JPS6341060B2 - - Google Patents
Info
- Publication number
- JPS6341060B2 JPS6341060B2 JP55137151A JP13715180A JPS6341060B2 JP S6341060 B2 JPS6341060 B2 JP S6341060B2 JP 55137151 A JP55137151 A JP 55137151A JP 13715180 A JP13715180 A JP 13715180A JP S6341060 B2 JPS6341060 B2 JP S6341060B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- photoconductive
- gas
- valve
- atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010410 layer Substances 0.000 claims description 264
- 239000000463 material Substances 0.000 claims description 35
- 125000005843 halogen group Chemical group 0.000 claims description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000000470 constituent Substances 0.000 claims description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 11
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 10
- 239000002345 surface coating layer Substances 0.000 claims description 9
- 239000000969 carrier Substances 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 126
- 238000000034 method Methods 0.000 description 43
- 239000000758 substrate Substances 0.000 description 40
- 229910021417 amorphous silicon Inorganic materials 0.000 description 32
- -1 polyethylene Polymers 0.000 description 26
- 239000002994 raw material Substances 0.000 description 22
- 229910052736 halogen Inorganic materials 0.000 description 21
- 150000002367 halogens Chemical class 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 19
- 238000000151 deposition Methods 0.000 description 19
- 230000008021 deposition Effects 0.000 description 19
- 229910052710 silicon Inorganic materials 0.000 description 19
- 238000004544 sputter deposition Methods 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 14
- 229910052750 molybdenum Inorganic materials 0.000 description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 12
- 239000000460 chlorine Substances 0.000 description 12
- 239000011733 molybdenum Substances 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 125000004429 atom Chemical group 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 11
- 239000007858 starting material Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical class [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 150000003377 silicon compounds Chemical class 0.000 description 7
- 229910003902 SiCl 4 Inorganic materials 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 150000002366 halogen compounds Chemical class 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 229910052794 bromium Inorganic materials 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 206010034972 Photosensitivity reaction Diseases 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 238000007733 ion plating Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 108091008695 photoreceptors Proteins 0.000 description 4
- 230000036211 photosensitivity Effects 0.000 description 4
- 238000005546 reactive sputtering Methods 0.000 description 4
- 229910052990 silicon hydride Inorganic materials 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910001120 nichrome Inorganic materials 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910003691 SiBr Inorganic materials 0.000 description 2
- 229910003986 SicO Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 206010047571 Visual impairment Diseases 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical compound CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910001179 chromel Inorganic materials 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910014263 BrF3 Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- UAZDIGCOBKKMPU-UHFFFAOYSA-O azanium;azide Chemical compound [NH4+].[N-]=[N+]=[N-] UAZDIGCOBKKMPU-UHFFFAOYSA-O 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- GPTXWRGISTZRIO-UHFFFAOYSA-N chlorquinaldol Chemical compound ClC1=CC(Cl)=C(O)C2=NC(C)=CC=C21 GPTXWRGISTZRIO-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- JUINSXZKUKVTMD-UHFFFAOYSA-N hydrogen azide Chemical compound N=[N+]=[N-] JUINSXZKUKVTMD-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229960001730 nitrous oxide Drugs 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- FQFKTKUFHWNTBN-UHFFFAOYSA-N trifluoro-$l^{3}-bromane Chemical compound FBr(F)F FQFKTKUFHWNTBN-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08235—Silicon-based comprising three or four silicon-based layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08221—Silicon-based comprising one or two silicon based layers
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
- Light Receiving Elements (AREA)
Description
本発明は光(ここでは広義の光で、紫外光線、
可視光線、赤外光線、X線、γ線等を示す)の様
な電磁波に感受性のある光導電部材に関する。
固体撮像装置、或いは像形成分野に於ける電子
写真用像形成部材や原稿読取装置等に於ける光導
電層を構成する光導電材料としては、高感度で、
SN比〔光電流(Ip)/暗電流(Id)〕が高く、照
射する電磁波のスペクトル特性を有すること、光
応答性が良好で、所望の暗抵抗値を有すること、
使用時に於いて人体に対して無公害である事、更
には固体撮像装置に於いては、残像を所定時間内
に容易に処理する事が出来る事等の特性が要求さ
れる。殊に、事務機としてオフイスで使用される
電子写真装置内に組込まれる電子写真用像形成部
材の場合には、上記の使用時に於ける無公害性は
重要な点である。
この様な点に立脚して最近注目されている光導
電材料にアモルフアスシリコン(以後a―Siと記
す)があり、例えば、独国公開第2746967号公報、
同第2855718号公報には電子写真用像形成部材と
して、特開昭55−39404号公報には光電変換読取
装置への応用が記載されている。
然乍ら、従来のa―Siで構成された光導電層を
有する光導電部材は、暗抵抗値、光感度、光応答
性等の電気的、光学的、光導電的特性及び耐湿性
等の使用環境特性の点に於いて、更に改良される
可き点が存し、実用的な固体撮像装置や読取装
置、電子写真用像形成部材等には、生産性、量産
性をも加味して仲々有効に使用し得ないのが実情
である。
例えば、電子写真用像形成部材や固体撮像装置
に適用した場合に、その使用時に於いて残留電位
が残る場合が度々観測され、この様な種の光導電
部材は繰返し長時間使用し続けると、繰返し使用
による疲労の蓄積が起り、残像が生ずる所謂ゴー
スト現象を発する様になる等の不都合な点が少な
くなかつた。
更には例えば、本発明者等の多くの実験によれ
ば、電子写真用像形成部材の光導電層を構成する
材料としてのa―Siは、従来のSe,CdS,ZnO或
いはPVCzやTNF等のOPC(有機光導電部材)に
較べて、数多くの利点を有するが、従来の太陽電
池用として使用する為の特性が付与されたa―Si
から成る単層構成の光導電層を有する電子写真用
像形成部材の上記光導電層に静電像形成の為の帯
電処理を施しても暗減衰(dark decay)が著し
く速く、通常の電子写真法が仲々適用され難い
事、及び多湿雰囲気中に於いては、上記傾向が著
しく、場合によつては現像時間まで帯電々荷を全
く保持し得ない事がある等、解決され得る可き点
が存在している事が判明している。
従つて、a―Si材料そのものの特性改良が計ら
れる一方で光導電部材を設計する際に、所望の電
気的、光学的及び光導電的特性が得られる様に工
夫される必要がある。
本発明は上記の諸点に鑑み成されたもので、a
―Siに就て電子写真用像形成部材や固体撮像装
置、読取装置等に使用される光導電部材としての
適用性とその応用性という観点から総括的に鋭意
研究検討を続けた結果、シリコン原子を母体とし
ハロゲン原子を含有するアモルフアス材料、所謂
ハロゲン含有アモルフアスシリコン(以後a―
Si;Xと記す)から成る光導電層と、該光導電層
を支持する支持体との間に特定の中間層を介在さ
せる層形成に設計されて作製された光導電部材は
実用的に充分使用し得るばかりでなく、従来の光
導電部材と較べてみても殆んどの点に於いて凌駕
していること、殊に電子写真用の光導電部材とし
て著しく優れた特性を有していることを見出した
点に基いている。
本発明は電気的・光学的・光導電的特性が常時
安定していて、殆んど使用環境に制限を受けない
全環境型であり、耐光被労に著しく長け、繰返し
使用に際しても劣化現象を起さず、残留電位が全
く又は殆んど観測されない光導電部材を提供する
ことを主たる目的とする。
本発明の別の目的は、光感度が高く、分光感度
領域も略々全可視光域を覆つていて、且つ光応答
性の速い光導電部材を提供することである。
本発明の他の目的は、電子写真用の像形成部材
として適用された場合通常の電子写真法が極めて
有効に適用され得る程度に、静電像形成の為の帯
電処理の際の電荷保持能が充分あり、且つ多湿雰
囲気中でもその特性の低下が殆んど観測されない
優れた電子写真特性を有する光導電部材を提供す
ることである。
本発明の更に他の目的は、濃度度が高く、ハー
フトーンが鮮明に出て且つ解像度の高い、高品質
画像を得る事が容易に出来る電子写真用の光導電
部材を提供することである。
本発明の光導電部材は支持体と、シリコン原子
を母体とし、ハロゲン原子を含むアモルフアス材
料で構成されている光導電層と、これ等の間に設
けられ、前記支持体側から前記光導電層中へのキ
ヤリアの注入を阻止し且つ電磁波照射によつて前
記光導電層中に生じ前記支持体側に向つて移動す
るキヤリアの前記光導電層側から前記支持体側へ
の通過を許す機能を有する中間層とを備えた光導
電部材に於いて、前記中間層がシリコン原子と窒
素原子とハロゲン原子とを構成要素とするアモル
フアス材料で構成されており、30〜1000Åの層厚
を有することを特徴とする。
上記した様な層構成を取る様にして設計された
光導電部材は、前記した諸問題の総ての解決し
得、極めてすぐれた電気的・光学的・光導電的特
性及び使用環境特性を示す。
殊に、電子写真用像形成部材或いは固体撮像装
置として適用された場合には帯電処理の際の電荷
保持能に長け、画像形成への残留電位の影響が全
くなく、多湿雰囲気中でもその電気的特性が安定
しており高感度で、高SN比を有するものであり、
又、耐光疲労、繰返し使用性に著しく長け、更に
電子写真用像形成部材の場合には濃度が高く、ハ
ーフトーンが鮮明に出て、且つ解像度の高い、高
品質の可視画像を得る事が出来る。
又、電子写真用像形成部材に適用される場合、
高暗抵抗のa―Si:Xは光感度が低く、逆に光感
度の高いa―Si:Xは暗抵抗が高々108Ωcm前後
と低く、いずれの場合にも、従来の層構成の光導
電層のままでは電子写真用の像形成部材には適用
されなかつたのに対して、本発明の場合には、比
較的低抵抗(5×109Ωcm以上)のa―Si:X層
でも電子写真用の光導電層を構成することができ
るので、抵抗は比較的低いが高感度であるa―
Si:Xも充分使用し得、a―Si:Xの特性面から
の制約が軽減され得る。
以下図面に従つて、本発明の光導電部材に就て
詳細に説明する。
第1図は、本発明の光導電部材の基本的な構成
例を説明する為に模式的に示した模式的構成図で
ある。
第1図に示す光導電部材100は、光導電部材
用としての支持体101の上に、中間層102、
該中間層102に直接接触した状態に設けられて
いる光導電層103とで構成される層構成を有
し、本発明の最も基本的な例である。
支持体101としては、導電性でも電気性でも
電気絶縁性であつても良い。導電性支持体として
は、例えば、NiCr,ステンレス,Al,Cr,Mo,
Au,Nb,Ta,V,Ti,Pt,Pd等の金属又はこ
れ等の合金が挙げられる。
電気絶縁性支持体としては、ポリエステル,ポ
リエチレン,ポリカーボネート,セルローズアセ
テート,ポリプロピレン,ポリ塩化ビニル,ポリ
塩化ビニリデン,ポリスチレン,ポリアミド等の
合成樹脂のフイルム又はシート、ガラス,セラミ
ツクス,紙等が通常使用される。これ等の電気絶
縁性支持体は、好適には少なくともその一方の表
面を導電処理され、該導電処理された表面側に他
の層が設けられるのが望ましい。
例えば、ガラスであれば、その表面がNiCr,
Al,Cr,Mo,Au,Ir,Nb,Ta,V,Ti,Pt,
Pd,Iu2O3,SnO2,ITO(In2O3+SnO2)等の薄
膜を設けることによつて導電処理され、或いはポ
リエステルフイルム等の合成樹脂フイルムであれ
ば、NiCr,Al,Ag,Pb,Zn,Ni,Au,Cr,
Mo,Ir,Nb,Ta,V,Ti,Pt等の金属で真空
蒸着,電子ビーム蒸着,スパツタリング等で処理
し、又は前記金属でラミネート処理して、その表
面が導電処理される。支持体の形状としては、円
筒状,ベルト状,板状等,任意の形状とし得、所
望によつて、その形状は決定されるが、例えば、
第1図の光導電部材100を電子写真用像形成部
材として使用するのであれば連続高速複写の場合
には、無端ベルト状又は円筒状とするのが望まし
い。支持体の厚さは、所望通りの光導電部材が形
成される様に適宜決定されるが、光導電部材とし
ての可撓性が要求される場合には、支持体として
の機能が充分発揮される範囲内であれば可能な限
