intermediate layer 102 consisting of y:X1 -y , the temperature of the support during layer formation is an important factor that influences the structure and properties of the formed layer. a-(Si x C 1-x ) having the desired properties
The temperature of the support during layer formation is strictly controlled so that y : X 1-y can be formed as desired. In order to effectively achieve the desired purpose of the present invention, the temperature of the support when forming the intermediate layer 102 is appropriately selected in an optimum range in accordance with the method of forming the intermediate layer 102. 102 formation is carried out, typically between 100°C and 300°C, preferably at 150°C.
It is desirable that the temperature is between ℃ and 250℃. For forming the intermediate layer 102, the intermediate layer 102 is formed in the same system.
Fine control of the composition ratio of atoms constituting each layer and layer thickness allows continuous formation from the photoconductive layer 103 to the third layer formed on the photoconductive layer 103 if necessary. It is advantageous to adopt a glow discharge method or a sputtering method because the control is relatively easy compared to other methods. However, when forming the intermediate layer 102 using these layer forming methods, for,
Similar to the support temperature described above, the discharge power during layer formation is one of the important factors that influences the characteristics of a-(Si x C 1-x ) y :X 1-y created. The discharge power conditions for effectively producing a-(Si x C 1-x ) y :
10-200W, preferably 20-100W. It is desirable that the gas pressure in the deposition chamber is usually about 0.01 to 1 Torr, preferably about 0.1 to 0.5 Torr. The amount of carbon atoms and halogen atoms contained in the intermediate layer 102 in the photoconductive member for electrophotography of the present invention is such that, similar to the manufacturing conditions of the intermediate layer 102, desired characteristics to achieve the object of the present invention can be obtained. This is an important factor in the formation of the intermediate layer. The amount of carbon atoms contained in the intermediate layer 102 in the present invention is usually 40 to 90 atomic%, preferably
It is desirable that the content be 50 to 90 atomic%, most preferably 60 to 80 atomic%. The content of halogen atoms is usually 1 to 20 atomic%, preferably 2 to 15 atomic%,
Electrophotographic photoconductive members prepared when the halogen content is within these ranges can be sufficiently applied to practical applications. The content of hydrogen atoms that are included as necessary is usually 19 atomic.
% or less, preferably 13 atomic % or less. That is, the previous a-(Si x C 1-x )
y : If expressed as
0.99~0.80, preferably 0.99~0.82, optimally 0.98~
It is 0.85. When both halogen atoms and hydrogen atoms are included, the numerical range of x and y in this case is also a ―
(Si x C 1-x ) y : Almost the same as in the case of X 1-y . The numerical range of the layer thickness of the intermediate layer 102 in the present invention is one of the important factors for effectively achieving the object of the present invention. If the layer thickness of the intermediate layer 102 is too thin,
If the thickness is too thick, the photoconductive layer 1 will not be able to sufficiently prevent carriers from flowing into the photoconductive layer 103 from the side of the support 101.
Photocarrier support 1 produced in 03
The probability of passing to the 01 side becomes extremely small,
Therefore, in either case, the object of the present invention cannot be effectively achieved. Intermediate layer 1 for effectively achieving the object of the present invention
The layer thickness of 02 is usually 30 to 1000 Å, preferably 50 to 600 Å. In the present invention, in order to effectively achieve the purpose, a photoconductive layer 103 is laminated on the intermediate layer 102.
is composed of a-Si having the semiconductor properties shown below. p-type a-Si:H... Contains only acceptor. Or one that contains both a donor and an acceptor and has a high acceptor concentration (Na). p - type a-Si: H... type lightly doped with a so-called p-type impurity that has a low acceptor concentration (Na). n-type a-Si:H...Contains only a donor. Or one that contains both donor and acceptor and has a high donor concentration (Nd). n - type a-Si:H...type with low donor concentration (Nd), lightly doped with so-called n-type impurities. i-type a-Si:H...NaNdO or,
NaNd stuff. In the present invention, by providing the intermediate layer 102, a-Si:H that constitutes the photoconductive layer 103 as described above can be used with a relatively low resistance compared to the conventional one. However, in order to obtain better results, the dark resistance of the photoconductive layer 103 to be formed is preferably 5×10 9 Ωcm or more, most preferably 10 10 Ωcm.
It is desirable that the photoconductive layer 103 be formed as described above. In particular, this numerical condition of the dark resistance value is an important factor when the produced photoconductive member for electrophotography is used as an image forming member for electrophotography. The layer thickness of the photoconductive layer of the photoconductive member for electrophotography in the present invention is suitably determined as desired in accordance with the purpose. In the present invention, the layer thickness of the photoconductive layer is as follows:
The thickness relationship between the photoconductive layer and the intermediate layer can be appropriately determined as desired so that the functions of the photoconductive layer and the intermediate layer can be effectively utilized and the objects of the present invention can be effectively achieved. In normal cases, the layer thickness is preferably several hundred to several thousand times or more than the thickness of the intermediate layer. A specific value is usually 1 to 100 μm, preferably 2 to 50 μm. In the present invention, in order to make the photoconductive layer a layer composed of a-Si:H, when forming these layers, H is contained in the layer by the following method. . Here, "H is contained in the layer"
This means that there is a state in which H is combined with Si, a state in which H is ionized and incorporated into the layer, or a state in which H is incorporated into the layer as H2 , or a combination of these. means the state of being As a method for incorporating H into the photoconductive layer, for example, when forming the layer, SiH 4 , Si 2 H 6 ,
It is introduced in the form of silicon compounds such as silanes such as Si 3 H 8 and Si 4 H 10 , and these compounds are decomposed by the glow discharge decomposition method to remove the contained substances as the layer grows. Ru. When forming a photoconductive layer by this glow discharge method, the starting material for forming a-Si is SiH 4 ,
When silicon hydride gas such as Si 2 H 6 , Si 3 H 8 , Si 4 H 10 is decomposed to form a layer, H is automatically contained in the layer. When using the reaction sputtering method, He or
When performing sputtering with Si as a target in an inert gas such as Ar or a mixed gas atmosphere based on these gases, H 2 gas is introduced or SiH 4 , Si 2 H 6 , Si 3 H is used. Silicon hydride gas such as 8 , Si 4 H 10 , or a gas such as B 2 H 6 or PH 3 which also serves as impurity doping may be introduced. According to the findings of the present inventors, the H content of the photoconductive layer composed of a-Si:H is sufficient to determine whether the formed photoconductive member for electrophotography can be sufficiently applied in practice. It turned out that this is one of the major factors that influences the situation and is extremely important. In order for the photoconductive member for electrophotography to be formed in the present invention to be sufficiently applicable to practical applications, the amount of H contained in the photoconductive layer is usually 1 to 1.
It is desirable that the content be 40 atomic %, preferably 5 to 30 atomic %. The amount of H contained in the layer can be controlled, for example, by controlling the temperature of the deposition support, the amount of starting material used to incorporate H into the deposition system, the discharge force, etc. Just do it. In order to make the photoconductive layer n-type or p-type, an n-type impurity, a p-type impurity, or both impurities are added to the formed layer during layer formation using a glow discharge method, a reactive sputtering method, etc. This is achieved by controlling the amount of doping. As impurities to be doped into the photoconductive layer, elements of group A of the periodic table, such as B, Al, Ga, In, Tl, etc., are preferably used to make the photoconductive layer p-type. and when making it n-type,
Elements of group A of the periodic table, such as N, P, As,
Preferable examples include Sb and Bi. Since the amount of these impurities contained in the layer is on the order of ppm, it is not necessary to pay as much attention to their pollution properties as the main materials that make up the photoconductive layer, but we use materials that are as non-polluting as possible. It is preferable to use From this point of view, B, As, P, Sb, etc. are optimal, taking into consideration the electrical and optical characteristics of the layer to be formed. In addition, it is also possible to control the material to n-type by interstitial doping with Li or the like by thermal diffusion or ioplantation, for example. The amount of impurity doped into the photoconductive layer is
It is determined as appropriate depending on the desired electrical and optical properties, but in the case of impurities in Group A of the periodic table, it is usually 10 -6 to 10 -3 atomic%, preferably 10 -5 to 10 -3 atomic%.