り薄くされる。而乍ら、この様な場合支持体の製
造上及び取扱い上、機械的強度等の点から、通常
は、10μ以上とされる。
中間層102は、シリコン原子及び窒素原子と
を母体とし、ハロゲン原子(Xと記す)を含む非
光導電性のアモルフアス材料〔a―(SixN1-x)
y:X1-yと略記する。但し0<x<1,0<y
<1〕で構成され、支持体101の側から光導電
層103中へのキヤリアの流入を効果的に阻止し
且つ電磁波の照射によつて光導電層103中に生
じ、支持体101の側に向つて移動するフオトキ
ヤリアの光導電層103の側から支持体101の
側への通過を容易に許す機能を有するものであ
る。
a―(SixN1-x)y:X1-yで構成される中間層
102の形成はグロー放電法、スパツターリング
法、イオンインプランテーシヨン法、イオンプレ
ーテイング法、エレクトロンビーム法等によつて
成される。これ等の製造法は、製造条件、設備資
本投下の負荷程度、製造規模模、作製される光導
電部材に所望される特性等の要因によつて適宜選
択されて採用されるが、所望する特性を有する光
導電部材を製造する為の作製条件の制御が比較的
容易である。シリコン原子と共に窒素原子及びハ
ロゲン原子を、作製する中間層中に導入するのが
容易に行える等の利点からグロー放電法或いはス
パツターリング法が好適に採用される。
更に、本発明に於いては、グロー放電法とスパ
ツターリング法とを同一装置系内で併用して中間
層102を形成しても良い。
グロー放電法によつて中間層102を形成する
にはa―(SixN1-x)y:X1-y形成用の原料ガス
を、必要に応じて稀釈ガスと所定量の混合比で混
合して、支持体101の設置してある真空堆積用
の堆積室に導入し、導入されたガス雰囲気中に、
グロー放電を先起させることでガスプラズマ化し
て前記支持体101上にa―(SixN1-x)y:
X1-yを堆積させれば良い。
本発明に於いて、a―(SixN1-x)y:X1-y形
成用の原料ガスとしては、Si,N,Xの中の少な
くとも1つを構成原子とするガス状の物質又はガ
ス化し得る物質をガス化したものの中の大概のも
のが使用され得る。
Si,N,Xの中の1つとしてSiを構成原子とす
る原料ガスを使用する場合は、例えばSiを構成原
子とする原料ガスと、Nを構成原子とする原料ガ
スと、Xを構成原子とする原料ガスとを所望の混
合比で混合して使用するか、又は、Siを構成原子
とする原料ガスと、N及びXを構成原子とする原
料ガスとを、これも又所望の混合比で混合して使
用することが出来る。
又、別には、SiとXとを構成原子とする原料ガ
スにNを構成原子とする原料ガスを混合して使用
しても良い。
本発明に於いて、ハロゲン原子Xとして好適な
のはF,Cl,Br,Iであり、殊にF,Clが望ま
しいものである。
本発明に於いて、中間層102は、a―(Six
N1-x)y:X1-yで構成されるものであるが、中
間層102には更に水素原子を含有させることが
出来る。
中間層102への水素原子の含有は、光導電層
103との連続層形成の際に原料ガス種の一部共
通化を計ることが出来るので生産コスト面の上で
好都合である。
本発明に於いて、中間層102を形成するのに
有効に使用される原料ガスと成り得る出発物質と
しては、常温常圧に於いてガス状態のもの又は容
易にガス化し得る物質を挙げることが出来る。
この様な中間層形成用の出発物質としては、例
えば、窒素、窒化物、弗素化窒素及びアジ化物等
の窒素化合物,ハロゲン単体,ハロゲン化水素,
ハロゲン間化合物,ハロゲン化硅素,ハロゲン置
換水素化硅素,水素化硅素等を挙げる事が出来
る。
具体的には、窒素(N2)、窒素化合物としては
アンモニア(NH3),ヒドラジン(H2NNH2),
三弗化窒素(F3N),四弗化窒素(F4N2),アジ
化水素(HN3),アジ化アンモニウム(NH4N3)
等、ハロゲン単体としては、フツ素、塩素,臭
素,ヨウ素のハロゲンガス,ハロゲン化水素とし
ては、FH,HI,HCl,HBr,ハロゲン化合物と
しては、BrF,ClF,ClF3,ClF5,BrF5,BrF3,
IF7,IF5,ICl,IBr,ハロゲン化硅素としては
SiF4,Si2F6,SiCl4,SiCl3Br,SiCl2Br2,
SiClBr3,SiCl2I,SiBr4,ハロゲン置換水素化硅
素としては、SiH2F2,SiH2Cl2,SiHCl3,
SiH3Cl,SiH3Br,SiH2Br2,SiHBr3,水素化硅
素としては、SiH4,Si2H6,Si3H8,Si4H10等の
シラン(Silane)類、等々を挙げることが出来
る。
これ等の中間層形成用の出発物質は、形成され
る中間層中に、所定の組成比でシリコン原子,窒
素原子及びハロゲン原子と必要に応じて水素原子
とが含有される様に、中間層形成の際に所望に従
つて選択されて使用される。
例えば、シリコン原子と水素原子との含有が容
易に成し得て且つ所望の特性の中間層が形成され
得るSiH4やSi2H6と窒素原子を含有させるものと
してのN2又はNH3とハロゲン原子を含有させる
ものとしてのSiF4,SiH2F2,SiHCl3,SiCl4,
SiH2Cl2,或いはSiH3Cl等を所定の混合比でガス
状態で中間層形成用の装置系内に導入してグロー
放電を生起させることによつてa―SixN1-x:X
+Hから成る中間層を形成することが出来る。
或いは、形成される中間層にシリコン原子とハ
ロゲン原子とを含有させることが出来るSiF4等と
窒素原子を含有させるものとしてのN2等を所定
の混合比で、必要に応じてHe,Ne,Ar等の稀
ガスと共に中間層形成用の装置系内に導入してグ
ロー放電を生起させて、a―SixN1-x:Fから成
る中間層を形成することも出来る。
スパツターリング法によつて中間層102を形
成するには、高純度単結晶又は多結晶のSiウエー
ハー又はSi3N4ウエーハー又はSiとSi3N4が混合
されて形成されたウエーハーをターゲツトとし
て、これ等をハロゲンと必要に応じて水素を構成
要素として含む種々のガス雰囲気中でスパツター
リングすることによつて行なえば良い。
例えば、Siウエーハーをターゲツトとして使用
すれば、NとXを導入する為の原料ガスを、必要
に応じて稀釈ガスで稀釈して、スパツター用の堆
積室中に導入し、これ等のガスのガスプラズマを
形成して前記Siウエーハーをスパツターリングす
れば良い。
又、別には、SiとSi3N4とは別々のターゲツト
として、又はSiとSi3N4の混合して形成した一枚
のターゲツトを使用することによつて、少なくと
もハロゲン原子を含有するガス雰囲気中でスパツ
ターリングすることによつて成される。N及び
X,必要に応じてHの導入用の原料ガスとなる物
質としては先述したグロー放電の例で示した中間
層形成用の出発物質がスパツターリング法の場合
にも有効な物質として使用され得る。
本発明に於いて、中間層102をグロー放電法
又はスパツターリング法で形成する際に使用され
る稀釈ガスとしては、所謂・稀ガス、例えばHe,
Ne,Ar等が好適なものとして挙げることが出来
る。
本発明に於ける中間層102は、その要求され
る特性が所望通りに写えられる様に注意深く形成
される。
即ち、Si,N,及びX,必要に応じてHを構成
原子とする物質は、その作成条件によつて構造的
には結晶からアモルフアスまでの形態を取り、電
気物性的には、導電性から半導体性、絶縁性まで
の間の性質を、又光導電的性質から非光導電的性
質までの間の性質を、各々示すので、本発明に於
いては、非光導電性のa―(SixN1-x)y:X1-y
が形成される様に、その作成条件の選択が厳密に
成される。
本発明の中間層102を構成するa―(Six
N1-x)y:X1-yは、中間層102の機能が、支
持体101側から光導電層103中のキヤリアの
流入を阻止し、且つ光導電層103中で発生した
フオトキヤリアが移動して支持体101側に通過
するのを容易に許すことを果すものであるから、
電気絶縁性的挙動を示すものとして形成される。
又、光導電層103中で発生したフオトキヤリ
アが中間層102中を通過する際、その通過がス
ムーズに成される程度に、通過するキヤリアに対
する易動度(mobility)の値を有するものとして
a―(SixN1-x)y:X1-yの作成条件の中の重要
な要素として、作成時の支持体温度を挙げる事が
出来る。
即ち、支持体101の表面にa―(SixN1-x)
y:X1-yからなる中間層102を形成する際、
層形成中の支持体温度は、形成される層の構造及
び特性を左右する重要な因子であつて、本発明に
於いては、目的とする特性を有するa―(Six
N1-x)y:X1-yが所望通りに作成され得る様に
層作成時の支持体温度が厳密に制御される。
本発明に於ける、所望の目的が効果的に達成さ
れる為の中間層102を形成する際の支持体温度
としては、中間層102の形成法に併せて適宜最
適範囲が選択されて、中間層102の形成が実行
されるが、通常の場合、100〜300℃、好適には
150〜250℃とされるのが望ましいものである。中
間層102の形成には、同一系内で中間層102
から光導電層103、更には必要に応じて光導電
層103上に形成される第3の層まで連続的に形
成することが出来る事、各層を構成する原子の組
成比の微妙な制御や層厚の制御が他の方法に較べ
て比較的容易である事等の為に、グロー放電法や
スパツターリング法の採用が有利であるが、これ
等の層形成法で中間層102を形成する場合に
は、前記の支持体温度と同様に層形成の際の放電
パワー及びガス圧が作成されるa―(SixN1-x)
yX1-yの特性を左右する重要な因子として挙げる
ことが出来る。
本発明に於ける目的が達成される為の特性を有
するa―(SixN1-x)y:X1-yが生産性良く効果
的に作成される為の放電パワー条件としては、通
常10〜300W,好適には20〜100Wである。
堆積室内のガス圧はグロー放電法にて層形成を
行う場合に於いて通常0.01〜5Torr,好適には、
0.1〜0.5Torr程度に、スパツタリング法にて層形
成を行う場合に於いては、通常10-3〜5×
10-2Torr,好適には8×10-3〜3×10-2Torr程
度とされるのが望ましい。
本発明の光導電部材に於ける中間層102に含
有される窒素原子及びハロゲン原子の量は、中間
層102の作製条件と同様本発明の目的を達成す
る所望の特性が得られる中間層が形成される為の
重要な因子である。
本発明に於ける中間層102に含有される窒素
原子の量は、通常は30〜60atomic%,好適には
40〜60atomic%,されるのが望ましいものであ
る。ハロゲン原子の含有量としては、通常の場合
1〜20atnmic%,好適には2〜15atomic%とさ
れるのが望ましく、これ等の範囲にハロゲン含有
量がある場合に作成される光導電部材を実際面に
充分適用され得るものである。必要に応じて含有
される水素原子の含有量としては、通常の場合
19atomic%以下、好適には13atomic%以下とさ
れるのが望ましいものである。即ち先のa―
(SixN1-x)y:X1-yの表示で行えばxが通常0.43
〜0.60,好適には0.49〜0.43,yが通常0.99〜
0.80,好適には0.98〜0.85である。
ハロゲン原子と水素原子の両方が含まれる場
合、先と同様のa―(SixN1-x)y:(H+X)1-y
の表示で行えば、この場合のx,yの数値範囲も
a―(SixN1-x)y:X1-yの場合と、略々同様で
ある。
本発明に於ける中間層102の層厚の数値範囲
は、本発明の目的を効果的に達成する為の重要な
因子の1つである。
中間層102の層厚が充分過ぎる程に薄いと、
支持体101の側からの光導電層103へのキヤ
リアの流入を阻止する働きが充分果し得なくな
り、又、充分過ぎる程以上に厚いと、光導電層1
03中に於いて生ずるフオトキヤリアの支持体1
01の側への通過する確率が極めて小さくなり、
従つて、いずれの場合にも、本発明の目的を効果
的に達成され得なくなる。
本発明の目的を効果的に達成する為の中間層1
02の層厚としては、通常の場合、30〜1000Å好
適には、50〜600Åである。
本発明に於いて、その目的を効果的に達成する
為に、中間層102上に積層される光導電層10
3は下記に示す半導体特性を有するa―Si:Xで
構成される。
P-型a―Si:X…アクセプターのみを含む
もの。或いは、ドナーとアクセプターとの両方
を含み、アクセプターの濃度(Na)が高いも
の。
P型a―Si:X…のタイプに於いてアクセ
プターの濃度(Na)が低い所謂p型不純物を
ライトリードブしたもの。
n-型a―Si:X…ドナーのみを含むもの。或
いはドナーとアクセプターの両方を含み、ドナ
ーの濃度(Nd)が高いもの。
n型a―Si:X…のタイプに於いてドナー
の濃度(Nd)が低い、所謂n型不純物をライ
トリードーブしたもの。
i型a―Si:X…NaNdOのもの又は、
NaNdのもの。
本発明に於いては、中間層102を設けること
によつて前記した様に光導電層103を構成する
a―Si:Xは、従来に較べて比較的低抵抗のもの
も使用され得るものであるが、一層良好な結果を
得る為には、形成される光導電層103の暗抵抗
が好適には5×109Ωcm以上、最適には1010Ωcm以
上となる様に光導電層103が形成されるのが望
ましいものである。
殊に、この暗抵抗値の数値条件は、作製された
光導電部材を電子写真用像形成部材や、低照度領
域で使用される高感度の読取装置や固体撮像装
置、或いは光電変換装置として使用する場合には
重要な要素である。
本発明に於ける光導電部材の光導電層の層厚と
しては、読取装置、固体撮像装置或いは電子写真
用像形成部材等の適用するものの目的に適合され
て所望に従つて適宜決定される。
本発明に於いては、光導電層の層厚としては、
光導電層の機能及び中間層の機能が各々有効に活
されて本発明の目的が効果的に達成される様に中
間層との層厚関係に於いて適宜所望に従つて決め
られるものであり、通常の場合、中間層の層厚に
対して数百〜数千倍以上の層厚とされるのが好ま
しいものである。
具体的な値としては、通常1〜100μ、好適に
は2〜50μの範囲とされるのが望ましい。
本発明において、光導電層中に含有されるハロ
ゲン原子(X)としては、具体的にはフツ素,塩
素,臭素,ヨウ素が挙げられ、殊にフツ素,塩素
を好適なものとして挙げることが出来る。
ここに於いて、「層中にXが含有されている」
ということは、「Xが、Siと結合した状態」、「X
がイオン化して層中に取り込まれている状態」又
は「X2として層中に取り込まれている状態」の
何れかの又はこれ等の複合されている状態を意味
する。
本発明において、a―Si:Xで構成される光導
電層を形成するには例えばグロー放電法、スパツ
タリング法、或いはイオンプレーテイング法等の
放電現象を利用する真空堆積法によつて成され
る。例えば、グロー放電法によつてa―Si:Xか
ら成る光導電層を形成するには、Siを生成し得る
Si生成原料ガスと共に、ハロゲン導入用原料ガス
を内部が減圧にし得る堆積室内に導入して、該堆
積室内にグロー放電を生起させ、予め所定位置に
設置されてある所定の支持体表面上にa―Si:X
からなる層を形成させれば良い。又、スパツター
リング法で形成する場合には、例えばAr,He等
の不活性ガス又はこれ等のガスをベースとした混
合ガスの雰囲気中でSiで形成されたターゲツトを
スパツターリングする際、ハロゲン導入用ガスを
スパツターリング用の堆積室に導入してやれば良
い。
本発明において使用されるSi生成原料ガスとし
ては、SiH4,Si2H6,Si3H8,Si4H10等のガス状
態の又はガス化し得る水素化硅素(シラン類)が
有効に使用されるものとして挙げられ、殊に、層
作成作業の際の扱い易さ、Si生成効率の良さ等の
点でSiH4,Si2H6が好ましいものとして挙げられ
る。
本発明において使用されるハロゲン導入用原料
ガスとして有効なのは、多くのハロゲン化合物が
挙げられ、例えばハロゲンガス、ハロゴン化物、
ハロゲン間化合物等のガス状態の又はガス化し得
るハロゲン化合物が好ましく挙げられる。
又、更には、Siとハロゲンとを同時に生成し得
る、ガス状態の又はガス化し得る、ハロゲンを含
む硅素化合物も有効なものとして本発明において
挙げることが出来る。
本発明において考適に使用し得るハロゲン化合
物としては、具体的には、フツ素、塩素、臭素、
ヨウ素のハロゲンガス、BrF,ClF,ClF3,
BrF5,BrF3,IF7,IF5,ICl,IBr等のハロゲン
間化合物を挙げることができる。
ハロゲンを含む硅素化合物としては、具体的に
は例えばSiF4,Si2F6,SiCl4,SiBr4等のハロゲ
ン化硅素が好ましいものとして挙げることが出来
る。
この様なハロゲンを含む硅素化合物を採用して
グロー放電法によつて本発明の特徴的な光導電部
材を形成する場合には、Siを生成し得る原料ガス
としての水素化硅素ガスを使用しなくとも、所定
の支持体上にa―Si:Xから成る光導電層を形成
することが出来る。
グロー放電法に従つて、本発明に於ける光導電
層を製造する場合、基本的には、Si生成用の原料
ガスであるハロゲン化硅素ガスとAr,H2,He等
のガスとの所定の混合比とガス流量になる様にし
てa―Si:Xから成る光導電層を形成する堆積室
内に導入し、グロー放電を生起してこれ等のガス
のプラズマ雰囲気を形成することによつて、所定
の支持体上に形成されてある中間層に接触してa
―Si:Xから成る光導電層を形成し得るものであ
るが、これ等のガスに更に水素を含む硅素化合物
のガスを所定量混合して層形成しても良い。
又、各ガスは単独種のみでなく所定の混合比で
複数種混合して使用しても差支えないものであ
る。
反応スパツターリング法或いはイオンプレーテ
イグ法に依つてa―Si:Xから成る光導電層を形
成するには、スパツターリング法の場合にはSiか
ら成るターゲツトを使用して、これを所定のガス
プラズマ雰囲気中でスパツターリングし、イオン
プレーテイング法の場合には、多結晶シリコン又
は単結晶シリコンを蒸発源として蒸着ボードに収
容し、このシリコン蒸発源を抵抗加熱法、或いは
エレクトロンビーム法(EB法)等によつて加熱
蒸発させ飛翔蒸発物を所定のガスプラズマ雰囲気
中を通過させる事で行う事が出来る。
この際、スパツタリング法、イオンプレーテイ
ング法の何れの場合にも形成される層中にハロゲ
ンを導入するには、前記のハロゲン化合物又は前
記のハロゲンを含む硅素化合物のガスを堆積室中
に導入して該ガスのプラズマ雰囲気を形成してや
れば良いものである。
本発明においては、ハロゲン導入用の原料ガス
として上記されたハロゲン化合物或いはハロゲン
を含む硅素化合物が有効なものとして使用される
ものであるが、その他に、HF,HCl,HBr,HI
等のハロゲン化水素、SiH2F2,SiH2Cl2,
SiHCl3,SiH2Br2,SiHBr3等のハロゲン置換水