10 -4 atomic%, usually 10 -8 to 10 -3 atomic% in the case of group A of the periodic table, preferably 10 -8 to
It is desirable to set it to 10 -4 atomic%. FIG. 2 shows a schematic configuration diagram for explaining the configuration of another embodiment of the electrophotographic photoconductive member of the present invention. Electrophotographic photoconductive member 200 shown in FIG.
has the same layer structure as the electrophotographic photoconductive member 100 shown in FIG. 1, except that an upper layer 205 having the same function as the intermediate layer 202 is provided on the photoconductive layer 203. . That is, the electrophotographic photoconductive member 200 includes an intermediate layer 202 formed on a support 201 using the same material as the intermediate layer 102 and having the same function, and a
- A photoconductive layer 203 composed of Si:H and an upper layer 205 provided on the photoconductive layer 203 and having a free surface 204. When the upper layer 205 is used, for example, when the electrophotographic photoconductive member 200 is subjected to a charging treatment on the free surface 204 to form a charge image, the charge that can be held on the free surface 204 is used to conduct photoconductivity. layer 203
When the photoconductive layer 203 is prevented from flowing into the photoconductive layer 203 and is irradiated with electromagnetic waves, the photocarriers generated in the photoconductive layer 203 and the charged charges on the portions irradiated with the electromagnetic waves are recombined. In addition, it has a function of easily allowing photo carriers or charged charges to pass through. The upper layer 205 is made of a-(Si x
C 1-x ) y : Composed of X 1-y and a-Si a N 1-a , a-
(Si a N 1-a ) b : H 1-b , a-(Si a N 1-a ) b : (H+X) 1
-b , a-Si c O 1-c , a- (Si c O 1-c ) d : H 1-d , a-
(Si c O 1-c ) d : (H + It must be composed of an amorphous material containing hydrogen atoms (H) and/or halogen atoms (X), inorganic insulating materials such as SiNO and Al 3 O 3 , and organic insulating materials such as polyester, polyparaxylylene, and polyurethane. You can also do it. However, the material constituting the upper layer 205 is a-( Si x C 1-x ) y : a - Si x consisting of X 1-y or containing no halogen atom
It is preferable to configure it with C 1-x . In addition to the materials listed above, suitable materials for forming the upper layer 205 include silicon atoms and at least two atoms among C, N, and O, and halogen atoms or halogen atoms. Examples include amorphous materials containing hydrogen atoms. Examples of the halogen atom include F, Cl, Br, etc. Among the above amorphous materials, those containing F are effective from the viewpoint of thermal stability. The selection of the material constituting the upper layer 205 and the determination of its layer thickness are carried out from the upper layer 205 side to the photoconductive layer 203.
When the photoconductive member 200 for electrophotography is used in such a manner as to irradiate electromagnetic waves that are detected by It is done carefully so that it can be done. The layer thickness of the upper layer 205 in the present invention is as follows:
In order to fully exhibit the above-mentioned functions, it is determined as desired depending on the material constituting the layer, the layer formation conditions, etc. The layer thickness of the upper layer 205 in the present invention is as follows:
In general, the thickness is preferably 30 to 1000 Å, preferably 50 to 600 Å. If a certain type of electrophotographic process is employed when the electrophotographic photoconductive member of the present invention is used as an electrophotographic image forming member, FIG.
It is necessary to provide a further surface coating layer on the free surface of the photoconductive material in the layer configuration shown in the figure. In this case, the surface coating layer is, for example, disclosed in Japanese Patent Publication No. 42-23910,
If an electrophotographic process such as the NP method described in Publication No. 43-24748 is to be applied, it must be electrically insulating and have sufficient electrostatic charge retention ability when subjected to charging treatment. Although a certain thickness is required, for example, if an electrophotographic process such as the Carlson process is applied, it is desirable that the potential of the bright area after electrostatic image formation is very small, so the surface coating layer is The thickness is required to be extremely thin. In addition to satisfying its desired electrical properties, the surface coating layer must not have any adverse chemical or physical effects on the photoconductive layer or the upper layer, and must not have electrical contact with the photoconductive layer or the upper layer. It is formed in consideration of adhesion, moisture resistance, abrasion resistance, cleanability, etc. Typical materials effectively used as forming members for the surface coating layer include polyethylene terephthalate, polycarbonate, polypropylene, polyvinyl chloride, polypinylidene chloride, polyvinyl alcohol, polystyrene, polyamide,
Polytetrafluoroethylene, polytrifluorochloroethylene,
Organic insulators such as polyvinyl fluoride, polypynylidene fluoride, propylene hexafluoride-ethylene tetrafluoride copolymer, ethylene trifluoride-vinylidene fluoride copolymer, polybutene, polyvinyl butyral, polyurethane, polyparaxylylene, silicon nitride and inorganic insulators such as silicon oxide. These synthetic resins or cellulose derivatives may be made into a film and laminated onto the photoconductive layer or the upper layer, or a coating solution may be formed,
It may be coated on the photoconductive layer or the upper layer to form a layer. The thickness of the surface coating layer is appropriately determined depending on the desired characteristics and the material used, but is usually about 0.5 to 40 μm. In particular, when the surface coating layer is required to function as the above-mentioned protective layer, the thickness is usually 10 μm or less,
Conversely, when a function as an electrically insulating layer is required, the thickness is usually 10 μm or more. However,
The layer thickness that distinguishes between the protective layer and the electrically insulating layer varies depending on the materials used, the electrophotographic process applied, and the structure of the image forming member designed, and the above value of 10 μm is an absolute value. It's not something. Furthermore, if this surface coating layer also serves as an antireflection layer, its function will be further expanded and it will become more effective. Example 1 Using the apparatus shown in FIG. 3 installed in a completely shielded clean room, an electrophotographic image forming member was produced by the following operations. A molybdenum plate (substrate) 309 having a surface cleaned and having a thickness of 0.5 mm and 10 cm square was firmly fixed to a fixing member 303 at a predetermined position in a glow discharge deposition chamber 301 placed on a support stand 302 . The substrate 309 is
It is heated with an accuracy of ±0.5° C. by a heater 308 inside the fixed member 303. Temperature was measured directly on the backside of the substrate by a thermocouple (Almeru Cromel). Next, after confirming that all valves in the system were closed, the main bubble 310 was fully opened to exhaust the inside of the deposition chamber 301 to a degree of vacuum of approximately 5×10 −6 Torr. After that, the input voltage of the heater 308 is increased, and the input voltage is changed while detecting the molybdenum substrate temperature.
It was stabilized until it reached a constant value of 200℃. After that, the auxiliary valve 340, then the outflow valves 325, 326, 327, 329, and the inflow valves 320, 321, 322, 324 were fully opened, and the inside of the flow meters 316, 317, 318, 320 was sufficiently degassed and vacuumed. . Auxiliary valve 34
0, valve 325, 326, 327, 329, 3
After closing 20, 321, 322, 324, H 2
SiF4 gas diluted to 70vol% (purity 99.999%)
Valve 330 of cylinder 311, valve 331 of C 2 H 4 gas cylinder 312 diluted to 10 vol% with H 2
, and set the pressure on the outlet pressure gauges 335 and 336 to 1.
Adjust to Kg/cm 2 and gradually open the inflow valves 320 and 321 to enter the flow meters 316 and 317.
SiF 6 gas and C 2 H 4 gas were introduced. Subsequently,
The outflow valves 325, 326 were gradually opened, and then the auxiliary valve 340 was gradually opened. At this time, SiF 4
The inflow valves 320 and 321 were adjusted so that the ratio of gas flow rate to C 2 H 4 gas flow rate was 1:60. Next, while watching the reading on the Pirani gauge 341, adjust the opening of the auxiliary valve 340 so that the inside of the chamber 301 is 1×.
Auxiliary valve 340 was opened until 10 -2 Torr.
After the internal pressure of the deposition chamber 301 became stable, the main valve 310 was gradually closed and the opening was throttled until the reading on the Pirani gauge 341 reached 0.5 Torr. It was confirmed that the gas inflow was stable and the internal pressure was stable. Next, the switch of the high frequency power supply 342 was turned on, and 13.56 MHz high frequency power was applied to the induction coil 343 to generate a glow discharge in the deposition chamber 301 in the coil section (upper part of the chamber), resulting in an input power of 60 W. . In order to deposit the intermediate layer on the substrate under the above conditions, the conditions were maintained for 1 minute to form an intermediate layer. After that, the high frequency power supply 342
When the is turned off and the glow discharge is stopped,
Close the outflow valves 325, 326 and then with H2
Open the valve 332 of the B2H6 gas cylinder 313 diluted to 50volppm and the valve 334 of the SiH4 cylinder 315 diluted to 10vol% with H2 , and adjust the pressure of the outlet pressure gauges 337, 339 to 1Kg/ cm2. Then, the inflow valves 322 and 324 were gradually opened to allow B 2 H 6 gas and SiH 4 gas to flow into the flow meters 318 and 320. Subsequently, the outflow valves 327, 329
I gradually opened it. At this time, B 2 H 6 gas flow rate and SiH 4
Inlet valve 32 so that the gas flow ratio is 1:50.
2,324 were adjusted. Next, as in the case of forming the intermediate layer, the openings of the auxiliary valve 340 and the main valve 310 were adjusted so that the reading on the Pirani gauge 341 was 0.5 Torr, and the temperature was stabilized. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at this time was reduced to 10W compared to before. After continuing the glow discharge for another 3 hours to form a photoconductive layer, the heating heater 308 is turned off, the high frequency power supply 342 is also turned off, and the substrate temperature reaches 100°C.
Wait until the outflow valves 327, 329
and inflow valves 320, 321, 322, 324
was closed and the main valve 310 was fully opened to reduce the pressure inside the deposition chamber 301 to 10 -3 Torr or less, then the main valve 310 was closed and the inside of the deposition chamber 301 was brought to atmospheric pressure by the leak valve 343, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 9 μm. The electrophotographic image forming member obtained in this way was installed in a charging exposure experimental device and exposed to 6.0KV.
Corona charging was performed for 0.2 seconds, and a light image was immediately irradiated. The optical image is created using a tungsten lamp light source.
A light intensity of 0.8 lux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the member by cascading a charged developer (including toner and carrier) onto the surface of the member. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Next, the image forming member is corona charged at 5.5 KV for 0.2 seconds using a charging exposure experiment device, and immediately subjected to image exposure at a light intensity of 0.8 lux・sec. Immediately thereafter, a charged developer is applied to the surface of the member. When the image was transferred and fixed onto transfer paper, an extremely clear image was obtained. From this result and the previous results, it was found that the electrophotographic image forming member obtained in this example had no dependence on the charging electrode and had the characteristics of a bipolar image forming member. Example 2 Sample No. An electrophotographic image forming member shown in .~ was prepared, and when it was installed in the charging exposure experimental apparatus exactly as in Example 1 and the same image formation was performed, the results shown in Table 1 below were obtained. . As can be seen from the results shown in Table 1, in order to achieve the purpose of the present invention, the thickness of the intermediate layer is 30 Å to 1000 Å.
It is necessary to form within the range of .
【表】
◎:優 ○:良 △:実用上使用し得る ×:不可
中間層の膜堆積速度:1Å/sec
実施例 3
モリブデン基板上に中間層を形成する際に,
SiF4ガス流量とC2H4ガス流量比を下記の第2表
に示す様に種々変化させた以外は実施例1と全く
同様の条件及び手順によつて試料No.〜で示さ
れる電子写真用像形成部材を作成し、実施例1と
全く同様の帯電露光実験装置に設置して同様の画
像形成を行つたところ、下記の第2表に示す如き
結果を得た。試料No.〜に関して、electron
microprobe法により分析したところ、第3表に
示す如き結果を得た。第2表、第3表の結果から
本発明の目的を達成するには中間層におけるSiと
Cの組成比xを0.1〜0.35の範囲内で形成する必
要がある。[Table] ◎: Excellent ○: Good △: Can be used for practical purposes ×: Not possible Film deposition rate of intermediate layer: 1 Å/sec
Example 3 When forming an intermediate layer on a molybdenum substrate,
Electrophotographs of sample No. ~ were taken under the same conditions and procedures as in Example 1, except that the SiF 4 gas flow rate and C 2 H 4 gas flow rate ratio were varied as shown in Table 2 below. An image forming member was prepared, and when it was installed in the same charging exposure experimental apparatus as in Example 1 and the same image formation was carried out, the results shown in Table 2 below were obtained. Regarding sample No.~, electron
When analyzed by microprobe method, the results shown in Table 3 were obtained. From the results shown in Tables 2 and 3, in order to achieve the object of the present invention, it is necessary to form the intermediate layer with a composition ratio x of Si to C within the range of 0.1 to 0.35.
【表】【table】
【表】
実施例 4
実施例1と同様にモリブデン基板を設置し、続
いて実施例1と同様の操作によつてグロー放電堆
積室301内を5×10-6Torrの真空となし、基
板温度は200℃に保たれた後、実施例1と同様の
操作によつてSiF4,C2H4,SiH4のガス流入系を
5×10-6Torrの真空となし、その後、補助バル
ブ340及び各流出バルブ325,326,32
9、各流入バルブ320,321,324を閉じ
た後、H2で70vol%で希釈されたSiF4ガスボンベ
311のバルブ330、H2で10vol%に希釈され
たC2H4ガスボンベ312のバルブ331を開け、
出口圧ゲージ335,336の圧を1Kg/cm2に調
整し、流入バルブ320,321を徐々に開けて
フローメーター316,317内へSiF4ガス,
C2H4ガスを流入させた。引続いて、流出バルブ
325,326を徐々に開け、次いで補助バルブ
340を徐々に開けた。このときSiF4ガス流量と
C2H4ガス流量比が1:60になるように流入バル
ブ320,321を調整した。次にピラニーゲー
ジ341の読みを注視しながら補助バルブ340
の開口を調整し、室301内が1×10-2Torrに
なるまで補助バルブ340を開けた。室301内
圧が安定してから、メインバルブ310を徐々に
閉じ、ピラニーゲージ341の指示が0.5Torrに
なるまで開口を絞つた。ガス流入が安定し室内圧
が一定となり、基板温度が200℃に安定してから、
実施例1と同様に高周波電源342をon状態と
して、60Wの入力電力でグロー放電を開始させ、
1分間同条件を保つて基板上に中間層を形成した
後、高周波電源342をoff状態とし、グロー放
電を中止させた状態で流出バルブ325,32
6,322を閉じ、次にH2で10vol%に希釈され
たSiH4ボンベ315のバルブ334を開け、出
口圧ゲージ339の圧を1Kg/cm2に調整し、流入
バルブ324を徐々に開けてフローメーター32
0内へSiH4ガスを流入させた。引続いて、流出
バルブ329を徐々に開けた。次に中間層の形成
時と同様にピラニーゲージ341の指示が