素化硅素、等々のガス状態の或いはガス化し得
る、水素を構成要素の1つとするハロゲン化物も
有効なものとして挙げる事が出来る。
これらの水素を含むハロゲン化物は、層形成の
際に層中にハロゲンの導入と同時に電気的或いは
光電的特性の制御に極めて有効なHも導入される
ので、本発明においては好適なハロゲン導入用の
原料ガスとして使用される。
水素をa―Si:Xから成る光導電層中に構造的
に導入するには、上記の他にH2、或いはSiH4,
Si2H6,Si3H8,Si4H10等の水素化硅素のガスを
a―Siを生成する為のシリコン又はシリコン化合
物と堆積室中に共存させて放電を生起させる事で
も行う事が出来る。
例えば、反応スパツタリング法の場合には、Si
ターゲツトを使用し、ハロゲン導入用のガス及び
H2ガスを必要に応じてHe,Ar等の不活性ガスも
含めて堆積室内に導入してガスプラズマ雰囲気を
形成し、前記Siターゲツトをスパツタリングする
事によつて、所定の特性を有する支持体表面上に
Hが導入されたa―Si:Xから成る層が形成され
る。
更には、不純物のドーピングも兼ねてB2H3,
PH3,PF3等のガスを導入してやることも出来
る。
本発明に於いて、形成される光導電部材の光導
電層中に含有されるXの量又は(H+X)の量は
通常の場合1〜40atomic%、好適には5〜
30atomic%とされるのが望ましい。
層中に含有されるHの量を制御するには、例え
ば堆積支持体温度又は/及びHを含有させる為に
使用される出発物質の堆積装置系内へ導入する
量、放電々力等を制御しやれば良い。
光導電層をn型又はp型とするには、グロー放
電法や反応スパツターリング法等による層形成の
際に、n型不純物又は、p型不純物、或いは両不
純物を形成させる層中にその量を制御し乍らドー
ピングしてやる事によつて成される。
光導電層中にドーピングされる不純物として
は、光導電層をp型にするには、周期律表第族
Aの元素、例えば、B,Al,Ga,In,Tl等が好
適なものとして挙げられ、n型にする場合には、
周期律表第族Aの元素、例えば、N,P,As,
Sb,Bi等が好適なものとして挙げられる。これ
等の不純物は、層中に含有される量がppmオーダ
ーであるので、光導電層を構成する主物質程その
公害性に注意を払う必要はないが出来る限り公害
性のないものを使用するものが好ましい。この様
な観点からすれば、形成される層の電気的・光学
的特性を加味して、例えば、B,Ga,P,Sb等
が最適である。この他に、例えば、熱拡散やイオ
ンインプランテーシヨンによつてLi等がインター
ステイシアルにドーピングされことでn型に制御
することも可能である。
光導電層中にドーピングされる不純物の量は、
所望される電気的・光学的特性に応じて適宜決定
されるが、周期律表第族Aの不純物の場合に
は、通常10-6〜10-3atomic%、好適には10-5〜
10-4atomic%、周期律表第族Aの場合には通
常10-8〜10-3atomic%、好適には10-8〜
10-4atomic%とされるのが望ましい。
第2図には、本発明の光導電部材の別の実施態
様例の構成を説明する為の模式的構成図が示され
る。
第2図に示される光導電部材200は、光導電
層203の上に、中間層202と同様の機能を有
する上部層205を設けた以外は、第1図に示す
光導電部材100と同様の層構造を有するもので
ある。
即ち、光導電部材200は、支持体201の上
に中間層102と同様の材料で同様の機能を有す
る様に形成された中間層202と、必要に応じて
Hが導入されているa―Si:Xで構成される光導
電層203と、該光導電層203上に設けられ、
自由表面204を有する上部層205を具備して
いる。
上部層205は、例えば光導電部材200を自
由表面204に帯電処理を施して電荷像を形成す
る場合の様な使い方をする際、自由表面204に
保持される可き電荷が光導電層203中の流入す
るのを阻止し、且つ、電磁波の照射を受けた際に
は、光導電層203中の発生したフオトキヤリア
と、電磁波の照射を受けた部分の帯電々荷とがリ
コンビネーシヨンを起す様に、フオトキヤリアの
通過又は帯電々荷の通過を容易に許す機能を有す
る。
上部層205は、中間層202と同様の特性を
有し、必要に応じて水素原子を含むa―(Six
N1-x)y:X1-yで構成される他、a―SiaC1-a,
a−(SiaC1-a)b:H1-b,a−(SiaC1-a)b:
(H+X)1-b,a−SicO1-c,a−(SicO1-c)d:
H1-d,a−(SicO1-c)d:(H+X)1-d,a−Sie
N1-e等の光導電層を構成する母体原子であるシ
リコン原子と窒素原子又は酸素原子とで構成され
るか又は、これ等の原子を母体とし水素原子(H)又
は/及びハロゲン原子(X)を含むアモルフアス
材料,Al3O3等の無機絶縁性材料,ポリエステ
ル,ポリパラキシリレン,ポリウレタン等の有機
絶縁性材料で構成することも出来る。
而乍ら、上部層205を構成する材料として
は、生産性,量産性,及び形成された層の電気的
及び使用環境的安定性等の点から、中間層202
と同様の特性を有するa―(SixN1-x)y:X1-y
で構成するか又は、a−(SiaC1-a)b:X1-b,a
−(SicN1-c)d:H1-d,a−(SieN1-e)f:
X1-f,a−(SigC1-g)h:H1-h或いはハロゲン原
子及び水素原子を含まないd−SixC1-x,a−Siz
C1-zで構成するものが望ましい。
上部層205を構成する材料としては、上記に
挙げた物質の他、好適なものとしては、シリコン
原子と、C,N,Oの中の少なくとも2つの原子
を母体とし、ハロゲン原子か又はハロゲン原子と
水素原子とを含むアモルフアス材料を挙げること
が出来る。ハロゲン原子としては、F,Cl,Br
等が挙げられるが、熱的安定性の点から上記アモ
ルフアス材料の中Fを含有するものが有効であ
る。
上部層205を構成する材料の選択及びその層
厚の決定は、上部層205側より光導電層203
の感受する電磁波を照射する様にして光導電部材
200を使用する場合には、照射される電磁波が
光導電層203に充分量到達して、効率良く、フ
オトキヤリアの発生を引起させ得る様に注意深く
成される。
上部層205は、中間層202と同様の手法
で、例えばグロー放電法や反応スパツターリング
法で形成することが出来る。
上部層205の形成の際に使用される出発物質
としては、中間層を形成するのに使用される前記
の物質が使用される他、炭素原子導入用の出発物
質として、例えば炭素数1〜5の飽和炭化水素、
炭素数1〜5のエチレン系炭化水素、炭素数2〜
4のアセチレン系炭化水素等を挙げることが出来
る。
具体的には、飽和炭化水素としてメタン
(CH4),エタン(C2H6),プロパン(C3H8),n
―ブタン(n―C4H10),ペンタン(C5H12),エ
チレン系炭化水素としては、エチレン(C2H4),
プロピレン(C3H6),プテン―1(C4H8),プテ
ン―2(C4H8),イソブチレン(C4H8),ペンテ
ン(C5H10),アセチレン系炭化水素としては、
アセチレン(C2H2),メチルアセチレン
(C3H4),ブチン(C4H6)等が挙げられる。
酸素原子を上部層205中の含有させる為の出
発物質としては、例えば、酸素(O2),オゾン
(O3),一酸化炭素(CO),二酸化炭素(CO2),
一酸化窒素(NO),二酸化窒素(NO2),一酸化
二窒素(N2O)等を挙げることが出来る。
これ等の他に、上部層205形成用の出発物質
の1つとして、例えばCCl4,CHF3,CH2F2,
CH3F,CH3Cl,CH3Br,CH31,C2H5Cl等のハ
ロゲン置換パラフイン系炭化水素,SF4,SF6等
のフツ素化硫黄化合物,Si(CH3)4,Si(C2H5)4等
のケイ化アルキルやSiCl(CH3)3,SiCl2(CH3)2,
SiCl3CH3等のハロゲン含有ケイ化アルキル等の
シランの誘導体も有効なものとして挙げることが
出来る。
これ等の上部層205形成用の出発物質は、所
定の原子が構成原子として形成される上部層20
5中に含まれる様に、層形成の際に適宜選択され
て使用される。
例えば、グロー放電法を採用するのであれば、
Si(CH3)4,SiCl2(CH3)2等の単独ガス又はSiH4
―N2O系,SiH4―O2(―Ar)系,SiH4―NO2系,
SiH4―O2―N2系,SiCl4―CO2―H2系,SiCl4―
NO―H2系,SiH4―NH3券,SiCl4―NH4系,
SiH4―N2系,SiH4―NH3―NO系,Si(CH3)4―
SiH4系,SiCl2(CH3)2―SiH4系等の混合ガスを
上部層205形成用の出発物質として使用するこ
とが出来る。
本発明に於ける上部層205の層厚としては、
前述した機能が充分発揮される様に、層を構成す
る材料、層形成条件等によつて所望に従つて適宜
決定される。
本発明に於ける上部層205の層厚としては、
通常の場合、30〜1000Å好適には50〜600Åとさ
れるのが望ましいものである。
本発明の光導電部材を電子写真用像形成部材と
して使用する場合にある種の電子写真プロセスを
採用するのであれば、第1図又は第2図に示され
る層構成の光導電材の自由表面上に更に表面被覆
層を設ける必要がある。この場合の表面被覆層
は、例えば、特公昭42−23910号公報同43―24748
号公報に記載されているNP方式の様な電子写真
プロセスを適用するのであれば、電気的絶縁性で
あつて、帯電処理を受けた際の静電荷保持能が充
分あつて、ある程度以上の厚みがあることが要求
されるが、例えば、カールソンプロセスの如き電
子写真プロセスを適用するのであれば、静電像形
成後の明部の電位は非常に小さいことが望ましい
ので表面被覆層の厚さとしては非常に薄いことが
要求される。表面被覆層は、その所望される電気
的特性を満足するのに加えて、光導電層又は上部
層に化学的・物理的に悪影響を与えないこと、光
導電層又は上部層との電気的接触及び接着性、更
には耐湿性、耐摩耗性、クリーニング性等を考慮
して形成される。
表面被覆層の形成材料として有効に使用される
ものとして、その代表的なものは、ポリエチレン
テレフタレート、ポリカーボネート、ポリプロピ
レン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポ
リビニルアルコール、ポリスチレン、ポリアミ
ド、ポリ四弗化エチレン、ポリ三弗化塩化エチレ
ン、ポリ弗化ビニル、ポリ弗化ビニリデソ、六弗
化プロピレン―四弗化エチレンコポリマー、三弗
化エチレン―弗化ビニリデンコポリマー、ポリブ
テン、ポリビニルブチラール、ポリウレタン、ポ
リパラキシリレン等の有機絶縁体、シリコン窒化
物、シリコン酸化物等の無機絶縁体等が挙げられ
る。これ等の合成樹脂又はセルローズ誘導体はフ
イルム状とされて光導電層又は上部層の上に貼合
されても良く、又、それ等の塗布液を形成して、
光導電層又は上部層上に塗布し、層形成しても良
い。表面被覆層の層厚は、所望される特性に応じ
て、又、使用される材質によつて適宜決定される
が、通常の場合、0.5〜70μ程度とされる。殊に表
面被覆層が先述した保護層としての機能が要求さ
れる場合には、通常の場合、10μ以下とされ、逆
に電気的絶縁層としての機能が要求される場合に
は、通常の場合、10μ以上とされる。而乍ら、こ
の保護層と電気絶縁層とを差別する層厚は、使用
材料及び適用される電子写真プロセス、設計され
る像形成部材の構造によつて、変動するもので、
先の10μという値は絶対的なものではない。
又、この表面被覆層は、反射防止層としての役
目も荷わせれば、その機能が一層拡大されて効果
的となる。
実施例 1
完全にシールドされたクリーンルーム中に設置
された第3図に示す装置を用い、以下の如き操作
によつて電子写真用像形成部材を作製した。
表面が清浄にされた0.5mm厚10cm角のモリブテ
ン板(基板)309を支持台302上に静置され
たグロー放電堆積室301内の所定位置にある固
定部材303に堅固に固定した。基板309は、
固定部材303内の加熱ヒーター308によつて
±0.5℃の精度で加熱される。温度は、熱電対
(アルメル―クロメル)によつて基板裏面を直接
測定されるようになされた。次いで系内の全バル
ブが閉じられていることを確認してからメインバ
ルブ310を全開して、室301内が排気され、
約5×10-6torrの真空度にした。その後ヒーター
308の入力電圧を上昇させ、モリブデン基板温
度を検知しながら入力電圧を変化させ、200℃の
一定値になるまで安定させた。
その後、補助バルブ340、次いで流出バルブ
325,326,327及び流入バルブ320―
2,321,322を全開し、フローメーター3
16,317,318内も十分脱気真空状態にさ
れた。補助バルブ340,バルブ325,32
6,327,320―2,321,322を閉じ
た後、H2を10vol%含むSiF4ガス(以後SiF4/H2
と略す。純度99.999%)ボンベ311のバルブ3
30、N2ガス(純度99.999%)ボンベ312の
バルブ331を開け、出口圧ゲージ335,33
6の圧を1Kg/cm2に調整し、流入バルブ320―
2,321を余々に開けてフローメーター31
6,317内へSiF4/H2ガス,N2ガスを流入さ
せた。引続いて、流出バルブ325,326を
徐々に開け、次いで補助バルブ340を徐々に開
けた。このときSiF4/H2ガス流量とN2ガス流量
比が1:90になるように流入バルブ320,32
1を調整した。次にピラニーゲージ341の読み
を注視しながら補助バルブ340の開口を調整
し、室301内が1×10-2torrになるまで補助バ
ルブ340を開けた。室301内圧が安定してか
ら、メインバルブ310を徐々に閉じ、ピラニー
ゲージ341の指示が0.5torrになるまで開口を
絞つた。ガス流入が安定し内圧が安定するのを確
認した。続いて高周波電源342のスイツチを
ON状態にして、誘導コイル343に、13.56MHz
の高周波電力を投入コイル部(室上部)の室30
1内にグロー放電を発生させ、60Wの入力電力と
した。上記条件で基板上に層を堆積させる為に1
分間条件を保つて中間層を形成した。
その後、高周波電源342をoff状態とし、グ
ロー放電を中止させた状態で、流出バルブ326
を閉じ、次にH2で500vol ppmに稀釈された
B2H6ガス(以後B2H6/H2と略す。純度99.999
%)ボンベ313のバルブ332を開け、出口圧
ゲージ337の圧を1Kg/cm2に調整し、流入バル
ブ322を徐々に開けてフローメーター318内
へB2H6/H2ガスを流入させた。引続いて流出バ
ルブ327を徐々に開けた。このときB2H6/H2
ガス流量とSiF4/H2ガス流量比が1:70になる
ように流入バルブ320―2,322を調整し
た。次に中間層の形成時と同様にピラニーゲージ
341の指示が0.5torrになるように補助バルブ
340、メインバルブ310の開口を調整し、安
定化させた。
引き続き、再び高周波電源342をON態にし
て、グロー放電を再開させた。そのときの入力電
力を以前と同様に60Wにした。こうしてグロー放
電を更に3時間持続させて光導電層を形成した
後、加熱ヒーター308をoff状態にし高周波電
源342もoff状態とし、基板温度が100℃になる
のを待つてから流出バルブ325,327及び流
入バルブ320―2,321,322を閉じ、メ
インバルブ310を全開にして、室301内を
10-5torr以下にした後、メインバルブ310を閉
じ、室301内をリークバルブ343によつて大
気圧として基板を取り出した。この場合、形成さ
れた層の全厚は約9μであつた。こうして時られ
た像形成部材を、帯電露光実験装置に設置し、
6.0KVで0.2sec間コロナ帯電を行い、直ちに光像
を照射した。光像は、タングステンランプ光源を
用い、0.8lux・secの光量を透過型のテストチヤ
ートを通して照射させた。
その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)を部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、5.0KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、階調
再現性の良い鮮明な高濃度の画像が得られた。
次に上記像形成部材に就て、帯電露光実験装置
で5.5KVで0.2sec間のコロナ帯電を行い、直ち
に0.8lux・secの光量で画像露光を行い、その後
直ちに荷電性の現像剤を部材表面にカスケード
し、次に転写紙上に転写・定着したところ極めて
鮮明な画像が得られた。
この結果から本実施例で得られた電子写真用像
形成部材は帯電極性に対する依存性がなく、両極
性像形成部材の特性を具備していることが判つ
た。
実施例 2
モリブデン基板上に中間層を形成する際のグロ
ー放電保持時間を、下記の第1表に示す様に種々
変化させた以外は実施例1と全く同様の条件及び
手順によつて試料No.〜で示される像形成部材
を作成し、実施例1と全く同様の帯電露光実験装
置に設置して同様の画像形成を行つたところ下記
の第1表に示す如き結果を得た。
第1表に示される結果から判る様に、本発明の
目的を達成するには中間層の膜厚を30Å〜1000Å
の範囲で形成する必要がある。
The present invention is based on light (here, light in a broad sense, ultraviolet light,
The present invention relates to photoconductive members that are sensitive to electromagnetic waves such as visible light, infrared light, X-rays, gamma rays, etc. As photoconductive materials constituting photoconductive layers in solid-state imaging devices, electrophotographic image forming members in the image forming field, document reading devices, etc., highly sensitive,
It has a high signal-to-noise ratio [photocurrent (Ip)/dark current (Id)], has spectral characteristics of the electromagnetic waves to be irradiated, has good photoresponsiveness, and has a desired dark resistance value.