0.5Torrになる様に補助バルブ340、メインバ
ルブ310の開口を調整し安定化させた。
引き続き、再び高周波電源342をon状態に
して、グロー放電を再開させた。そのときの入力
電力を10Wにし以前より減少させた。こうしてグ
ロー放電を更に5時間持続させて光導電層を形成
した後、加熱ヒーター308をoff状態にし、高
周波電源342もoff状態とし、基板温度が100℃
になるのを待つてから流出バルブ329及び流入
バルブ320,321,324を閉じ、メインバ
ルブ310を全開にして、室301内を
10-5Torr以下にした後、メインバルブ310を
閉じ、室301内をリークバルブ344によつて
大気圧として基板を取り出した。この場合、形成
された層の全厚は約15μmであつた。この電子写
真用像形成部材に就て、実施例1と同様の条件及
び手順で転写紙上に画像を形成したところコロ
ナ帯電を行つて画像形成した方が、コロナ帯電
を行つて画像形成したよりもその画質が優れてお
り、極めて鮮明であつた。この結果より本実施例
で得られた電子写真用像形成部材には帯電機能の
依存性が認められた。
実施例 5
実施例1と同様な条件及び手順によつてモリブ
デン基板上に1分間の中間層の形成を行つた後、
高周波電源342をoff状態とし、グロー放電を
中止させた状態で流出バルブ325,326を閉
じ、次にH2で25volppmに希釈されたPH3ガスボ
ンベ314のバルブ333、H2で10vol%に希釈
されたSiH4ボンベ315のバルブ334を開け、
出口圧ゲージ338,339の圧を1Kg/cm2に調
整し、流入バルブ323,324を徐々に開けて
フローメーター319,320内へPH3ガス,
SiH4ガスを流入させた。引続いて、流出バルブ
328,329を徐々に開けた。このときPH3ガ
ス流量とSiH4ガス流量比が1:50になる様に流
入バルブ323,324を調整した。
次に中間層の形成時と同様にピラニーゲージ3
41の指示が0.5Torrになる様に補助バルブ34
0、メインバルブ310の開口を調整し安定化さ
せた。
引き続き、再び高周波電源342をon状態に
して、グロー放電を再開させた。そのときの入力
電力を10Wにした。こうしてグロー放電を更に4
時間持続させて光導電層を形成した後、加熱ヒー
ター308をoff状態にし、高周波電源342も
off状態とし、基板温度が100℃になるのを待つて
から流出バルブ328,329及び流入バルブ3
20,321,323,324を閉じ、メインバ
ルブ310を全開にして、室301内を
10-5Torr以下にした後、メインバルブ310を
閉じ、室301内をリークバルブ344によつて
大気圧として基板を取り出した。この場合、形成
された層の全厚は約11μmであつた。こうして得
られた電子写真用像形成部材を、実施例1と同様
の条件及び手順で転写紙上に画像を形成したとこ
ろ、コロナ放電を行つて画像形成した方が、
コロナ放電を行つて画像形成したよりもその画質
が優れており、極めて鮮明であつた。この結果よ
り本実施例で得られた電子写真用像形成部材には
帯電極性の依存性が認められた。
実施例 6
モリブデン基板上に中間層を形成した後、引続
いて光導電層を形成する際B2H6ガス流量をSiH4
ガス流量の1/10になるようにした以外は実施例1
と同様な条件及び手順によつて中間層、光導電層
をモリブデン基板上に形成した。このようにして
得られた電子写真用像形成部材を実施例1と同様
の条件及び手順で転写紙上に画像を形成したとこ
ろ+コロナ放電を行つて画像形成した方が、コ
ロナ放電を行つて画像形成したよりもその画質が
優れており、極めて鮮明であつた。この結果より
本実施例で得られた感光体には帯電極性の依存性
が認められた。而し、その帯電極性依存性は実施
例3,4で得られた電子写真用像形成部材とは逆
であつた。
実施例 7
実施例1と同様な条件及び手順によつてモリブ
デン基板上に1分間の中間層の形成、5時間の光
導電層の形成を行つた後、高周波電源342を
off状態としてグロー放電を中止させた状態で流
出バルブ327,329を閉じ、そして再び流出
バルブ325,326を開き、中間層の形成時と
同様の条件になるようにした。引き続き、再び高
周波電源をon状態にしてグロー放電を再開させ
た。そのときの入力電力も中間層形成時と同様の
60Wとした。こうしてグロー放電を2分間持続さ
せて光導電層上に上部層を形成した後、加熱ヒー
ター308をoff状態にし、高周波電源342も
off状態とし、基板温度が100℃になるのを待つて
から流出バルブ325,326及び流入バルブ3
20,321,322,324を閉じ、メインバ
ルブ310を全開にして、室301内を
10-5Torr以下にした後、メインバルブ310を
閉じ、室301内をリークバルブ343によつて
大気圧として基板を取り出した。こうして得られ
た電子写真用像形成部材を実施例1と同様の帯電
露光実験装置に設置し、6.0KVで0.2sec間コロ
ナ帯電を行い、直ちに光像を照射した。光像は、
タングステンランプ光源を用い、1.0lux・secの
光量を透過型のテストチヤートを通して照射させ
た。
その後、直ちに、荷電性の現像剤(トナーと
キヤリアーを含む)を部材表面にカスケードする
ことによつて、部材表面上に良好なトナー画像を
得た。部材上のトナー画像を、5.0KVのコロナ
帯電で転写紙上に転写した処、解像力に優れ、階
調再現性のよい鮮明な高濃度の画像が得られた。
実施例 8
電子写真用像形成部材の形成に先立つて第3図
に示される装置のH2で10vol%に希釈された
C2H4ボンベ312をH2で10vol%に希釈させた
SiCl(CH3)ガス(純度99.999%)ボンベに変え
た。次に表面が清浄された、コーニング7059ガラ
ス(1mm厚、4×4cm、両面研磨したもの)表面
の一方に、電子ビーム蒸着法によつてITOを1000
Å蒸着したものを、実施例1と同様の装置(第3
図)の固定部材303上にITO蒸着面を上面にし
て設置した。続いて、実施例1と同様の操作基板
を設置し続によつてグロー放電堆積室301内を
5×10-6Torrの真空となし、基板温度は150℃に
保持された後、補助バルブ340、次いで流出バ
ルブ326,327,329、及び流入バルブ3
21,322,324を全開し、フローメーター
317,318,320内も十分脱気真空状態に
された。補助バルブ340、バルブ326,32
7,329,317,318,320を閉じた
後、H2で10vol%に希釈されたSiCl(CH3)3ガス
(純度99.999%)ボンベ312バルブ331を開
け、出口圧ゲージの圧を1Kg/cm2に調整し、流入
バルブ321を徐々に開けてフローメーター31
7内へSiCl(CH3)3ガスを流入させた。引続いて、
流出バルブ326を徐々に開けた。ピラニーゲー
ジ341の読みを注視しながら補助バルブ340
の開口を調整し、室301内が1×10-2Torrに
なるまで補助バルブ340を開けた。室301の
内圧が安定してから、メインバルブ310を徐々
に閉じ、ピラニーゲージ341の指示が0.5Torr
になるまでに開口を絞つた。ガス流入が安定し内
圧が安定するのを確認し、続いて高周波電源34
のスイツチをon状態にして誘導コイル343に
13.56MHzの高周波電力を投入し、コイル部(室
上部)の室301内にグロー放電を発生させ、
20Wの入力電力とした。1分間同条件を保つて中
間層を形成した後、高周波電源342をoff状態
とし、グロー放電を中止させた状態で、しばらく
して流出バルブ329、流入バルブ326を閉
じ、基板温度を200℃に上げた。次にH2で10vol
%に希釈されさSiH4ガスボンベ315のバルブ
334、H2で50volppmに希釈されたB2H4ガス
ボンベ313のバルブ332を開け、出口圧ゲー
ジ339,337の圧を1Kg/cm2に調整し、流入
バルブ324,322を徐々に開けてフロメータ
ー320,318内へSiH4ガス,B2H6ガスを
各々流入させた。引続いて流出バルブ329,3
27を徐々に開けた。このときのSiH4ガス流量
とB2H6ガス流量の比が50:1になるように流入
バルブ324,322の開口を定め安定化させ
た。尚、室301内の内圧が0.5Torrになる様に
バルブ調整操作を中間層形成時と同様に行つた。
その後引き続き、再び高周波電源342をon
状態にして、グロー放電を再開させた。そのとき
の入力電力を10Wにし以前より減少させた。こう
してグロー放電を更に3時間持続させて光導電層
を形成した後、加熱ヒーター308をoff状態に
し、高周波電源342もoff状態とし、基板温度
100℃になるのを待つてから流出バルブ327,
329及び流入バルブ321,322,324を
閉じ、メインバルブ310を全開にして、室30
1内を10-5Torr以下にした後、メインバルブ3
10を閉じ、室301内をリークバルブ344に
よつて大気圧として基板を取り出した。この場
合、形成された層の全厚は約9μmであつた。こう
して得られた電子写真用像形成部材を帯電露光実
験装置に設置し、6.0KVで0.2sec間コロナ帯電
を行い、直ちに光像を照射した。光像は、タング
ステンランプ光源を用い、1.0lux・secの光量を
透過型のテストチヤートを通して照射された。
その後、直ちに、荷電性の現像剤(トナーと
キヤリアーを含む)を部材表面にカスケードする
ことによつて、部材表面上に良好なトナー画像を
得た。部材上のトナー画像を、5.0KVのコロナ
帯電で転写紙上に転写した処、解像力に優れ、階
調再現性のよい鮮明な高濃度の画像が得られた。
又、コロナ帯電極性をに、現像剤極性をに
変えても同様に鮮明で良好な画像が実施例1と同
様に得られた。
実施例 9
H2で10vol%に希釈されたSiH4ボンド315を
希釈されていないSi2H6ボンベに、H2で
50volppmに希釈されたB2H6ボンベ313を、
H2で500volppmに希釈されたB2H6ボンベに変え
た以外は実施例1と同様の条件及び手順によつて
中間層、光導電層をモリブデン基板上に形成した
後、堆積室301外に取り出し、実施例1と同様
に帯電露光の実験装置に静置して画像形成の試験
をした処、5.5KVのコロナ帯電、荷電性現像
剤の組み合せの場合に、極めて良質の、コントラ
ストの高いトナー画像が転写紙上に得られた。
実施例 10
第4図に示す装置を用い、以下の如き操作によ
つてモリブデン基板上に中間層を形成した。
表面が清浄にされた0.5mm厚10cm角のモリブデ
ン板(基板)402を堆積室401内の所定位置
にある固定部材406に堅固に固定した。基板4
02は、固定部材406内の加熱ヒーター407
によつて±0.5℃の精度で加熱される。温度は熱
電対(アルメルークロメル)によつて基板裏面を
直接測定されるようになされた。次いで系内の全
バルブが閉じられていることを確認してからメイ
ンバルブ427を全開して、室401内が排気さ
れ、約5×10-6Torrの真空度にした。その後ヒ
ーター407の入力電圧を上昇させ、モリブデン
基板温度を検知しながら入力電圧を変化させ、
200℃の一定値になるまで安定させた。
その後、補助バルブ425、次いで流出バルブ
421,424及び417,420を全開し、フ
ローメーター432,345内も十分脱気真空状
態にされた。補助バルブ425、バルブ417,
420,421,424を閉じた後,SiF4ガス
(純度99.999%)ボンベ412のバルブ416及
びArガスボンベ409のバルブ413を開け、
出口圧ゲージ428,431の圧を1Kg/cm2に調
整し、流入バルブ417,420を徐々に開けて
フローメーター432,435内へ各々SiF4ガ
ス、Arガスを流入させた。引続いて、流出バル
ブ421,424を徐々に開け、次いで補助バル
ブ425を徐々に開けた。この時SiF4ガス流量と
Arガス流量比が1:20になるように流入バルブ
417,420を調整した。次にピラニーゲージ
436の読みを注視しながら補助バルブ425の
開口を調整し、室401内が1×10-2Torrにな
るまで補助バルブ425を開けた。室401内圧
が安定してからメインバルブ427を徐々に閉
じ、ピラニーゲージ436の指示が0.5Torrにな
るまで開口を絞つた。
シヤツター408を開として、フローメーター
432,435が安定するのを確認してから、高
周波電源437をon状態にし、面積比が1:9
である単結晶又は多結晶純度シリコンと高純度グ
ラフアイトからなるターゲツト403,404お
よび固定部材406間に13.56MHz,100Wの交流
電力が入力された。この条件で安定した放電を続
ける様にマツチングを取りながら層を形成した。
この様にして2分間放電を続けて100Å厚のa―
SixC1-x:Fを形成した。その後高周波電源43
7をoff状態にし放電を一旦中止させた。引き続
いて流出バルブ421,424を閉じメインバル
ブ427を全開して室401内のガスを抜き、5
×10-7Torrまで真空にした。次にH2で10vol%に
希釈したSiH4ガス(純度99.999%)ボンベ410
のバルブ414、H2で50volppmに希釈した
B2H6ガスボンベ411のバルブ415を開け、
出口圧ゲージ428,430の圧を1Kg/cm2に調
整し、流入バルブ417,419を徐々に開けて
フローメーター432,434内へSiH4ガス,
B2H6ガスを流入させた。引続いて流出バルブ4
21,423を徐々に開け、次いで補助バルブ4
25を徐々に開けた。このときSiH4ガス流量と
B2H6ガス流量比が50:1になるように流入バル
ブ417,419を調整した。次にピラニーゲー
ジ436の読みを注視しながら補助バルブ425
の開口を調整し、室401内が1×10-2Torrに
なるまで補助バルブ425を開けた。室401内
圧が安定してから、メインバルブ427を徐々に
閉じ、ピラニーゲージ436の指示が0.5Torrに
なるまで開口を絞つた。ガス流入が安定し内圧が
安定するのを確認し、シヤツター408を閉と
し、続いて高周波電源437のスイツチをon状
態にして、電極407,408間に13.56MHzの
高周波電力を投入し、室401内にグロー放電を
発生させ、10Wの入力電力とした。グロー放電を
3時間持続させて光導電層を形成した後、加熱ヒ
ーター407をoff状態にし、高周波電源437
もoff状態とし、基板温度が100℃になるのを待つ
てから流出バルブ422,423及び流入バルブ
418,419を閉じ、メインバルブ427を全
開にして、室401内を10-5Torr以下にした後、
メインバルブ427を閉じ、室401内をリーク
バルブ426によつて大気圧として基板を取り出
した。この場合、形成された層の全厚は約9μmで
あつた。こうして得られた電子写真用像形成部材
を帯電露光実験装置に設置し、6.0KVで0.2sec
間コロナ帯電を行い、直ちに光像を照射した。光
像はタングステンランプ光源を用い、0.8lux・
secの光量を透過型のテストチヤートを通して照
射させた。
その後、直ちに、荷電性の現像剤(トナーと
キヤリアーを含む)を部材表面にカスケードする
ことによつて、部材表面上に良好なトナー画像を
得た。部材上のトナー画像を、5.0KVのコロナ
帯電で転写紙上に転写した処、解像力に優れ、階
調再現性のよい鮮明な高濃度の画像が得られた。
次に上記像形成部材に就て、帯電露光実験装置
で5.5KVで0.2sec間のコロナ帯電を行い、直ち
に0.8lux・secの光量で画像露光を行い、その後
直ちに荷電性の現像剤を部材表面にカスケード
し、次に転写紙上に転写・定着したところ極めて
鮮明な画像が得られた。
この結果を先の結果から本実施例で得られた電
子写真感光体は帯電極地に対する依存性がなく、
両極性像形成部材の特性を具備していることが判
つた。
[発明の効果]
上記した様な層構成を取る様にして設計された
本発明の電子写真用光導電部材は、極めてすぐれ
た電気的、光学的、光導電的特性及び使用環境特
性を示す。
殊に、電子写真用像形成部材として適用させた
場合には帯電処理の際の電荷保持能に長け、画像
形成への残留電位の影響が全くなく、多湿雰囲気
中でもその電気的特性が安定しており高感度で、
高SN比を有するものであつて耐光疲労、繰返し
使用性に著しく長け、更には濃度が高く、ハーフ
トーンが鮮明に出て、且つ解像度の高い、高品質
の可視画像を得る事が出来る。
又、高暗抵抗のa―Si:Hは光感度が低く、逆
に光感度の高いa―Si:Hは暗抵抗が108Ωcm前
後と低く、いずれの場合にも、従来の層構成の光
導電層のままでは電子写真用の像形成部材には適
用されなかつたのに対して、本発明の場合には、
比較的低抵抗(5×109Ωcm以上)のa―Si:H
層でも電子写真用の光導電層を構成することがで
きるので、抵抗は比較的低いが高感度であるa―
Si:Hも充分使用し得、a―Si:Hの特性面から
の制約が軽減され得る。[Table] Example 4 A molybdenum substrate was installed in the same manner as in Example 1, and then a vacuum of 5×10 -6 Torr was created in the glow discharge deposition chamber 301 by the same operation as in Example 1, and the substrate temperature was was maintained at 200°C, the SiF 4 , C 2 H 4 , and SiH 4 gas inflow system was brought to a vacuum of 5×10 -6 Torr by the same operation as in Example 1, and then the auxiliary valve 340 and each outflow valve 325, 326, 32
9. After closing each inlet valve 320, 321, 324, valve 330 of SiF 4 gas cylinder 311 diluted with H 2 to 70 vol%, valve 331 of C 2 H 4 gas cylinder 312 diluted to 10 vol% with H 2 Open the
Adjust the pressure of the outlet pressure gauges 335, 336 to 1 Kg/cm 2 and gradually open the inflow valves 320, 321 to introduce SiF 4 gas into the flow meters 316, 317.
C 2 H 4 gas was introduced. Subsequently, the outflow valves 325 and 326 were gradually opened, and then the auxiliary valve 340 was gradually opened. At this time, the SiF 4 gas flow rate and
The inflow valves 320 and 321 were adjusted so that the C 2 H 4 gas flow rate ratio was 1:60. Next, while paying close attention to the reading on the Pirani gauge 341, open the auxiliary valve 340.
The auxiliary valve 340 was opened until the pressure inside the chamber 301 became 1×10 −2 Torr. After the internal pressure of the chamber 301 became stable, the main valve 310 was gradually closed and the opening was throttled until the reading on the Pirani gauge 341 reached 0.5 Torr. After the gas inflow stabilizes, the indoor pressure becomes constant, and the substrate temperature stabilizes at 200℃,
As in Example 1, the high frequency power supply 342 was turned on, and glow discharge was started with an input power of 60W.
After forming the intermediate layer on the substrate by maintaining the same conditions for 1 minute, the high frequency power source 342 is turned off, and the outflow valves 325, 32 are turned off with the glow discharge stopped.
6,322, then open the valve 334 of the SiH 4 cylinder 315 diluted to 10 vol% with H 2 , adjust the pressure of the outlet pressure gauge 339 to 1 Kg/cm 2 , and gradually open the inflow valve 324. flow meter 32
SiH 4 gas was flowed into the 0. Subsequently, the outflow valve 329 was gradually opened. Next, the instructions on the Pirani gauge 341 are as same as when forming the intermediate layer.