Solid-state imaging devices are required to have characteristics such as being non-polluting to the human body during use and being able to easily process afterimages within a predetermined time. Particularly in the case of an electrophotographic image forming member incorporated into an electrophotographic apparatus used in an office as a business machine, the pollution-free nature during use is an important point. Based on these points, amorphous silicon (hereinafter referred to as a-Si) is a photoconductive material that has recently attracted attention.
No. 2855718 describes its application as an electrophotographic image forming member, and JP-A-55-39404 describes its application to a photoelectric conversion/reading device. However, conventional photoconductive members having photoconductive layers composed of a-Si have excellent electrical, optical, and photoconductive properties such as dark resistance, photosensitivity, and photoresponsiveness, as well as moisture resistance. There are points that can be further improved in terms of usage environment characteristics, and practical solid-state imaging devices, reading devices, image forming members for electrophotography, etc. should be developed by taking into account productivity and mass production. The reality is that it cannot be used effectively. For example, when applied to electrophotographic image forming members or solid-state imaging devices, it is often observed that residual potential remains during use, and when such photoconductive members are used repeatedly for a long time, There are many inconveniences, such as the accumulation of fatigue due to repeated use and the so-called ghost phenomenon in which an afterimage occurs. Furthermore, for example, according to many experiments conducted by the present inventors, a-Si as a material constituting the photoconductive layer of an electrophotographic image forming member can be used as a material constituting the photoconductive layer of an electrophotographic image forming member. Although it has many advantages compared to OPC (organic photoconductive material), a-Si has been given characteristics for use in conventional solar cells.
Even when the photoconductive layer of an electrophotographic image forming member having a single-layer photoconductive layer is subjected to charging treatment for electrostatic image formation, dark decay is extremely fast, compared to ordinary electrophotography. The above-mentioned tendency is remarkable in a humid atmosphere, and in some cases, it may not be possible to retain the electrostatic charge at all until the development time.There are some points that can be solved. is known to exist. Therefore, while efforts are being made to improve the properties of the a-Si material itself, it is necessary to take measures to obtain desired electrical, optical, and photoconductive properties when designing photoconductive members. The present invention has been made in view of the above points, and includes a
-As a result of intensive research and study on Si from the viewpoint of its applicability as a photoconductive material used in electrophotographic image forming members, solid-state imaging devices, reading devices, etc., we found that silicon atoms Amorphous material containing halogen atoms, so-called halogen-containing amorphous silicon (hereinafter referred to as a-
A photoconductive member designed and manufactured to form a layer in which a specific intermediate layer is interposed between a photoconductive layer consisting of Si (denoted as X) and a support supporting the photoconductive layer is practically sufficient. Not only can it be used, but it is superior in most respects to conventional photoconductive members, and has particularly excellent properties as a photoconductive member for electrophotography. It is based on the discovery of The present invention has stable electrical, optical, and photoconductive properties at all times, is suitable for all environments with almost no restrictions on usage environments, and is extremely resistant to light stress and does not exhibit deterioration phenomena even after repeated use. The main objective is to provide a photoconductive member in which no or almost no residual potential is observed. Another object of the present invention is to provide a photoconductive member that has high photosensitivity, has a spectral sensitivity range that covers substantially the entire visible light range, and has fast photoresponsiveness. Another object of the present invention is to have charge retention properties during charging processing for electrostatic image formation to such an extent that ordinary electrophotography methods can be applied very effectively when applied as an image forming member for electrophotography. It is an object of the present invention to provide a photoconductive member which has excellent electrophotographic properties with sufficient electrophotographic properties and whose properties hardly deteriorate even in a humid atmosphere. Still another object of the present invention is to provide a photoconductive member for electrophotography that can easily produce high-quality images with high density, clear halftones, and high resolution. The photoconductive member of the present invention is provided between a support, a photoconductive layer made of an amorphous material having silicon atoms as a matrix and containing halogen atoms, and is provided between the support and the photoconductive layer from the support side. an intermediate layer having a function of preventing carriers from being injected into the photoconductive layer and allowing carriers generated in the photoconductive layer and moving toward the support by electromagnetic wave irradiation to pass from the photoconductive layer side to the support side; The photoconductive member is characterized in that the intermediate layer is made of an amorphous material whose constituent elements are silicon atoms, nitrogen atoms, and halogen atoms, and has a layer thickness of 30 to 1000 Å. . A photoconductive member designed to have the layer structure described above can solve all of the above-mentioned problems, and exhibits extremely excellent electrical, optical, photoconductive properties, and use environment characteristics. . In particular, when applied as an image forming member for electrophotography or a solid-state imaging device, it has excellent charge retention ability during charging processing, has no influence of residual potential on image formation, and has excellent electrical properties even in a humid atmosphere. is stable, has high sensitivity, and has a high signal-to-noise ratio.
In addition, it has excellent resistance to light fatigue and repeated use, and in the case of electrophotographic image forming members, it is possible to obtain high-quality visible images with high density, clear halftones, and high resolution. . Also, when applied to an electrophotographic imaging member,
a-Si:X with high dark resistance has low photosensitivity, and conversely, a-Si:X with high photosensitivity has a low dark resistance of around 10 8 Ωcm at most. In contrast, in the case of the present invention, even a relatively low resistance (5×10 9 Ωcm or more) a-Si: Since it can constitute a photoconductive layer for electrophotography, it has relatively low resistance but high sensitivity.
Si:X can also be used satisfactorily, and restrictions from the characteristics of a-Si:X can be alleviated. The photoconductive member of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic configuration diagram schematically shown to explain a basic configuration example of a photoconductive member of the present invention. The photoconductive member 100 shown in FIG. 1 has an intermediate layer 102,
It has a layer structure consisting of the intermediate layer 102 and a photoconductive layer 103 provided in direct contact with it, and is the most basic example of the present invention. The support 101 may be conductive, electrical, or electrically insulating. Examples of the conductive support include NiCr, stainless steel, Al, Cr, Mo,
Examples include metals such as Au, Nb, Ta, V, Ti, Pt, and Pd, and alloys thereof. As the electrically insulating support, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramics, paper, etc. are usually used. . Preferably, at least one surface of these electrically insulating supports is conductively treated, and another layer is preferably provided on the conductively treated surface side. For example, if it is glass, its surface may be NiCr,
Al, Cr, Mo, Au, Ir, Nb, Ta, V, Ti, Pt,
If it is conductive treated by providing a thin film of Pd, Iu 2 O 3 , SnO 2 , ITO (In 2 O 3 +SnO 2 ), or if it is a synthetic resin film such as polyester film, NiCr, Al, Ag, Pb, Zn, Ni, Au, Cr,
The surface is treated with a metal such as Mo, Ir, Nb, Ta, V, Ti, or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal, so that the surface thereof is conductive. The shape of the support may be any shape such as cylindrical, belt-like, plate-like, etc., and the shape is determined as desired, but for example,
If the photoconductive member 100 of FIG. 1 is used as an electrophotographic image forming member, it is preferably in the form of an endless belt or a cylinder for continuous high-speed copying. The thickness of the support is determined as appropriate so that the desired photoconductive member is formed, but if flexibility is required as a photoconductive member, the thickness of the support may be determined appropriately so that the photoconductive member has sufficient flexibility. It is made as thin as possible within the range. However, in such cases, the thickness is usually 10μ or more in view of manufacturing and handling of the support, mechanical strength, etc. The intermediate layer 102 is made of a non-photoconductive amorphous material [a-(Si x N 1-x ) containing silicon atoms and nitrogen atoms as a matrix and halogen atoms (denoted as X).
y: Abbreviated as X 1-y . However, 0<x<1, 0<y
<1], which effectively prevents carriers from flowing into the photoconductive layer 103 from the support 101 side, and which is generated in the photoconductive layer 103 by electromagnetic wave irradiation and It has a function of easily allowing the photo carrier moving toward the substrate 101 to pass from the side of the photoconductive layer 103 to the side of the support 101. The intermediate layer 102 composed of a-(Si x N 1-x )y:X 1-y can be formed by glow discharge method, sputtering method, ion implantation method, ion plating method, or electron beam method. etc. These manufacturing methods are selected and adopted as appropriate depending on factors such as manufacturing conditions, equipment capital investment load, manufacturing scale, and desired characteristics of the photoconductive member to be manufactured. It is relatively easy to control manufacturing conditions for manufacturing a photoconductive member having the following properties. The glow discharge method or the sputtering method is preferably employed because of the advantages of easily introducing nitrogen atoms and halogen atoms together with silicon atoms into the intermediate layer to be produced. Furthermore, in the present invention, the intermediate layer 102 may be formed by using a glow discharge method and a sputtering method in the same apparatus system. To form the intermediate layer 102 by the glow discharge method, the raw material gas for forming a-(Si x N 1 -x )y: The mixture is introduced into a deposition chamber for vacuum deposition in which the support 101 is installed, and into the introduced gas atmosphere,
By generating a glow discharge first, a gas plasma is formed and a-(Si x N 1-x )y is formed on the support 101.
All you have to do is deposit X 1-y . In the present invention, the raw material gas for forming a-(Si x N 1-x )y:X 1-y is a gaseous substance containing at least one of Si, N, and X as a constituent atom. Alternatively, most gasified substances can be used. When using a raw material gas containing Si as one of Si, N, and X, for example, a raw material gas containing Si as a constituent atom, a raw material gas containing N as a constituent atom, and a raw material gas containing Alternatively, a raw material gas containing Si and a raw material gas containing N and X may be mixed at a desired mixing ratio. Can be used by mixing. Alternatively, a raw material gas containing Si and X as constituent atoms may be mixed with a raw material gas containing N as constituent atoms. In the present invention, preferred halogen atoms X are F, Cl, Br, and I, with F and Cl being particularly preferred. In the present invention, the intermediate layer 102 is a-(Si x
N 1-x )y:X 1-y , but the intermediate layer 102 can further contain hydrogen atoms. The inclusion of hydrogen atoms in the intermediate layer 102 is advantageous in terms of production costs, since it is possible to share some of the raw material gas types when forming a continuous layer with the photoconductive layer 103. In the present invention, starting materials that can be used as raw material gases that can be effectively used to form the intermediate layer 102 include those in a gaseous state or substances that can be easily gasified at room temperature and normal pressure. I can do it. Examples of starting materials for forming such an intermediate layer include nitrogen, nitrides, nitrogen compounds such as fluorinated nitrogen and azides, simple halogens, hydrogen halides,
Examples include interhalogen compounds, silicon halides, halogen-substituted silicon hydrides, and silicon hydrides. Specifically, nitrogen (N 2 ), nitrogen compounds such as ammonia (NH 3 ), hydrazine (H 2 NNH 2 ),
Nitrogen trifluoride (F 3 N), nitrogen tetrafluoride (F 4 N 2 ), hydrogen azide (HN 3 ), ammonium azide (NH 4 N 3 )
etc., halogen gases include fluorine, chlorine, bromine, and iodine; hydrogen halides include FH, HI, HCl, and HBr; halogen compounds include BrF, ClF, ClF 3 , ClF 5 , BrF 5 , BrF3 ,
IF 7 , IF 5 , ICl, IBr, silicon halide
SiF 4 , Si 2 F 6 , SiCl 4 , SiCl 3 Br, SiCl 2 Br 2 ,
SiClBr 3 , SiCl 2 I, SiBr 4 , halogen-substituted silicon hydrides include SiH 2 F 2 , SiH 2 Cl 2 , SiHCl 3 ,
SiH 3 Cl, SiH 3 Br, SiH 2 Br 2 , SiHBr 3 , silicon hydride includes silanes such as SiH 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 , etc. I can do it. These starting materials for forming the intermediate layer are selected such that the intermediate layer to be formed contains silicon atoms, nitrogen atoms, halogen atoms, and hydrogen atoms as necessary in a predetermined composition ratio. They are selected and used as desired during formation. For example, SiH 4 or Si 2 H 6 can easily contain silicon atoms and hydrogen atoms and form an intermediate layer with desired characteristics, and N 2 or NH 3 can contain nitrogen atoms. SiF 4 , SiH 2 F 2 , SiHCl 3 , SiCl 4 as substances containing halogen atoms,
A - Si x N 1 -x :
An intermediate layer consisting of +H can be formed. Alternatively, SiF 4 , etc., which can contain silicon atoms and halogen atoms, and N 2 , etc., which can contain nitrogen atoms, at a predetermined mixing ratio, and if necessary, He, Ne, It is also possible to form an intermediate layer made of a-Si x N 1-x :F by introducing it together with a rare gas such as Ar into an apparatus system for forming an intermediate layer to generate a glow discharge. To form the intermediate layer 102 by the sputtering method, a high-purity single crystal or polycrystalline Si wafer, a Si 3 N 4 wafer, or a wafer formed by mixing Si and Si 3 N 4 is used as a target. , these may be carried out by sputtering in various gas atmospheres containing halogen and, if necessary, hydrogen as constituent elements. For example, if a Si wafer is used as a target, the raw material gas for introducing N and The Si wafer may be sputtered by forming plasma. Alternatively, by using Si and Si 3 N 4 as separate targets or by using a single target formed by mixing Si and Si 3 N 4 , a gas containing at least halogen atoms can be produced. This is done by sputtering in an atmosphere. As the raw material gas for introducing N, X, and H if necessary, the starting material for forming the intermediate layer shown in the glow discharge example mentioned above is also used as an effective material in the sputtering method. can be done. In the present invention, a so-called rare gas, such as He,
Preferable examples include Ne and Ar. The intermediate layer 102 in the present invention is carefully formed so that its required characteristics can be reproduced as desired. In other words, materials whose constituent atoms are Si, N, X, and optionally H can have a structure ranging from crystalline to amorphous depending on the conditions for their creation, and electrical properties ranging from conductive to amorphous. In the present invention, non-photoconductive a-(Si xN1 -x )y:X1 -y
The conditions for its creation are carefully selected so that it is formed. a-(Si x
N 1-x ) y: This is because it easily allows movement and passage to the support body 101 side.
It is formed to exhibit electrically insulating behavior. Further, when the photocarrier generated in the photoconductive layer 103 passes through the intermediate layer 102, a has a mobility value for the passing carrier to such an extent that the photocarrier passes through the intermediate layer 102 smoothly. -(Si x N 1-x )y: An important factor in the production conditions for X 1-y is the temperature of the support during production. That is, a-(Si x N 1-x ) is formed on the surface of the support 101.
When forming the intermediate layer 102 consisting of y:X 1-y ,
The temperature of the support during layer formation is an important factor that influences the structure and properties of the formed layer, and in the present invention, a-(Si x
The temperature of the support during layer formation is strictly controlled so that N 1-x )y:X 1-y can be formed as desired. In the present invention, in order to effectively achieve the desired purpose, the temperature of the support when forming the intermediate layer 102 is appropriately selected in an optimal range in accordance with the method of forming the intermediate layer 102. Formation of layer 102 is carried out, typically at 100-300°C, preferably
The temperature is preferably 150 to 250°C. For forming the intermediate layer 102, the intermediate layer 102 is formed in the same system.
It is possible to continuously form the photoconductive layer 103 from the photoconductive layer 103 to the third layer formed on the photoconductive layer 103 if necessary, and it is possible to finely control the composition ratio of atoms constituting each layer. Although it is advantageous to employ a glow discharge method or a sputtering method because the thickness can be controlled relatively easily compared to other methods, the intermediate layer 102 can be formed using these layer forming methods. In this case, the discharge power and gas pressure during layer formation are set to a-(Si x N 1-x ) similar to the support temperature described above.
This can be cited as an important factor that influences the characteristics of yX 1-y . The discharge power conditions for effectively producing a-(Si x N 1 - x )y: It is 10-300W, preferably 20-100W. The gas pressure in the deposition chamber is usually 0.01 to 5 Torr, preferably 0.01 to 5 Torr when layer formation is performed using the glow discharge method.
When forming a layer by sputtering at a pressure of about 0.1 to 0.5 Torr, it is usually 10 -3 to 5×
10 -2 Torr, preferably about 8×10 -3 to 3×10 -2 Torr. The amounts of nitrogen atoms and halogen atoms contained in the intermediate layer 102 in the photoconductive member of the present invention are the same as the manufacturing conditions of the intermediate layer 102, so that an intermediate layer can be obtained that achieves the desired characteristics to achieve the object of the present invention. This is an important factor for achieving success. The amount of nitrogen atoms contained in the intermediate layer 102 in the present invention is usually 30 to 60 atomic%, preferably
It is desirable that the amount is 40 to 60 atomic%. The content of halogen atoms is usually 1 to 20 atnmic%, preferably 2 to 15 atnmic%, and photoconductive members produced when the halogen content is in this range are actually used. It can be fully applied to surfaces. The content of hydrogen atoms that are included as necessary is usually
It is desirable that the content be 19 atomic % or less, preferably 13 atomic % or less. That is, the previous a-
(Si x N 1-x )y: If expressed as X 1-y , x is usually 0.43
~0.60, preferably 0.49~0.43, y usually 0.99~
0.80, preferably 0.98 to 0.85. When both a halogen atom and a hydrogen atom are included, the same a-(Si x N 1-x )y: (H+X) 1-y as before
If expressed as follows, the numerical range of x and y in this case is almost the same as in the case of a-(Si x N 1-x )y:X 1-y . The numerical range of the layer thickness of the intermediate layer 102 in the present invention is one of the important factors for effectively achieving the object of the present invention. If the layer thickness of the intermediate layer 102 is too thin,
If the thickness is too thick, the photoconductive layer 1 will not be able to sufficiently prevent carriers from flowing into the photoconductive layer 103 from the side of the support 101.
Photocarrier support 1 produced in 03
The probability of passing to the 01 side becomes extremely small,
Therefore, in either case, the object of the present invention cannot be effectively achieved. Intermediate layer 1 for effectively achieving the object of the present invention
The layer thickness of 02 is usually 30 to 1000 Å, preferably 50 to 600 Å. In the present invention, in order to effectively achieve the purpose, a photoconductive layer 10 laminated on an intermediate layer 102 is used.
3 is composed of a-Si:X having the semiconductor properties shown below. P -type a-Si:X... Contains only acceptor. Or one that contains both a donor and an acceptor and has a high acceptor concentration (Na). P-type a-Si: A write-read bleed of the so-called p-type impurity with a low acceptor concentration (Na) in the X... type. n - type a-Si:X... Contains only a donor. Or one that contains both donor and acceptor and has a high concentration of donor (Nd). N-type a-Si: Lightly doped with the so-called n-type impurity, which has a low donor concentration (Nd) in the X... type. i-type a-Si:X...NaNdO or,
NaNd stuff. In the present invention, by providing the intermediate layer 102, a-Si:X that constitutes the photoconductive layer 103 as described above can be used with a relatively low resistance compared to the conventional one. However, in order to obtain even better results, the photoconductive layer 103 is formed so that the dark resistance of the photoconductive layer 103 is preferably 5×10 9 Ωcm or more, optimally 10 10 Ωcm or more. It is desirable that it be formed. In particular, this numerical condition for the dark resistance value is required when the manufactured photoconductive member is used as an image forming member for electrophotography, a highly sensitive reading device or solid-state imaging device used in a low-light region, or a photoelectric conversion device. This is an important element when doing so. The layer thickness of the photoconductive layer of the photoconductive member in the present invention is suitably determined according to the purpose of the application, such as a reading device, a solid-state imaging device, or an electrophotographic image forming member. In the present invention, the layer thickness of the photoconductive layer is as follows:
The thickness relationship between the photoconductive layer and the intermediate layer can be appropriately determined as desired so that the functions of the photoconductive layer and the intermediate layer can be effectively utilized and the objects of the present invention can be effectively achieved. In normal cases, the layer thickness is preferably several hundred to several thousand times or more than that of the intermediate layer. A specific value is usually 1 to 100μ, preferably 2 to 50μ. In the present invention, specific examples of the halogen atom (X) contained in the photoconductive layer include fluorine, chlorine, bromine, and iodine, with fluorine and chlorine being particularly preferred. I can do it. Here, "X is contained in the layer"
This means that "X is bonded to Si", "X
It means either a state in which X2 is ionized and incorporated into the layer, or a state in which X2 is incorporated into the layer, or a combination thereof. In the present invention, the photoconductive layer composed of a-Si:X is formed by a vacuum deposition method using a discharge phenomenon such as a glow discharge method, a sputtering method, or an ion plating method. . For example, in order to form a photoconductive layer consisting of a-Si:X by a glow discharge method, Si can be generated.
A raw material gas for introducing halogen is introduced into a deposition chamber whose interior can be reduced in pressure together with a raw material gas for Si generation, and a glow discharge is generated in the deposition chamber, and a -Si:X
What is necessary is to form a layer consisting of. In addition, when forming by sputtering method, for example, when sputtering a target formed of Si in an atmosphere of an inert gas such as Ar or He or a mixed gas based on these gases, The halogen introduction gas may be introduced into the deposition chamber for sputtering. As the Si generation raw material gas used in the present invention, silicon hydride (silanes) in a gaseous state or which can be gasified such as SiH 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 is effectively used. Among them, SiH 4 and Si 2 H 6 are particularly preferred in terms of ease of handling during layer formation work and good Si generation efficiency. Many halogen compounds are effective as the raw material gas for halogen introduction used in the present invention, such as halogen gas, halogenide,
Preferred examples include gaseous or gasifiable halogen compounds such as interhalogen compounds. Furthermore, silicon compounds containing halogen, which can generate Si and halogen at the same time, are in a gaseous state, or can be gasified, can also be mentioned as effective in the present invention. Specifically, halogen compounds that can be suitably used in the present invention include fluorine, chlorine, bromine,
Iodine halogen gas, BrF, ClF, ClF 3 ,
Examples include interhalogen compounds such as BrF 5 , BrF 3 , IF 7 , IF 5 , ICl, and IBr. Preferred examples of the silicon compound containing halogen include silicon halides such as SiF 4 , Si 2 F 6 , SiCl 4 and SiBr 4 . When forming the characteristic photoconductive member of the present invention by a glow discharge method using such a silicon compound containing halogen, silicon hydride gas is used as a raw material gas that can generate Si. At least a photoconductive layer made of a-Si:X can be formed on a predetermined support. When manufacturing the photoconductive layer of the present invention according to the glow discharge method, basically, a silicon halide gas, which is a raw material gas for Si generation, and a gas such as Ar, H 2 , He, etc. are mixed in a predetermined amount. By introducing these gases into a deposition chamber for forming a photoconductive layer consisting of a-Si:X at a mixing ratio and a gas flow rate of , a glow discharge is generated to form a plasma atmosphere of these gases. , in contact with an intermediate layer formed on a predetermined support, a
Although a photoconductive layer consisting of -Si:X can be formed, a layer may also be formed by further mixing a predetermined amount of a silicon compound gas containing hydrogen with these gases. Moreover, each gas may be used not only as a single species but also as a mixture of multiple species at a predetermined mixing ratio. To form a photoconductive layer made of a-Si:X by a reactive sputtering method or an ion plating method, a target made of Si is used in the case of a sputtering method, and the target is placed in a predetermined manner. Sputtering is performed in a gas plasma atmosphere of This can be carried out by heating and evaporating the flying evaporated material by (EB method) or the like and passing the flying evaporated material through a predetermined gas plasma atmosphere. At this time, in order to introduce halogen into the layer formed by either the sputtering method or the ion plating method, a gas of the above-mentioned halogen compound or the above-mentioned halogen-containing silicon compound is introduced into the deposition chamber. It is sufficient to form a plasma atmosphere of the gas. In the present invention, the above-mentioned halogen compounds or halogen-containing silicon compounds are effectively used as the raw material gas for halogen introduction, but in addition, HF, HCl, HBr, HI
Hydrogen halides such as SiH 2 F 2 , SiH 2 Cl 2 ,
Halogenated silicon hydrides such as SiHCl 3 , SiH 2 Br 2 , SiHBr 3 and the like, and halides containing hydrogen as one of their constituents, which are in a gaseous state or can be gasified, can also be cited as effective. These hydrogen-containing halides are suitable for halogen introduction in the present invention because they introduce H, which is extremely effective for controlling electrical or photoelectric properties, at the same time as halogen is introduced into the layer during layer formation. used as raw material gas. In order to structurally introduce hydrogen into the photoconductive layer consisting of a-Si:X, in addition to the above, H 2 or SiH 4 ,
This can also be done by causing a discharge by causing silicon hydride gas such as Si 2 H 6 , Si 3 H 8 , Si 4 H 10 to coexist with silicon or a silicon compound for producing a-Si in the deposition chamber. I can do it. For example, in the case of the reactive sputtering method, Si
Using a target, introduce gas and
By introducing H 2 gas, including inert gases such as He and Ar as necessary, into the deposition chamber to form a gas plasma atmosphere and sputtering the Si target, a support having predetermined characteristics can be formed. A layer consisting of a-Si:X into which H is introduced is formed on the surface. Furthermore, B 2 H 3 ,
It is also possible to introduce a gas such as PH 3 or PF 3 . In the present invention, the amount of X or the amount of (H+X) contained in the photoconductive layer of the photoconductive member to be formed is usually 1 to 40 atomic%, preferably 5 to 40 atomic%.
It is desirable to set it to 30 atomic%. The amount of H contained in the layer can be controlled, for example, by controlling the temperature of the deposition support, the amount of starting material used to incorporate H into the deposition system, the discharge force, etc. Just do it. To make the photoconductive layer n-type or p-type, an n-type impurity, a p-type impurity, or both impurities are added to the layer during layer formation using a glow discharge method, a reactive sputtering method, etc. This is achieved by controlling the amount of doping. As impurities to be doped into the photoconductive layer, elements of group A of the periodic table, such as B, Al, Ga, In, Tl, etc., are preferably used to make the photoconductive layer p-type. and when making it n-type,
Elements of group A of the periodic table, such as N, P, As,
Preferable examples include Sb and Bi. Since the amount of these impurities contained in the layer is on the order of ppm, it is not necessary to pay as much attention to their pollution properties as the main materials constituting the photoconductive layer, but use materials that are as non-polluting as possible. Preferably. From this point of view, B, Ga, P, Sb, etc. are optimal, taking into consideration the electrical and optical characteristics of the layer to be formed. In addition, it is also possible to control the n-type by interstitial doping with Li or the like by, for example, thermal diffusion or ion implantation. The amount of impurity doped into the photoconductive layer is
It is determined as appropriate depending on the desired electrical and optical properties, but in the case of impurities in Group A of the periodic table, it is usually 10 -6 to 10 -3 atomic%, preferably 10 -5 to 10 -3 atomic%.
10 -4 atomic%, usually 10 -8 to 10 -3 atomic% in the case of group A of the periodic table, preferably 10 -8 to
It is desirable to set it to 10 -4 atomic%. FIG. 2 shows a schematic configuration diagram for explaining the configuration of another embodiment of the photoconductive member of the present invention. The photoconductive member 200 shown in FIG. 2 is similar to the photoconductive member 100 shown in FIG. 1 except that an upper layer 205 having the same function as the intermediate layer 202 is provided on the photoconductive layer 203 It has a layered structure. That is, the photoconductive member 200 includes an intermediate layer 202 formed on a support 201 using the same material as the intermediate layer 102 and having the same function, and an a-Si layer into which H is introduced as necessary. :A photoconductive layer 203 composed of X, provided on the photoconductive layer 203,
A top layer 205 having a free surface 204 is provided. When the upper layer 205 is used, for example, when the free surface 204 of the photoconductive member 200 is subjected to charging treatment to form a charge image, the charge that can be held on the free surface 204 is transferred to the photoconductive layer 203. When the photoconductive layer 203 is irradiated with electromagnetic waves, the photocarriers generated in the photoconductive layer 203 and the electrostatic charges in the portions irradiated with the electromagnetic waves undergo recombination. Similarly, it has the function of easily allowing the passage of photo carriers or charged charges. The upper layer 205 has the same characteristics as the intermediate layer 202, and optionally contains a-(Si x
N 1-x ) y: In addition to consisting of X 1-y , a-Si a C 1-a ,
a-(Si a C 1-a ) b: H 1-b , a-(Si a C 1-a ) b:
(H+X) 1-b , a-SicO 1-c , a-( SicO 1-c )d:
H 1-d , a-(Si c O 1-c ) d: (H+X) 1-d , a-Si e
The photoconductive layer, such as N 1-e, is composed of a silicon atom and a nitrogen or oxygen atom, which are the host atoms, or a hydrogen atom (H) or/and a halogen atom ( It can also be composed of an amorphous material containing X), an inorganic insulating material such as Al 3 O 3 , or an organic insulating material such as polyester, polyparaxylylene, polyurethane, etc. However, the material constituting the upper layer 205 is selected from the middle layer 202 in terms of productivity, mass production, and electrical and usage environment stability of the formed layer.
a-(Si x N 1-x )y:X 1-y with the same characteristics as
or a-(Si a C 1-a )b:X 1-b , a
−(Si c N 1-c ) d: H 1-d , a−(Si e N 1-e ) f:
X 1-f , a-(Si g C 1-g )h: H 1-h or d-Si x C 1-x , a-Si z that does not contain a halogen atom or a hydrogen atom
Preferably, it consists of C 1-z . In addition to the materials listed above, suitable materials for forming the upper layer 205 include a silicon atom and at least two atoms among C, N, and O, and a halogen atom or a halogen atom. Examples include amorphous materials containing hydrogen atoms and hydrogen atoms. Halogen atoms include F, Cl, Br
From the viewpoint of thermal stability, among the above amorphous materials, those containing F are effective. The selection of the material constituting the upper layer 205 and the determination of its layer thickness are carried out from the upper layer 205 side to the photoconductive layer 203.
When the photoconductive member 200 is used in such a way as to irradiate electromagnetic waves that are sensitive to done carefully. The upper layer 205 can be formed using the same method as the intermediate layer 202, such as a glow discharge method or a reactive sputtering method. As the starting material used in forming the upper layer 205, in addition to the above-mentioned materials used in forming the intermediate layer, as a starting material for introducing carbon atoms, for example, a material having a carbon number of 1 to 5 is used. saturated hydrocarbons,
Ethylene hydrocarbon having 1 to 5 carbon atoms, 2 to 5 carbon atoms
Examples include acetylene hydrocarbons of No. 4. Specifically, saturated hydrocarbons include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), n
-Butane (n-C 4 H 10 ), pentane (C 5 H 12 ), ethylene hydrocarbons include ethylene (C 2 H 4 ),
Propylene (C 3 H 6 ), putene-1 (C 4 H 8 ), putene-2 (C 4 H 8 ), isobutylene (C 4 H 8 ), pentene (C 5 H 10 ), acetylenic hydrocarbons. ,
Examples include acetylene (C 2 H 2 ), methylacetylene (C 3 H 4 ), butyne (C 4 H 6 ), and the like. Examples of starting materials for containing oxygen atoms in the upper layer 205 include oxygen (O 2 ), ozone (O 3 ), carbon monoxide (CO), carbon dioxide (CO 2 ),
Examples include nitric oxide (NO), nitrogen dioxide (NO 2 ), and dinitrogen monoxide (N 2 O). In addition to these, as one of the starting materials for forming the upper layer 205, for example, CCl 4 , CHF 3 , CH 2 F 2 ,
Halogen-substituted paraffinic hydrocarbons such as CH 3 F, CH 3 Cl, CH 3 Br, CH 3 1, C 2 H 5 Cl, fluorinated sulfur compounds such as SF 4 , SF 6 , Si(CH 3 ) 4 , Alkyl silicides such as Si(C 2 H 5 ) 4 , SiCl(CH 3 ) 3 , SiCl 2 (CH 3 ) 2 ,
Derivatives of silanes such as halogen-containing alkyl silicides such as SiCl 3 CH 3 may also be mentioned as useful. These starting materials for forming the upper layer 205 are used to form the upper layer 205 in which predetermined atoms are formed as constituent atoms.
5, they are appropriately selected and used during layer formation. For example, if you use the glow discharge method,
Single gas such as Si(CH 3 ) 4 , SiCl 2 (CH 3 ) 2 or SiH 4
-N 2 O system, SiH 4 -O 2 (-Ar) system, SiH 4 -NO 2 system,
SiH 4 ―O 2 ―N 2 system, SiCl 4 ―CO 2 ―H 2 system, SiCl 4 ―
NO―H 2 series, SiH 4 -NH 3 series, SiCl 4 -NH 4 series,
SiH 4 ―N 2 system, SiH 4 ―NH 3 ―NO system, Si(CH 3 ) 4 ―
Mixed gases such as SiH 4 series, SiCl 2 (CH 3 ) 2 -SiH 4 series, etc. can be used as a starting material for forming the upper layer 205 . The layer thickness of the upper layer 205 in the present invention is as follows:
In order to fully exhibit the above-mentioned functions, it is determined as desired depending on the material constituting the layer, the layer formation conditions, etc. The layer thickness of the upper layer 205 in the present invention is as follows:
In normal cases, the thickness is preferably 30 to 1000 Å, preferably 50 to 600 Å. If a certain type of electrophotographic process is employed when the photoconductive member of the present invention is used as an electrophotographic imaging member, the free surface of the photoconductive member in the layer configuration shown in FIG. 1 or FIG. It is necessary to further provide a surface coating layer. In this case, the surface coating layer is, for example, disclosed in Japanese Patent Publication No. 42-23910, No. 43-24748.