The openings of the auxiliary valve 340 and main valve 310 were adjusted to stabilize the pressure to 0.5 Torr. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was reduced to 10W compared to before. After continuing the glow discharge for another 5 hours to form a photoconductive layer, the heater 308 is turned off, the high frequency power supply 342 is also turned off, and the substrate temperature reaches 100°C.
After waiting until
After reducing the pressure to 10 -5 Torr or less, the main valve 310 was closed, and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 15 μm. When an image was formed on a transfer paper using this electrophotographic image forming member under the same conditions and procedures as in Example 1, the image formation with corona charging was better than the image formation with corona charging. The image quality was excellent and extremely clear. From this result, it was confirmed that the electrophotographic image forming member obtained in this example had a dependence on charging function. Example 5 After forming an intermediate layer on a molybdenum substrate for 1 minute under the same conditions and procedures as in Example 1,
With the high frequency power supply 342 turned off and the glow discharge stopped, the outflow valves 325 and 326 are closed, and then the valve 333 of the PH 3 gas cylinder 314 diluted with H 2 to 25 volppm, and the valve 333 of the PH 3 gas cylinder 314 diluted with H 2 to 10 vol%. Open the valve 334 of the SiH 4 cylinder 315,
Adjust the pressure of the outlet pressure gauges 338, 339 to 1 Kg/cm 2 and gradually open the inflow valves 323, 324 to inject PH 3 gas into the flow meters 319, 320.
SiH 4 gas was introduced. Subsequently, the outflow valves 328, 329 were gradually opened. At this time, the inflow valves 323 and 324 were adjusted so that the ratio of PH 3 gas flow rate to SiH 4 gas flow rate was 1:50. Next, in the same way as when forming the intermediate layer, Pirani gauge 3
Auxiliary valve 34 so that the instruction of 41 becomes 0.5 Torr.
0. The opening of the main valve 310 was adjusted and stabilized. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was 10W. In this way, the glow discharge is further increased by 4
After forming the photoconductive layer for a certain period of time, the heating heater 308 is turned off, and the high frequency power source 342 is also turned off.
After setting the off state and waiting for the substrate temperature to reach 100°C, open the outflow valves 328, 329 and the inflow valve 3.
20, 321, 323, and 324, and fully open the main valve 310, the inside of the chamber 301 is
After reducing the pressure to 10 -5 Torr or less, the main valve 310 was closed, and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 11 μm. An image was formed on a transfer paper using the thus obtained electrophotographic image forming member under the same conditions and procedures as in Example 1.
The image quality was superior to images formed by corona discharge, and they were extremely clear. From this result, it was found that the electrophotographic image forming member obtained in this example had a dependence on charging polarity. Example 6 After forming an intermediate layer on a molybdenum substrate, the B 2 H 6 gas flow rate was changed to SiH 4 when subsequently forming a photoconductive layer.
Example 1 except that the gas flow rate was set to 1/10 of the gas flow rate.
An intermediate layer and a photoconductive layer were formed on a molybdenum substrate under the same conditions and procedures as described above. An image was formed on a transfer paper using the thus obtained electrophotographic image forming member under the same conditions and procedures as in Example 1. The image quality was better than that of the original, and it was extremely clear. From this result, it was found that the photoreceptor obtained in this example had charge polarity dependence. However, the dependence on charging polarity was opposite to that of the electrophotographic image forming members obtained in Examples 3 and 4. Example 7 After forming an intermediate layer on a molybdenum substrate for 1 minute and forming a photoconductive layer for 5 hours under the same conditions and procedures as in Example 1, the high frequency power source 342 was turned on.
The outflow valves 327 and 329 were closed while the glow discharge was stopped as the off state, and the outflow valves 325 and 326 were opened again to obtain the same conditions as when forming the intermediate layer. Subsequently, the high frequency power supply was turned on again to restart the glow discharge. The input power at that time is the same as when forming the intermediate layer.
It was set to 60W. After sustaining the glow discharge for 2 minutes to form an upper layer on the photoconductive layer, the heating heater 308 is turned off, and the high frequency power source 342 is also turned off.
After setting the off state and waiting for the substrate temperature to reach 100°C, open the outflow valves 325, 326 and the inflow valve 3.
20, 321, 322, and 324, and fully open the main valve 310, the inside of the chamber 301 is
After reducing the pressure to 10 -5 Torr or less, the main valve 310 was closed, and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 343, and the substrate was taken out. The electrophotographic image forming member thus obtained was placed in the same charging exposure experimental apparatus as in Example 1, corona charging was performed at 6.0 KV for 0.2 seconds, and a light image was immediately irradiated. The light image is
Using a tungsten lamp light source, a light intensity of 1.0 lux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the member by cascading a charged developer (including toner and carrier) onto the surface of the member. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Example 8 Diluted to 10 vol% with H 2 in the apparatus shown in FIG. 3 prior to formation of an electrophotographic imaging member.
C 2 H 4 cylinder 312 was diluted to 10 vol% with H 2
Changed to SiCl (CH 3 ) gas (purity 99.999%) cylinder. Next, one side of the cleaned Corning 7059 glass (1 mm thick, 4 x 4 cm, polished on both sides) was coated with 1000% ITO by electron beam evaporation.
The Å vapor-deposited material was placed in the same apparatus as in Example 1 (the third
It was placed on the fixing member 303 (see figure) with the ITO deposition surface facing upward. Subsequently, the same operating board as in Example 1 was installed, and the inside of the glow discharge deposition chamber 301 was made into a vacuum of 5×10 -6 Torr. After the substrate temperature was maintained at 150°C, the auxiliary valve 340 , then outflow valves 326, 327, 329, and inflow valve 3
21, 322, and 324 were fully opened, and the insides of flow meters 317, 318, and 320 were also sufficiently degassed to a vacuum state. Auxiliary valve 340, valves 326, 32
After closing 7,329,317,318,320, open SiCl (CH 3 ) 3 gas (99.999% purity) cylinder 312 diluted to 10 vol% with H 2 and valve 331, and set the pressure on the outlet pressure gauge to 1 Kg/ cm 2 and gradually open the inflow valve 321 to connect the flow meter 31.
SiCl(CH 3 ) 3 gas was flowed into 7. Subsequently,
The outflow valve 326 was gradually opened. While paying close attention to the reading on the Pirani gauge 341, check the auxiliary valve 340.
The auxiliary valve 340 was opened until the pressure inside the chamber 301 became 1×10 −2 Torr. After the internal pressure in the chamber 301 stabilizes, the main valve 310 is gradually closed and the Pirani gauge 341 reads 0.5 Torr.
I narrowed my aperture until it was. Confirm that the gas inflow is stable and the internal pressure is stable, then turn on the high frequency power supply 34.
Turn on the switch to the induction coil 343.
13.56MHz high frequency power is applied to generate a glow discharge in the chamber 301 of the coil part (upper part of the chamber).
The input power was 20W. After maintaining the same conditions for 1 minute to form an intermediate layer, the high frequency power source 342 is turned off to stop glow discharge, and after a while, the outflow valve 329 and inflow valve 326 are closed, and the substrate temperature is raised to 200°C. Raised. Then 10vol with H2
Open the valve 334 of the SiH 4 gas cylinder 315 diluted to 50 volppm with H 2 and the valve 332 of the B 2 H 4 gas cylinder 313 diluted to 50 volppm with H 2 , adjust the pressure of the outlet pressure gauges 339 and 337 to 1 Kg/cm 2 , The inflow valves 324 and 322 were gradually opened to allow SiH 4 gas and B 2 H 6 gas to flow into the flowmeters 320 and 318, respectively. Subsequently, the outflow valve 329,3
27 was gradually opened. At this time, the openings of the inflow valves 324 and 322 were set so that the ratio of the SiH 4 gas flow rate to the B 2 H 6 gas flow rate was 50:1 and stabilized. Incidentally, the valve adjustment operation was performed in the same manner as when forming the intermediate layer so that the internal pressure in the chamber 301 was 0.5 Torr. After that, turn on the high frequency power supply 342 again.
state, and the glow discharge was restarted. The input power at that time was reduced to 10W compared to before. After continuing the glow discharge for another 3 hours to form a photoconductive layer, the heating heater 308 is turned off, the high frequency power supply 342 is also turned off, and the substrate temperature is increased.
After waiting for the temperature to reach 100℃, the outflow valve 327,
329 and the inflow valves 321, 322, 324 are closed, the main valve 310 is fully opened, and the chamber 30 is closed.
After reducing the pressure inside 1 to below 10 -5 Torr, open main valve 3.
10 was closed, the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 9 μm. The electrophotographic image forming member thus obtained was placed in a charging exposure experiment apparatus, corona charging was performed at 6.0 KV for 0.2 seconds, and a light image was immediately irradiated. The optical image was generated using a tungsten lamp light source, and a light intensity of 1.0 lux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the member by cascading a charged developer (including toner and carrier) onto the surface of the member. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Further, even when the corona charge polarity was changed to 1 and the developer polarity was changed to 1, a clear and good image was obtained in the same manner as in Example 1. Example 9 SiH 4 Bond 315 diluted to 10 vol% with H 2 was added to an undiluted Si 2 H 6 cylinder with H 2
B 2 H 6 cylinder 313 diluted to 50 volppm,
After forming an intermediate layer and a photoconductive layer on a molybdenum substrate under the same conditions and procedures as in Example 1 except for using a B 2 H 6 cylinder diluted with H 2 to 500 volppm, the layer was placed outside the deposition chamber 301. When the toner was taken out and placed in a charged exposure experimental device in the same manner as in Example 1 for an image formation test, it was found that in the case of a combination of 5.5 KV corona charging and a charged developer, the toner was of extremely good quality and had high contrast. An image was obtained on the transfer paper. Example 10 Using the apparatus shown in FIG. 4, an intermediate layer was formed on a molybdenum substrate by the following operations. A 0.5 mm thick, 10 cm square molybdenum plate (substrate) 402 whose surface was cleaned was firmly fixed to a fixing member 406 at a predetermined position in the deposition chamber 401 . Board 4
02 is a heater 407 inside the fixed member 406
heated with an accuracy of ±0.5℃. Temperature was measured directly on the backside of the substrate by a thermocouple (Almeru Cromel). Next, after confirming that all valves in the system were closed, the main valve 427 was fully opened to evacuate the chamber 401 to a degree of vacuum of approximately 5×10 −6 Torr. After that, the input voltage of the heater 407 is increased, and the input voltage is changed while detecting the molybdenum substrate temperature.
It was stabilized until it reached a constant value of 200℃. Thereafter, the auxiliary valve 425 and then the outflow valves 421, 424, and 417, 420 were fully opened, and the insides of the flow meters 432, 345 were also sufficiently degassed and vacuumed. Auxiliary valve 425, valve 417,
420, 421, and 424, open the valve 416 of the SiF 4 gas (purity 99.999%) cylinder 412 and the valve 413 of the Ar gas cylinder 409,
The pressures of the outlet pressure gauges 428 and 431 were adjusted to 1 Kg/cm 2 , and the inflow valves 417 and 420 were gradually opened to allow SiF 4 gas and Ar gas to flow into the flow meters 432 and 435, respectively. Subsequently, the outflow valves 421 and 424 were gradually opened, and then the auxiliary valve 425 was gradually opened. At this time, the SiF 4 gas flow rate and
The inflow valves 417 and 420 were adjusted so that the Ar gas flow rate ratio was 1:20. Next, the opening of the auxiliary valve 425 was adjusted while observing the reading on the Pirani gauge 436, and the auxiliary valve 425 was opened until the inside of the chamber 401 reached 1×10 −2 Torr. After the internal pressure of the chamber 401 became stable, the main valve 427 was gradually closed, and the opening was throttled until the reading on the Pirani gauge 436 reached 0.5 Torr. After opening the shutter 408 and confirming that the flow meters 432 and 435 are stable, the high frequency power supply 437 is turned on and the area ratio is 1:9.
AC power of 13.56 MHz and 100 W was input between targets 403 and 404 made of monocrystalline or polycrystalline pure silicon and high-purity graphite, and a fixing member 406. Under these conditions, the layers were formed while performing matching so that stable discharge could continue.
Continue discharging in this way for 2 minutes to form a 100 Å thick a-
Si x C 1-x :F was formed. Then high frequency power supply 43
7 was turned off to temporarily stop the discharge. Subsequently, the outflow valves 421 and 424 are closed and the main valve 427 is fully opened to remove the gas from the chamber 401.
Vacuum was applied to ×10 -7 Torr. Next, SiH 4 gas (purity 99.999%) diluted to 10 vol% with H 2 cylinder 410
valve 414, diluted to 50 volppm with H2
Open the valve 415 of the B 2 H 6 gas cylinder 411,
Adjust the pressure of the outlet pressure gauges 428, 430 to 1 Kg/cm 2 and gradually open the inflow valves 417, 419 to inject SiH 4 gas into the flow meters 432, 434.
B 2 H 6 gas was introduced. Subsequently, the outflow valve 4
21,423 gradually open, then auxiliary valve 4
25 was gradually opened. At this time, the SiH 4 gas flow rate and
The inlet valves 417 and 419 were adjusted so that the B 2 H 6 gas flow rate ratio was 50:1. Next, while paying close attention to the reading on the Pirani gauge 436, the auxiliary valve 425 is
The auxiliary valve 425 was opened until the pressure inside the chamber 401 became 1×10 −2 Torr. After the internal pressure of the chamber 401 became stable, the main valve 427 was gradually closed and the opening was throttled until the reading on the Pirani gauge 436 reached 0.5 Torr. After confirming that the gas inflow is stable and the internal pressure is stable, the shutter 408 is closed, and then the high frequency power source 437 is turned on, and 13.56 MHz high frequency power is applied between the electrodes 407 and 408, and the chamber 401 is turned on. A glow discharge was generated within the battery, and the input power was 10W. After continuing the glow discharge for 3 hours to form a photoconductive layer, the heating heater 407 is turned off, and the high frequency power source 437 is turned off.
After waiting for the substrate temperature to reach 100°C, the outflow valves 422, 423 and inflow valves 418, 419 were closed, and the main valve 427 was fully opened to reduce the temperature inside the chamber 401 to 10 -5 Torr or less. rear,
The main valve 427 was closed, and the inside of the chamber 401 was brought to atmospheric pressure by the leak valve 426, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 9 μm. The electrophotographic image forming member obtained in this way was installed in a charging exposure experiment equipment, and was heated at 6.0 KV for 0.2 seconds.
Corona charging was performed for a while, and a light image was immediately irradiated. The light image uses a tungsten lamp light source, 0.8lux・
A light intensity of sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the member by cascading a charged developer (including toner and carrier) onto the surface of the member. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Next, the image forming member is corona charged for 0.2 seconds at 5.5 KV using a charging exposure experiment device, and image exposure is immediately performed at a light intensity of 0.8 lux・sec. Immediately thereafter, a charged developer is applied to the surface of the member. When the image was transferred and fixed onto transfer paper, an extremely clear image was obtained. Based on the previous results, the electrophotographic photoreceptor obtained in this example has no dependence on the charging electrode.
It has been found to possess the characteristics of an ambipolar imaging member. [Effects of the Invention] The electrophotographic photoconductive member of the present invention designed to have the above-described layer structure exhibits extremely excellent electrical, optical, and photoconductive properties as well as usage environment properties. In particular, when applied as an image forming member for electrophotography, it has excellent charge retention ability during charging processing, has no influence of residual potential on image formation, and has stable electrical properties even in a humid atmosphere. With high sensitivity,
It has a high signal-to-noise ratio and is extremely resistant to light fatigue and repeated use. Furthermore, it is possible to obtain high-quality visible images with high density, clear halftones, and high resolution. In addition, a-Si:H with high dark resistance has low photosensitivity, and conversely, a-Si:H with high photosensitivity has a low dark resistance of around 10 8 Ωcm. In both cases, the conventional layer structure Whereas the photoconductive layer could not be applied as it is to an electrophotographic image forming member, in the case of the present invention,
a-Si:H with relatively low resistance (5×10 9 Ωcm or more)
Since a photoconductive layer for electrophotography can be constructed even with a layer, a-
Si:H can also be used satisfactorily, and restrictions from the characteristics of a-Si:H can be alleviated.
第1図及び第2図は各々本発明の電子写真用光
導電部材の好適な実施態様例の構成を説明する為
の模式的構成図、第3図、第4図は各々本発明の
電子写真用光導電部材を製造する場合の装置の一
例を示す模式的説明図である。
100,200…電子写真用光導電部材、10
1,201…支持体、102,202…中間層、
103,203…光導電層、104,204…自
由表面、205…上部層。
1 and 2 are schematic configuration diagrams for explaining the configuration of preferred embodiments of the electrophotographic photoconductive member of the present invention, and FIGS. 3 and 4 are respectively schematic diagrams of the electrophotographic photoconductive member of the present invention. It is a typical explanatory view showing an example of the apparatus in the case of manufacturing a photoconductive member for use. 100,200...Photoconductive member for electrophotography, 10
1,201... Support, 102,202... Intermediate layer,
103,203...Photoconductive layer, 104,204...Free surface, 205...Upper layer.