If an electrophotographic process such as the NP method described in the publication is to be applied, it must be electrically insulating, have sufficient ability to retain static charge when subjected to charging treatment, and be thicker than a certain level. However, if an electrophotographic process such as the Carlson process is applied, it is desirable that the potential in the bright area after electrostatic image formation is very small, so the thickness of the surface coating layer should be is required to be very thin. In addition to satisfying its desired electrical properties, the surface coating layer must not have any adverse chemical or physical effects on the photoconductive layer or the upper layer, and must not have electrical contact with the photoconductive layer or the upper layer. It is formed in consideration of adhesion, moisture resistance, abrasion resistance, cleanability, etc. Typical materials effectively used for forming the surface coating layer include polyethylene terephthalate, polycarbonate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polystyrene, polyamide, polytetrafluoroethylene, Polychloroethylene trifluoride, polyvinyl fluoride, polyvinylidene fluoride, propylene hexafluoride-ethylene tetrafluoride copolymer, ethylene trifluoride-vinylidene fluoride copolymer, polybutene, polyvinyl butyral, polyurethane, polyparaxylylene, etc. Inorganic insulators such as organic insulators, silicon nitride, and silicon oxide, etc. may be mentioned. These synthetic resins or cellulose derivatives may be formed into a film and laminated onto the photoconductive layer or the upper layer, or a coating solution may be formed,
It may be coated on the photoconductive layer or the upper layer to form a layer. The thickness of the surface coating layer is appropriately determined depending on the desired characteristics and the material used, but is usually about 0.5 to 70 μm. In particular, when the surface coating layer is required to function as the above-mentioned protective layer, it is usually 10μ or less, and conversely, when it is required to function as an electrical insulating layer, it is usually , 10μ or more. However, the layer thickness differentiating between the protective layer and the electrically insulating layer varies depending on the materials used, the applied electrophotographic process, and the designed structure of the imaging member.
The above value of 10μ is not an absolute value. Furthermore, if this surface coating layer also serves as an antireflection layer, its function will be further expanded and it will become more effective. Example 1 Using the apparatus shown in FIG. 3 installed in a completely shielded clean room, an electrophotographic image forming member was produced by the following operations. A 0.5 mm thick, 10 cm square molybdenum plate (substrate) 309 whose surface was cleaned was firmly fixed to a fixing member 303 at a predetermined position in a glow discharge deposition chamber 301 placed on a support stand 302 . The substrate 309 is
It is heated with an accuracy of ±0.5° C. by a heater 308 inside the fixed member 303. Temperature was measured directly on the backside of the substrate by a thermocouple (alumel-chromel). Next, after confirming that all valves in the system are closed, the main valve 310 is fully opened to exhaust the inside of the chamber 301.
The degree of vacuum was set at approximately 5×10 -6 torr. Thereafter, the input voltage to the heater 308 was increased, and the input voltage was varied while detecting the temperature of the molybdenum substrate until it stabilized at a constant value of 200°C. After that, the auxiliary valve 340, then the outflow valves 325, 326, 327 and the inflow valve 320-
2,321,322 fully open, flow meter 3
The interiors of Nos. 16, 317, and 318 were also sufficiently degassed and vacuumed. Auxiliary valve 340, valves 325, 32
After closing 6,327,320-2,321,322, SiF 4 gas containing 10 vol% H 2 (hereinafter referred to as SiF 4 /H 2
It is abbreviated as Purity 99.999%) Valve 3 of cylinder 311
30. Open the valve 331 of the N2 gas (99.999% purity) cylinder 312, and check the outlet pressure gauges 335, 33.
Adjust the pressure of 6 to 1Kg/cm 2 and open the inflow valve 320-
Open 2,321 to excess and install flow meter 31.
SiF 4 /H 2 gas and N 2 gas were flowed into 6,317. Subsequently, the outflow valves 325 and 326 were gradually opened, and then the auxiliary valve 340 was gradually opened. At this time, the inflow valves 320 and 32 are adjusted so that the SiF 4 /H 2 gas flow rate and N 2 gas flow rate ratio is 1:90.
1 was adjusted. Next, the opening of the auxiliary valve 340 was adjusted while observing the reading on the Pirani gauge 341, and the auxiliary valve 340 was opened until the inside of the chamber 301 became 1×10 −2 torr. After the internal pressure of the chamber 301 became stable, the main valve 310 was gradually closed and the opening was throttled until the reading on the Pirani gauge 341 reached 0.5 torr. It was confirmed that the gas inflow was stable and the internal pressure was stable. Next, turn on the high frequency power supply 342.
Turn it ON and connect the induction coil 343 to 13.56MHz.
high-frequency power is applied to the chamber 30 of the coil section (upper chamber).
A glow discharge was generated within the battery, and the input power was 60W. 1 to deposit a layer on the substrate under the above conditions.
The conditions were maintained for minutes to form an intermediate layer. After that, the high frequency power supply 342 is turned off, and the outflow valve 326 is turned off with the glow discharge stopped.
closed and then diluted to 500vol ppm with H2
B 2 H 6 gas (hereinafter abbreviated as B 2 H 6 /H 2. Purity 99.999
%) The valve 332 of the cylinder 313 was opened, the pressure of the outlet pressure gauge 337 was adjusted to 1 Kg/cm 2 , and the inflow valve 322 was gradually opened to allow B 2 H 6 /H 2 gas to flow into the flow meter 318. . Subsequently, the outflow valve 327 was gradually opened. At this time B 2 H 6 /H 2
The inflow valves 320-2 and 322 were adjusted so that the gas flow rate and the SiF 4 /H 2 gas flow rate ratio were 1:70. Next, as in the case of forming the intermediate layer, the openings of the auxiliary valve 340 and the main valve 310 were adjusted so that the reading on the Pirani gauge 341 was 0.5 torr, and the mixture was stabilized. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was set to 60W as before. After continuing the glow discharge for another 3 hours to form a photoconductive layer, the heating heater 308 is turned off, the high frequency power source 342 is also turned off, and after waiting for the substrate temperature to reach 100°C, the outflow valves 325, 327 Then, the inflow valves 320-2, 321, and 322 are closed, and the main valve 310 is fully opened to drain the inside of the chamber 301.
After reducing the pressure to 10 -5 torr or less, the main valve 310 was closed, the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 343, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 9μ. The image forming member thus cut is placed in a charging exposure experiment device,
Corona charging was performed at 6.0 KV for 0.2 seconds, and a light image was immediately irradiated. The optical image was created using a tungsten lamp light source, and a light intensity of 0.8 lux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a charged developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Next, the image forming member is corona charged for 0.2 seconds at 5.5 KV using a charging exposure experiment device, and image exposure is immediately performed at a light intensity of 0.8 lux・sec. Immediately thereafter, a charged developer is applied to the surface of the member. When the image was transferred and fixed onto transfer paper, an extremely clear image was obtained. From these results, it was found that the electrophotographic image forming member obtained in this example had no dependence on charge polarity and had the characteristics of a bipolar image forming member. Example 2 Sample No. An image forming member shown in . . . . was prepared, and when it was installed in the same electrostatic exposure experimental apparatus as in Example 1 and the same image formation was performed, the results shown in Table 1 below were obtained. As can be seen from the results shown in Table 1, in order to achieve the purpose of the present invention, the thickness of the intermediate layer is 30 Å to 1000 Å.
It is necessary to form within the range of .
【表】
◎:優 ○:良 △:実用上使用し得る
×:不可
中間層の膜堆積速度:1Å/sec
実施例 3
モリブデン基板上に中間層を形成する際に
SiF4/H2ガス流量とN2ガス流量比を下記の第2
表に示す様に種々変化させた以外は実施例1と全
く同様の条件及び手順によつて試料No.〜で示
される像形成部材を作成し、実施例1と全く同様
の帯電露光実験装置して同様の画像形成を行なつ
たところ、下記の第2表に示す如き結果を得た。
試料No.〜に関して、オージエ電子分光分析法
により分析したところ、第3表に示す如き結果を
得た。第2,第3表の結果から本発明の目的を達
成するには中間層におけるSiとNの組成比xを
0.43〜0.60の範囲内で形成する必要がある。[Table] ◎: Excellent ○: Good △: Can be used for practical purposes
×: Not possible
Intermediate layer film deposition rate: 1Å/sec
Example 3 When forming an intermediate layer on a molybdenum substrate
The SiF 4 /H 2 gas flow rate and N 2 gas flow rate ratio are
Image forming members indicated by sample numbers ~ were prepared under the same conditions and procedures as in Example 1, except for making various changes as shown in the table, and the charging exposure experiment equipment was used in exactly the same manner as in Example 1. When similar image formation was carried out using the same method, the results shown in Table 2 below were obtained.
Sample No. ~ was analyzed by Augier electron spectroscopy, and the results shown in Table 3 were obtained. From the results in Tables 2 and 3, in order to achieve the purpose of the present invention, the composition ratio x of Si and N in the intermediate layer is
It must be formed within the range of 0.43 to 0.60.
【表】【table】
【表】
実施例 4
実施例1と同様にモリブデン基板を設置し続い
て、実施例1と同様の操作によつてグロー放電堆
積室301内を5×10-6torrの真空となし、基板
温度は200℃に保たれた後実施例1と同様の操作
によつてSiF4/H2N2ガス流入系を5×10-6torr
の真空となし、その後補助バルブ340及び各流
出バルブ325,326各流入バルブ320―
2,321を閉じた後、SiF4/H2ガスボンベ3
11のバルブ330、N2ガスボンベ312のバ
ルブ331を開け、出口圧ゲージ335,336
の圧を1Kg/cm2に調整し、流入バルブ320―
2,321を徐々に開けてフローメーター31
6,317内へSiF4/H2ガスN2ガスを流入させ
た。引続いて、流出バルブ325,326を徐々
に開け、次いで補助バルブ340を徐々に開け
た。このときSiF4/H2ガス流量とN2ガス流量比
が1:90になるように流入バルブ320―2,3
21を調整した。次にピラニーゲージ341の読
みを注視しながな補助バルブ340の開口を調整
し、室301内が1×10-2torrになるまで補助バ
ルブ340を開けた。室301内圧が安定してか
ら、メインバルブ310を徐々に閉じ、ピラニゲ
ージ341の指示が0.5torrになるまで開口を絞
つた。ガス流入が安定し室内圧が一定となり、基
板温度が200℃に安定してから、実施例1と同様
に高周波電源342をON状態として、60Wの入
力電力でグロー放電を開始させ、1分間同条件を
保つて基板上に中間層を形成した後、高周波電源
342をoff状態とし、グロー放電を中止させた
状態で流出バルブ326を閉じた。次に中間層の
形成時と同様にピラニーゲージ341の指示が
0.5torrになる様に補助バルブ340、メインバ
ルブ310の開口を調整し安定化させた。
引き続き、再び高周波電源342をON状態に
して、グロー放電を再開させた。そのときの入力
電力を以前と同様に60Wにした。こうしてグロー
放電を更に5時間持続させて光導電層を形成した
後、加熱ヒーター308をoff状態にし、高周波
電源342もoff状態とし、基板温度が100℃にな
るのを待つてから流出バルブ325及び流入バル
ブ320―2,321を閉じ、メインバルブ31
0を全開にして、室301内を10-5torr以下にし
た後、メインバルブ310を閉じ室301内をリ
ークバルブ344によつて大気圧として基板を取
り出した。この場合、形成された層の全厚は約
15μであつた。この像形成部材に就て、実施例1
と同様の条件及び手順で転写紙上に画像を形成し
たところコロナ放電を行なつて画像形成した方
がコロナ放電を行なつて画像形成したよりもそ
の画質が優れており、極めて鮮明であつた。この
結果より本実施例で得られた感光体には帯電極性
の依存性が認められた。
実施例 5
実施例1と同様な条件及び手順によつてモリブ
デン基板上に1分間の中間層の形成を行なつた
後、高周波電源342をoff状態とし、グロー放
電を中止させた状態で流出バルブ326を閉じ、
次にH2で250vol ppmに稀釈されたPH3ガス(以
後PH3/H2と略す。純度99.999%)ボンベ314
のバルブ333を開け出口圧ゲージ338の圧を
1Kg/cm2に調整し流入バルブ323を徐々に開け
てフローメーター319内へPH3/H2ガスを流
入させた。引き続いて流出バルブ328を彼々に
開けた。このときPH3/H2ガス流量とSiF4/H2
ガス流量比が1:60になる様に流入バルブ320
―2,323を調整した。
次に中間層の形成時と同様にピラニーゲージ3
41の指示が0.5torrになる様に補助バルブ34
0、メインバルブ310の開口を調整し安定化さ
せた。
引き続き、再び高周波電源342をon状態に
して、グロー放電を再開させた。そのときの入力
電力を60Wにした。こうしてグロー放電を更に4
時間持続させて光導電層を形成した後、加熱ヒー
ター308をoff状態にし、高周波電源342も
off状態とし、基板温度が100℃になるのを待つて
から流出バルブ325,328及び流入バルブ3
20―2,321,323を閉じ、メインバルブ
310全開にして、室301内を10-5torr以下に
した後、メインバルブ310を閉じ室301内を
リークバルブ344によつて大気圧として基板を
取り出した。この場合、形成された層の全厚は約
11μであつた。こうして得られた像形成部材を、