Claims (1)
子を含むアモルフアス材料で構成されている光導
電層と、これ等の間に設けられ、支持体側から光
導電層中へのキヤリアの流入を阻止し且つ電磁波
照射によつて前記光導電層中に生じ支持体側に向
つて移動するキヤリアの光導電層側から支持体側
への通過を許す機能を有する中間層とを備えた電
子写真用光導電部材に於いて、 前記中間層を、シリコン原子及び40乃至
90atomic%の量の炭素原子とを母体とし、ハロ
ゲン原子を1乃至20atomic%の量又はハロゲン
原子と水素原子とを両者の和として1乃至
20atomic%の量含む非光導電性のアモルフアス
材料で構成する事を特徴とする電子写真用光導電
部材。 2 光導電層の上部表面に、シリコン原子を母体
とし、水素原子又はハロゲン原子のいずれか一方
を少なくとも含む非光導電性のアモルフアス材料
で構成された上部層を更に有する特許請求の範囲
第1項の電子写真用光導電部材。 3 光導電層の上部表面に無機絶縁材料又は有機
絶縁材料から成る上部層を更に有する特許請求の
範囲第1項の電子写真用光導電部材。 4 中間層の層厚が30乃至1000Åである特許請求
の範囲第1項の電子写真用光導電部材。 5 上部層中に炭素原子が含有されている特許請
求の範囲第2項の電子写真用光導電部材。 6 上部層中に窒素原子が含有されている特許請
求の範囲第2項の電子写真用光導電部材。 7 上部層中に炭素原子と窒素原子と酸素原子の
中少なくとも2つが含有されている特許請求の範
囲第2項の電子写真用光導電部材。 8 上部層の層厚が30乃至1000Åである特許請求
の範囲第2項乃至第3項の電子写真用光導電部
材。 9 電荷像形成面となる自由表面を有し、0.5乃
至70μの層厚を有する表面被覆層が更に設けてあ
る特許請求の範囲第1項乃至第3項の電子写真用
光導電部材。 10 中間層に含まれる水素原子の量が
19atomic%以下である特許請求の範囲第1項の
電子写真用光導電部材。[Scope of Claims] 1. A support, a photoconductive layer made of an amorphous material having silicon atoms as a matrix and containing hydrogen atoms, and a photoconductive layer that is provided between the support and the photoconductive layer from the support side to the photoconductive layer. an intermediate layer having a function of blocking the inflow of carriers and allowing carriers generated in the photoconductive layer and moving toward the support by electromagnetic wave irradiation to pass from the photoconductive layer side to the support side; In the photographic photoconductive member, the intermediate layer comprises silicon atoms and 40 to 40
Carbon atoms in an amount of 90 atomic% as a matrix, halogen atoms in an amount of 1 to 20 atomic%, or halogen atoms and hydrogen atoms in an amount of 1 to 20 atomic% as the sum of both.
A photoconductive member for electrophotography, comprising a non-photoconductive amorphous material containing 20 atomic%. 2. Claim 1 further comprising, on the upper surface of the photoconductive layer, an upper layer made of a non-photoconductive amorphous material having silicon atoms as a host and containing at least either hydrogen atoms or halogen atoms. photoconductive member for electrophotography. 3. The photoconductive member for electrophotography according to claim 1, further comprising an upper layer made of an inorganic insulating material or an organic insulating material on the upper surface of the photoconductive layer. 4. The photoconductive member for electrophotography according to claim 1, wherein the intermediate layer has a thickness of 30 to 1000 Å. 5. The photoconductive member for electrophotography according to claim 2, wherein the upper layer contains carbon atoms. 6. The photoconductive member for electrophotography according to claim 2, wherein the upper layer contains nitrogen atoms. 7. The photoconductive member for electrophotography according to claim 2, wherein the upper layer contains at least two of carbon atoms, nitrogen atoms, and oxygen atoms. 8. The photoconductive member for electrophotography according to claims 2 to 3, wherein the upper layer has a thickness of 30 to 1000 Å. 9. A photoconductive member for electrophotography according to claims 1 to 3, further comprising a surface coating layer having a free surface serving as a charge image forming surface and having a layer thickness of 0.5 to 70 μm. 10 The amount of hydrogen atoms contained in the intermediate layer is
The photoconductive member for electrophotography according to claim 1, which has a content of 19 atomic % or less.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55127490A JPS5752178A (en) | 1980-09-13 | 1980-09-13 | Photoconductive member |
US06/299,576 US4394425A (en) | 1980-09-12 | 1981-09-04 | Photoconductive member with α-Si(C) barrier layer |
CA000385692A CA1181630A (en) | 1980-09-12 | 1981-09-11 | Photoconductive member including non-photoconductive layer containing amorphous silicon matrix containing carbon |
DE19813136141 DE3136141A1 (en) | 1980-09-12 | 1981-09-11 | PHOTO-CONDUCTIVE ELEMENT |
GB8127479A GB2086133B (en) | 1980-09-12 | 1981-09-11 | Photoconductive member |
FR8117327A FR2490359B1 (en) | 1980-09-12 | 1981-09-14 | PHOTOCONDUCTIVE ELEMENT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55127490A JPS5752178A (en) | 1980-09-13 | 1980-09-13 | Photoconductive member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5752178A JPS5752178A (en) | 1982-03-27 |
JPH0150905B2 true JPH0150905B2 (en) | 1989-11-01 |
Family
ID=14961237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55127490A Granted JPS5752178A (en) | 1980-09-12 | 1980-09-13 | Photoconductive member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5752178A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH065390B2 (en) * | 1984-01-05 | 1994-01-19 | 株式会社日立製作所 | Method for manufacturing electrophotographic photoreceptor |
US4675263A (en) | 1984-03-12 | 1987-06-23 | Canon Kabushiki Kaisha | Member having substrate and light-receiving layer of A-Si:Ge film and A-Si film with non-parallel interface with substrate |
US4678733A (en) | 1984-10-15 | 1987-07-07 | Canon Kabushiki Kaisha | Member having light receiving layer of A-Si: Ge (C,N,O) A-Si/surface antireflection layer with non-parallel interfaces |
JPH0355205Y2 (en) * | 1985-08-29 | 1991-12-09 | ||
JPS6289064A (en) | 1985-10-16 | 1987-04-23 | Canon Inc | Light receiving material |
JPS6290663A (en) | 1985-10-17 | 1987-04-25 | Canon Inc | Light receiving member |
JPS62106468A (en) | 1985-11-01 | 1987-05-16 | Canon Inc | Light receiving member |
JPS62106470A (en) | 1985-11-02 | 1987-05-16 | Canon Inc | Light receiving member |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5342693A (en) * | 1976-09-29 | 1978-04-18 | Rca Corp | Semiconductor device including amorphous silicone layer |
JPS54145540A (en) * | 1978-05-04 | 1979-11-13 | Canon Inc | Electrophotographic image forming material |
JPS554040A (en) * | 1978-06-26 | 1980-01-12 | Hitachi Ltd | Photoconductive material |
JPS564150A (en) * | 1979-06-22 | 1981-01-17 | Minolta Camera Co Ltd | Electrophotographic receptor |
JPS56125881A (en) * | 1980-03-06 | 1981-10-02 | Fuji Photo Film Co Ltd | Optical semiconductor element |
-
1980
- 1980-09-13 JP JP55127490A patent/JPS5752178A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5342693A (en) * | 1976-09-29 | 1978-04-18 | Rca Corp | Semiconductor device including amorphous silicone layer |
JPS54145540A (en) * | 1978-05-04 | 1979-11-13 | Canon Inc | Electrophotographic image forming material |
JPS554040A (en) * | 1978-06-26 | 1980-01-12 | Hitachi Ltd | Photoconductive material |
JPS564150A (en) * | 1979-06-22 | 1981-01-17 | Minolta Camera Co Ltd | Electrophotographic receptor |
JPS56125881A (en) * | 1980-03-06 | 1981-10-02 | Fuji Photo Film Co Ltd | Optical semiconductor element |
Also Published As
Publication number | Publication date |
---|---|
JPS5752178A (en) | 1982-03-27 |