実施例1と同様の条件及び手順で転写紙上に画像
を形成したところコロナ放電を行なつて画像形
成した方が、コロナ放電を行なつて画像形成し
たよりもその画質が優れており極めて鮮明であつ
た。この結果より本実施例で得られた感光体には
帯電極性の依存性が認められた。
実施例 6
モリブデン基板上に中間層を形成した後、引き
続いて光導電層を形成する際B2H6/H2ガス流量
をSiF4/H2ガス流量の1/15になるようにした以
外は実施例1と同様な条件及び手順によつて中間
層,光導電層をモリブデン基板上に形成した。こ
のようにして得られた像形成部材を実施例1と同
様の条件及び手順で転写紙上に画像を形成したと
ころコロナ放電を行なつて画像形成した方が、
コロナ放電を行なつて画像形成したよりもその
画質が優れており極めて鮮明であつた。この結果
より本実施例で得られた感光体には帯電極性の依
存性が認められた。而し、その帯電極性依存性は
実施例4,5で得られた像形成部材とは逆であつ
た。
実施例 7
実施例1と同様な条件及び手順によつて、モリ
ブデン基板上に1分間の中間層の形成、5時間の
光導電層の形成を行なつた後、高周波電源342
をoff状態としてグロー放電を中止させた状態で
流出バルブ327を閉じ、そして再び流出バルブ
326を開き、中間層の形成時と同様の条件にな
るようにした。引き続き再び高周波電源をon状
態にしてグロー放電を再開させた。そのときの入
力電力も中間層形成時と同様の60Wとした。こう
してグロー放電を2分間持続させて光導電層上に
上部層を形成した後加熱ヒーター308をoff状
態にし、高周波電源342もoff状態とし、基板
温度が100℃になるのを待つてから流出バルブ3
25,326及び流入バルブ320―2,32
1,322を閉じ、メインバルブ310を全開に
して、室301内を10-5torr以下にした後、メイ
ンバルブ310を閉じ室301内をリークバルブ
344によつて大気圧として基板を取り出した。
こうして得られた像形成部材を実施例1と同様の
帯電露光実験装置に設置し、6.0KVで0.2sec間
コロナ帯電を行い、直ちに光像を照射した。光像
は、タングステンランプ光源を用い、1.0lux・
secの光量を透過型のテストチヤートを通して照
射させた。
その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)を部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、5.0KVのコロナ帯
電で転写した所、解像力に優れ、階調再現性のよ
い鮮明な高濃度の画像が得られた。
実施例 8
電子ビーム蒸着法によつてITOを1000Å蒸着し
たものを、実施例1と同様の装置(第3図)の固
定部材303上にITOの蒸着面を下面にして設置
した。続いて、実施例1と同様の操作によつてグ
ロー放電堆積室301内を5×10-6torrの真空と
なし、基板温度は150℃に保たれた後、補助バル
ブ340、次いで流出バルブ325,327,3
29及び流入バルブ320―2,322,324
を全開し、フローメーター316,318,32
0―1内も十分脱気真空状態にされた。補助バル
ブ340、バルブ326,327,329,31
7,318,320―2を閉じた後、H2で10vol
%に稀釈されたNH3ガス(以後NH3/H2と略
す。純度99.999%)ボンベ315バルブ334,
SiF4/H2ガスボンベ311のバルブ330を開
け出口圧ゲージの圧を1Kg/cm2に調整し流入バル
ブ320―2,324を徐々に開けてフローメー
ター316,320―1内へSiF4/H2ガス,
NH3/H2ガスを流入させた。引続いて流出バル
ブ325,329を、次いで補助バルブ340を
徐々に開けた。このときSiF4/H2ガス流量と
NH3/H2ガス流量比が1:20になるように流入
バルブ320―2,324を調整した。次にピラ
ニーゲージ341の読みを注視しながら補助バル
ブ340の開口を調整し、室301内が1×
10-2torrになるまで補助バルブ340を開けた。
室301の内圧が安定してから、メインバルブ3
10を徐々に閉じ、ピラニーゲージ341の指示
が0.5torrになるまでに開口を絞つた。ガス流入
が安定し内圧が安定するのを確認し、続いて高周
波電源342のスイツチをON状態にして誘導コ
イル343に、13.56MHzの高周波電力を投入し
コイル部(室上部)の室301内にグロー放電を
発生させ、60Wの入力電力とした。1分間同条件
を同つて中間層を形成した後、高周波電源342
をoff状態とし、グロー放電を中止させた状態で、
しばらくして流出バルブ329、流入バルブ32
4を閉じ、室301内の内圧が0.5torrになるよ
うにバルブ調整操作を中間層形成時と同様に行な
つた。
その後引き続き、再び高周波電源342をON
状態にして、グロー放電を再開させた。そのとき
の入力電力を中間層形成時と同様に60Wにした。
こうしてグロー放電を更に3時間持続させて光導
電層を形成した後、加熱ヒーター308をoff状
態にし、高周波電源342もoff状態とし、基板
温度が100℃になるのを待つてから流出バルブ3
25及び流入バルブ320―2,324を閉じ、
メインバルブ310を全開にして、室301内を
10-5torr以下にした後、メインバルブ310を閉
じ室301内をリークバルブ344によつて大気
圧として基板を取り出した。この場合、形成され
た層の全厚は約9μであつた。こうして得られた
像形成部材を、帯電露光実験装置に設置し、
5.5KVで0.2sec間コロナ帯電を行い、直ちに光像
を照射した。光像は、タングステンランプ光源を
用い、1.0lux・secの光量を透過型のテストチヤ
ートを通して照射させた。
その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)の部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、5.0KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、階調
再現性のよい鮮明な高濃度の画像が得られた。
実施例 9
第4図に示す装置を用い、以下の如き操作によ
つてモリブデン基板上に中間層を形成した。
表面が清浄にされた0.5mm厚10cm角のモリブデ
ン板(基板)402を堆積室401内の所定位置
にある固定部材406に堅固に固定した。基板4
02は固定部材406内の加熱ヒーター407に
よつて±0.5℃の精度で加熱される。温度は熱電
対(アルメル―クロメル)によつて基板裏面を直
接測定されるようになされた。次いで系内の全バ
ルブが閉じられていることを確認してからメイン
バルブ429を全開して室401内が排気され約
5×10-6torrの真空度にした。その後ヒーター4
07の入力電圧を上昇させモリブデン基板温度を
検知しながら入力電圧を変化させ200℃の一定値
になるまで安定させた。
その後、補助バルブ427、次いで流出バルブ
418,419,420及び流入バルブ415,
416,417を全開し、フローメーター42
4,425,426内も十分脱気真空状態にされ
た。補助バルブ427、バルブ418,419,
420,415,416,411を閉じた後、
SiF4ガス(純度99.999%)ボンベ410及びAr
ガスボンベ409のバルブ412のバルブ413
を開け、出口圧ゲージ422,421の圧を1
Kg/cm2に調整し、流入バルブ416,415を
徐々に開けてフローメーター425,424内へ
各々SiF4ガスを流入させた。引き続いて、流出バ
ルブ419,418を徐々に開け、次いで補助バ
ルブ427を徐々に開けた。この時SiF4ガス流量
とArガス流量比が1:20になるように流入バル
ブ416,415を調整した。次にピラニーゲー
ジ430の読みを注視しながら補助バルブ427
の開口を調整し、室401内が1×10-4torrにな
るまで補助バルブ427を開けた。室401内圧
が安定してからメインバルブ429を徐々に閉じ
ピラニーゲージ430の指示が1×10-2torrにな
るまで開口を絞つた。
シヤツター棒403を操作してシヤツター40
8を開とし、フローメーター425,424が安
定するのを確認してから、高周波電源431を
on状態にし、多結晶高純度Si3N4からなるターゲ
ツト404及び固定部材406間に13.56MHz、
100Wの交流電力が入力された。この条件で安定
した放電を続ける様にマツチングを取りながら層
を形成した。この様にして2分間放電を続けて
100Å厚のa―SixN1-x:Fを形成した。その後高
周波電源431をoff状態にし、放電を一旦中止
させた。ボンベのバルブ412,413を閉じメ
インバルブ429を全開して室401内及びフロ
ーメーター424,425内を10-5torrまで真空
にした後、補助バルブ427、流出バルブ41
8,419、流入バルブ415,416を閉じ
た。SiF4ガスボンベ410をH2を10vol%含む
SiF4/H2ガス(99.999%)に変えた。流入バル
ブ416、流出バルブ419、補助バルブ427
をあけ室401内を5×10-7torrまで真空にした
後、流入バルブ416、流出バルブ419を閉じ
ボンベ410のバルブ413をあけ出口圧ゲージ
422の圧を1Kg/cm2に調整し、流入バルブ41
6を徐々に開けてフローメーター425内へ
SiF4/H2ガスを流入させた。引き続いて流出バ
ルブ419を除々に開けた。次にH2で500vol
ppmに稀釈したB2H6/H2ガスボンベ411のバ
ルブ414を開け、出口圧ゲージ423の圧1
Kg/cm2に調整し、流入バルブ417を徐々に開け
てフローメーター426内へB2H6/H2ガスを流
入させた。引続いて、流出バルブ420を徐々に
開け、次いで補助バルブ427を徐々に開けた。
このときSiF4/H2ガス流量とB2H6/H2ガス流量
比が70:1になるように流入バルブ416,41
7を調整した。次にピラニーゲージ430の読み
を注視しながら補助バルブ427メインバルブ4
29の開口を調整して、ピラニーゲージ430の
指示が0.5torrになるまで開口を絞つた。ガス流
入が安定し内圧が安定するのを確認し、シヤツタ
ー棒403を操作してシヤツター電極も兼ねる4
08を閉とし続いて高周波電源437のスイツチ
をON状態にして、電極407,シヤツター40
8間に13.56MHzの高周波電力を投入し室401
内にグロー放電を発生させ60Wの入力電力とし
た。グロー放電を3時間持続させて光導電層を形
成した後、加熱ヒーター407をoff状態とし、
基板温度が100℃になるのを待つてから流出バル
ブ419,420及び流入バルブ415,41
6,417を閉じ、メインバルブ429を全開に
して、室401内を10-5torr以下にした後、メイ
ンバルブ429を閉じ室401内をリークバルブ
428によつて大気圧として基板を取り出した。
この場合、形成された層の全厚は約9μであつた。
こうして得られた像形成部材を、帯電露光実験装
置に設置し、6.0KVで0.2sec間コロナ帯電を行
い、直ちに光像を照射した。光像は、タングステ
ンランプ光源を用い0.8lux・secの光量を透過型
のテストチヤートを通して照射させた。
その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)を部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、50KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、階調
再現性の良い鮮明な高濃度の画像が得られた。
次に上記像形成部材に就て、帯電露光実験装置
で5.5KVで0.2sec間のコロナ帯電を行い、直ち
に0.8lux・secの光量で画像露光を行い、その後
直ちに荷電性の現像剤を部材表面にカスケード
し、次に転写紙上に転写定着したところ極めて鮮
明な画像が得られた。
この結果を先の結果から本実施例で得られた電
子写真感光体は帯電極性に対する依存性がなく両
極性像形成部材の特性を具備していることが判つ
た。
実施例 10
実施例9と同様な条件及び手順によつてモリブ
デン基板上に2分間の中間層の形成を行つた後高
周波電源431及び加熱ヒーター407をoff状
態として流出バルブ418,419、流入バルブ
415,416を閉じ、基板温度が100℃になる
のを待つて補助バルブ427、メインバルブ42
9を閉じた。引き続き、リークバルブ428を開
いて堆積室401内を大気圧にリークしてターゲ
ツト404を高純度SiN4ターゲツトから高純度
多結晶シリコンターゲツトに変えた。
その後リークバルブ428を閉じて堆積室40
1内を5×10-7torr程度まで真空にし、次に補助
バルブ427、流出バルブ418,419を開き
フローメーター424,425内を十分に脱気し
た後、流出バルブ418,419と補助バルブ4
27を閉じた。再び基板402を加熱ヒーター4
07をON状態にして基板温度を200℃に保つた。
そしてSiF4ガス(純度99.999%)ボンベ410の
バルブ413及びArガスボンベ409のバルブ
412を開け、出口圧ゲージ422,421の圧
を1Kg/cm2に調整し、流入バルブ416,415
を徐々に開けてフローメーター425,424内
へ各々SiF4ガス,Arガスを流入させた。引き続
いて、流出バルブ419,418を徐々に開け、
次いで補助バルブ427を徐々に開けた。この時
SiF4ガス流量とArガス流量比が1:20になるよ
うに流入バルブ416,415を調整した。次に
ピラニーゲージ430の読みを注視しながら補助
バルブ427の開口を調整し、室401内が1×
10-4torrになるまで補助バルブ427を開けた。
室401内圧が安定してからメインバルブ429
を徐々に閉じピラニーゲージ430の指示が1×
10-2torrになるまで開口を絞つた。
シヤツター408を開として、フローメーター
425,424が安定するのを確認してから、高
周波電源431をon状態にし、多結晶高純度シ
リコンターゲツト404および固定部材406間
に13.56MHz、100Wの交流電力が入力された。こ
の条件で安定した放電を続ける様にマツチングを
取りながら層を形成した。この様にして3時間放
電を続けて光導電層を形成した後、加熱ヒーター
407off状態にし、高周波電源431もoff状態
とし、基板温度100℃になるのを待つてから流出
バルブ418,419及び流入バルブ415,4
16を閉じ、メインバルブ429を全開にして、
室401内を10-5torr以下にした後、メインバル
ブ429を閉じ室401内をリークバルブ428
によつて大気圧として基板を取り出した。この場
合、形成された層の全厚は約9μであつた。こう
して得られた像形成部材を、帯電露光実験装置に
設置し、5.5KVで0.2sec間コロナ帯電を行な
い、直ちに光像を照射した。光像はタングステン
ランプ光源を用い、0.8lux・secの光量を透過型
のテストチヤートを通して照射させた。
その後直ちに、荷電性の現像剤(トナーとキ
ヤリアーを含む)を部材表面にカスケードするこ
とによつて、部材表面上に良好なトナー画像を得
た。部材上のトナー画像を、6.0KVのコロナ帯
電で転写紙上に転写した所、解像力に優れ、階調
再現性のよい鮮明な高濃度の画像が得られた。
実施例 11
実施例1と同様の操作、条件にて形成された像
形成部材を6枚作成し、第4図に示す装置に光導
電層を下にして固定部材406に堅固に固定し、
基板402とした。
光導電層上に形成する上部層を第4表に示す如
く条件で各々の基板上にA〜F迄形成し、各々の
上部層を有する像形成部材を6枚形成した。
尚、スパツタリング法にて上部層Aを形成する
際にはターゲツト404を多結晶シリコンターゲ
ツト上に部分的にグラフアイトターゲツトが積層
されたもの、上部層Eを形成する際には、Arガ
スボンベ409をArで50%に稀釈されたN2ガス
ボンベに変えた。
又、グロー放電法にて上部層Bを形成する際に
は、Arガスボンベ409をH2で10vol%に稀釈さ
れたSiH4ガスボンベに、B2H6ガスボンベ411
をH2で10vol%に稀釈されたC2H4ガスボンベに、
上部層Cを形成する際にはB2H6ガスボンベ41
1をH2で10vol%に稀釈されたSi(CH3)4ボンベ
に、上部層Dを形成する際には、上部層Bの形成
の際と同様にB2H6ガスボンベ411をC2H4ガス
ボンベに、Arガスボンベ409を、H2を10vol%
含むSiF4ガスボンベに、上部層F,Gを形成する
際にはSiF4ガスボンベ410を、H2で10[Table] Example 4 A molybdenum substrate was installed in the same manner as in Example 1, and then a vacuum of 5×10 -6 torr was created in the glow discharge deposition chamber 301 by the same operation as in Example 1, and the substrate temperature was was maintained at 200°C, and then the SiF 4 /H 2 N 2 gas inflow system was heated to 5×10 -6 torr by the same operation as in Example 1.
vacuum and then the auxiliary valve 340 and each outflow valve 325, 326 each inflow valve 320-
After closing 2,321, SiF 4 /H 2 gas cylinder 3
Open the valve 330 of No. 11 and the valve 331 of the N 2 gas cylinder 312, and check the outlet pressure gauges 335, 336.
Adjust the pressure to 1Kg/cm 2 and open the inflow valve 320-
Gradually open 2,321 and check the flow meter 31.
SiF 4 /H 2 gas and N 2 gas were flowed into 6,317. Subsequently, the outflow valves 325 and 326 were gradually opened, and then the auxiliary valve 340 was gradually opened. At this time, the inflow valves 320-2 and 3 are adjusted so that the SiF 4 /H 2 gas flow rate and N 2 gas flow rate ratio is 1:90.
21 was adjusted. Next, the opening of the auxiliary valve 340 was adjusted while observing the reading on the Pirani gauge 341, and the auxiliary valve 340 was opened until the inside of the chamber 301 reached 1×10 −2 torr. After the internal pressure of the chamber 301 became stable, the main valve 310 was gradually closed and the opening was throttled until the reading on the Pirani gauge 341 reached 0.5 torr. After the gas inflow stabilizes, the indoor pressure becomes constant, and the substrate temperature stabilizes at 200°C, the high frequency power supply 342 is turned on as in Example 1, glow discharge is started with an input power of 60W, and the glow discharge is continued for 1 minute. After forming the intermediate layer on the substrate while maintaining the conditions, the high frequency power source 342 was turned off, and the outflow valve 326 was closed while the glow discharge was stopped. Next, the instructions on the Pirani gauge 341 are as same as when forming the intermediate layer.
The openings of the auxiliary valve 340 and main valve 310 were adjusted to stabilize the pressure to 0.5 torr. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was set to 60W as before. After continuing the glow discharge for another 5 hours to form a photoconductive layer, the heating heater 308 is turned off, the high frequency power supply 342 is also turned off, and after waiting for the substrate temperature to reach 100°C, the outflow valve 325 and Close the inflow valves 320-2, 321, and close the main valve 31.
After fully opening the chamber 301 to bring the pressure below 10 -5 torr, the main valve 310 was closed and the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. In this case, the total thickness of the formed layer is approximately
It was 15μ. Regarding this image forming member, Example 1
When an image was formed on a transfer paper under the same conditions and procedures as described above, the image quality was superior to that formed by corona discharge, and it was extremely clear. From this result, it was found that the photoreceptor obtained in this example had charge polarity dependence. Example 5 After forming an intermediate layer on a molybdenum substrate for 1 minute under the same conditions and procedures as in Example 1, the high frequency power source 342 was turned off and the outflow valve was opened with the glow discharge stopped. Close 326,
Next, PH 3 gas (hereinafter abbreviated as PH 3 /H 2 , purity 99.999%) diluted with H 2 to 250 vol ppm cylinder 314
The valve 333 was opened to adjust the pressure of the outlet pressure gauge 338 to 1 Kg/cm 2 , and the inflow valve 323 was gradually opened to allow PH 3 /H 2 gas to flow into the flow meter 319 . Subsequently, the outflow valve 328 was opened to them. At this time, PH 3 /H 2 gas flow rate and SiF 4 /H 2
Inlet valve 320 so that the gas flow ratio is 1:60
-Adjusted 2,323. Next, in the same way as when forming the intermediate layer, Pirani gauge 3
Auxiliary valve 34 so that the instruction of 41 becomes 0.5torr
0. The opening of the main valve 310 was adjusted and stabilized. Subsequently, the high frequency power supply 342 was turned on again to restart the glow discharge. The input power at that time was 60W. In this way, the glow discharge is further increased by 4
After forming the photoconductive layer for a certain period of time, the heating heater 308 is turned off, and the high frequency power source 342 is also turned off.
OFF state, wait until the substrate temperature reaches 100°C, and then open the outflow valves 325, 328 and the inflow valve 3.
20-2, 321, and 323 are closed, the main valve 310 is fully opened, and the inside of the chamber 301 is reduced to 10 -5 torr or less. After that, the main valve 310 is closed and the inside of the chamber 301 is set to atmospheric pressure by the leak valve 344, and the substrate is heated. I took it out. In this case, the total thickness of the formed layer is approximately
It was 11μ. The image forming member thus obtained is
When an image was formed on a transfer paper under the same conditions and procedures as in Example 1, the image quality was superior to that formed by corona discharge and was extremely clear. It was hot. From this result, it was found that the photoreceptor obtained in this example had charge polarity dependence. Example 6 After forming an intermediate layer on a molybdenum substrate, when subsequently forming a photoconductive layer, the B 2 H 6 /H 2 gas flow rate was set to 1/15 of the SiF 4 /H 2 gas flow rate. An intermediate layer and a photoconductive layer were formed on a molybdenum substrate under the same conditions and procedures as in Example 1. An image was formed on a transfer paper using the image forming member thus obtained under the same conditions and procedures as in Example 1.
The image quality was superior to images formed by corona discharge, and they were extremely clear. From this result, it was found that the photoreceptor obtained in this example had charge polarity dependence. However, its charge polarity dependence was opposite to that of the image forming members obtained in Examples 4 and 5. Example 7 After forming an intermediate layer on a molybdenum substrate for 1 minute and forming a photoconductive layer for 5 hours under the same conditions and procedures as in Example 1, a high frequency power source 342 was applied.
The outflow valve 327 was closed while the was turned off to stop glow discharge, and the outflow valve 326 was opened again to obtain the same conditions as when forming the intermediate layer. Subsequently, the high frequency power supply was turned on again to restart the glow discharge. The input power at that time was also 60W, the same as when forming the intermediate layer. After maintaining the glow discharge for 2 minutes to form an upper layer on the photoconductive layer, the heating heater 308 is turned off, the high frequency power supply 342 is also turned off, and after waiting for the substrate temperature to reach 100°C, the outflow valve is turned off. 3
25, 326 and inflow valve 320-2, 32
1,322 was closed and the main valve 310 was fully opened to bring the inside of the chamber 301 to 10 -5 torr or less.The main valve 310 was then closed and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out.
The image forming member thus obtained was placed in the same charging exposure experimental apparatus as in Example 1, corona charging was performed at 6.0 KV for 0.2 seconds, and a light image was immediately irradiated. The optical image is generated using a tungsten lamp light source, 1.0 lux.
A light intensity of sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a charged developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Example 8 ITO was deposited to a thickness of 1000 Å by electron beam evaporation and placed on the fixing member 303 of the same device as in Example 1 (FIG. 3) with the ITO deposition surface facing downward. Subsequently, the inside of the glow discharge deposition chamber 301 was made into a vacuum of 5×10 -6 torr by the same operation as in Example 1, and the substrate temperature was maintained at 150° C., and then the auxiliary valve 340 and then the outflow valve 325 were opened. ,327,3
29 and inflow valve 320-2, 322, 324
Fully open, flow meters 316, 318, 32
The interior of 0-1 was also sufficiently degassed and vacuumed. Auxiliary valve 340, valves 326, 327, 329, 31
After closing 7,318,320-2, 10vol with H2
% diluted NH 3 gas (hereinafter abbreviated as NH 3 /H 2. Purity 99.999%) cylinder 315 valve 334,
Open the valve 330 of the SiF 4 /H 2 gas cylinder 311, adjust the pressure on the outlet pressure gauge to 1Kg/cm 2 , and gradually open the inflow valves 320-2, 324 to allow SiF 4 /H into the flow meters 316, 320-1. 2 gas,
NH 3 /H 2 gas was introduced. Subsequently, the outflow valves 325, 329 and then the auxiliary valve 340 were gradually opened. At this time, the SiF 4 /H 2 gas flow rate and
The inflow valves 320-2 and 324 were adjusted so that the NH 3 /H 2 gas flow ratio was 1:20. Next, while watching the reading on the Pirani gauge 341, adjust the opening of the auxiliary valve 340 so that the inside of the chamber 301 is 1×.
Auxiliary valve 340 was opened until 10 -2 torr.
After the internal pressure of the chamber 301 is stabilized, the main valve 3
10 was gradually closed, and the aperture was narrowed until the reading on the Pirani gauge 341 reached 0.5 torr. After confirming that the gas inflow is stable and the internal pressure is stable, the switch of the high frequency power supply 342 is turned on and 13.56 MHz high frequency power is applied to the induction coil 343 to supply the inside of the chamber 301 in the coil section (upper part of the room). A glow discharge was generated and the input power was 60W. After forming the intermediate layer under the same conditions for 1 minute, the high frequency power source 342
When the is turned off and the glow discharge is stopped,
After a while, the outflow valve 329 and the inflow valve 32
4 was closed, and the valve adjustment operation was performed in the same manner as when forming the intermediate layer so that the internal pressure in the chamber 301 was 0.5 torr. After that, turn on the high frequency power supply 342 again.
state, and the glow discharge was restarted. The input power at that time was set to 60W, the same as when forming the intermediate layer.
After continuing the glow discharge for another 3 hours to form a photoconductive layer, the heating heater 308 is turned off, the high frequency power supply 342 is also turned off, and after waiting for the substrate temperature to reach 100°C, the outflow valve 3
25 and inflow valves 320-2, 324,
The main valve 310 is fully opened and the inside of the chamber 301 is
After reducing the pressure to below 10 -5 torr, the main valve 310 was closed and the inside of the chamber 301 was brought to atmospheric pressure by the leak valve 344, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 9μ. The image forming member thus obtained is placed in a charging exposure experiment device,
Corona charging was performed at 5.5 KV for 0.2 seconds, and a light image was immediately irradiated. The optical image was created using a tungsten lamp light source, and a light intensity of 1.0 lux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a charged developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred onto transfer paper using 5.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Example 9 Using the apparatus shown in FIG. 4, an intermediate layer was formed on a molybdenum substrate by the following operations. A 0.5 mm thick, 10 cm square molybdenum plate (substrate) 402 whose surface was cleaned was firmly fixed to a fixing member 406 at a predetermined position in the deposition chamber 401 . Board 4
02 is heated with an accuracy of ±0.5° C. by a heater 407 within a fixed member 406. Temperature was measured directly on the backside of the substrate by a thermocouple (alumel-chromel). Next, after confirming that all valves in the system were closed, the main valve 429 was fully opened to evacuate the chamber 401 to a degree of vacuum of approximately 5×10 −6 torr. Then heater 4
The input voltage of 07 was increased, and the input voltage was varied while detecting the temperature of the molybdenum substrate until it stabilized at a constant value of 200°C. After that, the auxiliary valve 427, then the outflow valves 418, 419, 420 and the inflow valve 415,
Fully open 416 and 417, flow meter 42
The interior of 4,425,426 was also sufficiently degassed and vacuumed. Auxiliary valve 427, valves 418, 419,
After closing 420, 415, 416, 411,
SiF 4 gas (99.999% purity) cylinder 410 and Ar
Valve 413 of valve 412 of gas cylinder 409
Open the outlet pressure gauges 422, 421 to 1.
Kg/cm 2 , and the inflow valves 416 and 415 were gradually opened to allow SiF 4 gas to flow into the flow meters 425 and 424, respectively. Subsequently, the outflow valves 419 and 418 were gradually opened, and then the auxiliary valve 427 was gradually opened. At this time, the inflow valves 416 and 415 were adjusted so that the ratio of SiF 4 gas flow rate to Ar gas flow rate was 1:20. Next, while watching the reading on the Pirani gauge 430, check the auxiliary valve 427.
The auxiliary valve 427 was opened until the pressure inside the chamber 401 reached 1×10 −4 torr. After the internal pressure of the chamber 401 became stable, the main valve 429 was gradually closed and the opening was throttled until the Pirani gauge 430 indicated 1×10 −2 torr. Shutter 40 by operating the shutter rod 403
8, and after confirming that the flow meters 425 and 424 are stable, turn on the high frequency power supply 431.
13.56MHz between the target 404 made of polycrystalline high purity Si 3 N 4 and the fixing member 406.
100W AC power was input. Under these conditions, the layers were formed while performing matching so that stable discharge could continue. Continue discharging in this way for 2 minutes.
A 100 Å thick a-Si x N 1-x :F was formed. Thereafter, the high frequency power source 431 was turned off to temporarily stop the discharge. After closing the cylinder valves 412 and 413 and fully opening the main valve 429 to create a vacuum in the chamber 401 and flow meters 424 and 425 to 10 -5 torr, the auxiliary valve 427 and the outflow valve 41 are closed.
8,419, inlet valves 415,416 were closed. SiF 4 gas cylinder 410 containing 10vol% H2
It was changed to SiF 4 /H 2 gas (99.999%). Inflow valve 416, outflow valve 419, auxiliary valve 427
After opening the chamber 401 and evacuating the inside of the chamber 401 to 5×10 -7 torr, close the inflow valve 416 and outflow valve 419, open the valve 413 of the cylinder 410, adjust the pressure of the outlet pressure gauge 422 to 1 Kg/cm 2 , and then valve 41
Gradually open 6 and enter the flow meter 425.
SiF 4 /H 2 gas was introduced. Subsequently, the outflow valve 419 was gradually opened. Then 500vol with H2
Open the valve 414 of the B 2 H 6 /H 2 gas cylinder 411 diluted to ppm, and the pressure on the outlet pressure gauge 423 is 1.
Kg/cm 2 , and the inflow valve 417 was gradually opened to allow B 2 H 6 /H 2 gas to flow into the flow meter 426. Subsequently, the outflow valve 420 was gradually opened, and then the auxiliary valve 427 was gradually opened.
At this time, the inflow valves 416 and 41 are adjusted so that the SiF 4 /H 2 gas flow rate and B 2 H 6 /H 2 gas flow rate ratio is 70:1.
7 was adjusted. Next, while paying close attention to the reading on the Pirani gauge 430, check the auxiliary valve 427 and the main valve 4.
29 was adjusted and the aperture was narrowed down until the reading on the Pirani gauge 430 was 0.5 torr. After confirming that the gas inflow is stable and the internal pressure is stable, operate the shutter rod 403 to double as the shutter electrode 4
08, then turn on the switch of the high frequency power source 437, and turn on the electrode 407 and shutter 40.
13.56MHz high frequency power was applied to room 401.
A glow discharge was generated inside the device, resulting in an input power of 60W. After continuing the glow discharge for 3 hours to form a photoconductive layer, the heating heater 407 is turned off,
After waiting for the substrate temperature to reach 100°C, the outflow valves 419, 420 and the inflow valves 415, 41
6,417 was closed and the main valve 429 was fully opened to bring the inside of the chamber 401 to 10 -5 torr or less.The main valve 429 was then closed and the inside of the chamber 401 was brought to atmospheric pressure by the leak valve 428, and the substrate was taken out.
In this case, the total thickness of the layer formed was approximately 9μ.
The image forming member thus obtained was placed in a charging exposure experimental device, corona charged at 6.0 KV for 0.2 seconds, and immediately irradiated with a light image. The optical image was created using a tungsten lamp light source and irradiated with a light intensity of 0.8 lux·sec through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a charged developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred onto transfer paper using 50KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Next, the image forming member is corona charged for 0.2 seconds at 5.5 KV using a charging exposure experiment device, and image exposure is immediately performed at a light intensity of 0.8 lux・sec. Immediately thereafter, a charged developer is applied to the surface of the member. When the image was transferred and fixed onto transfer paper, an extremely clear image was obtained. From the above results, it was found that the electrophotographic photoreceptor obtained in this example had no dependence on charging polarity and had the characteristics of a bipolar image forming member. Example 10 After forming an intermediate layer on a molybdenum substrate for 2 minutes under the same conditions and procedures as in Example 9, the high frequency power source 431 and heating heater 407 were turned off, and the outflow valves 418 and 419 and the inflow valve 415 were turned off. , 416, wait until the substrate temperature reaches 100℃, and then close the auxiliary valve 427 and main valve 42.
9 closed. Subsequently, the leak valve 428 was opened to leak the inside of the deposition chamber 401 to atmospheric pressure, and the target 404 was changed from a high-purity SiN 4 target to a high-purity polycrystalline silicon target. After that, the leak valve 428 is closed and the deposition chamber 40
1 to a vacuum of about 5×10 -7 torr, then open the auxiliary valve 427 and the outflow valves 418, 419 to fully deaerate the inside of the flow meters 424, 425, and then open the outflow valves 418, 419 and the auxiliary valve 4.
27 closed. The heater 4 heats the substrate 402 again.
07 was turned on and the substrate temperature was maintained at 200°C.
Then, open the valve 413 of the SiF 4 gas (purity 99.999%) cylinder 410 and the valve 412 of the Ar gas cylinder 409, adjust the pressure of the outlet pressure gauges 422, 421 to 1 Kg/cm 2 , and inflow valves 416, 415.
were gradually opened to allow SiF 4 gas and Ar gas to flow into the flow meters 425 and 424, respectively. Subsequently, the outflow valves 419 and 418 are gradually opened,
Then, the auxiliary valve 427 was gradually opened. At this time
The inflow valves 416 and 415 were adjusted so that the ratio of SiF 4 gas flow rate to Ar gas flow rate was 1:20. Next, while watching the reading on the Pirani gauge 430, adjust the opening of the auxiliary valve 427 so that the inside of the chamber 401 is 1×
Auxiliary valve 427 was opened until 10 -4 torr.
After the internal pressure of the chamber 401 is stabilized, the main valve 429 is closed.
Gradually close the Pirani gauge 430 indication 1x
The aperture was narrowed down to 10 -2 torr. After opening the shutter 408 and confirming that the flow meters 425 and 424 are stable, the high frequency power source 431 is turned on, and 13.56 MHz, 100 W AC power is applied between the polycrystalline high purity silicon target 404 and the fixing member 406. entered. Under these conditions, the layers were formed while performing matching so that stable discharge could continue. After continuing the discharge for 3 hours to form a photoconductive layer, the heating heater 407 is turned off, the high frequency power source 431 is also turned off, and after waiting for the substrate temperature to reach 100°C, the outflow valves 418, 419 and the inflow Valve 415,4
16 and fully open the main valve 429.
After reducing the inside of the chamber 401 to 10 -5 torr or less, the main valve 429 is closed and the inside of the chamber 401 is closed with a leak valve 428.
The substrate was taken out at atmospheric pressure. In this case, the total thickness of the layer formed was approximately 9μ. The image forming member thus obtained was placed in a charging exposure experimental device, corona charged at 5.5 KV for 0.2 seconds, and immediately exposed to a light image. The optical image was created using a tungsten lamp light source, and a light intensity of 0.8 lux·sec was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the component by cascading a charged developer (including toner and carrier) onto the surface of the component. When the toner image on the member was transferred onto transfer paper using 6.0KV corona charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Example 11 Six image forming members were formed using the same operations and conditions as in Example 1, and were firmly fixed to a fixing member 406 in the apparatus shown in FIG. 4 with the photoconductive layer facing down.
A substrate 402 was used. Upper layers A to F to be formed on the photoconductive layer were formed on each substrate under the conditions shown in Table 4, and six image forming members having each upper layer were formed. When forming the upper layer A by the sputtering method, the target 404 is a polycrystalline silicon target with a partially laminated graphite target, and when forming the upper layer E, an Ar gas cylinder 409 is used. Changed to N2 gas cylinder diluted to 50% with Ar. In addition, when forming the upper layer B by the glow discharge method, the Ar gas cylinder 409 is replaced with the SiH 4 gas cylinder diluted to 10 vol% with H 2 and the B 2 H 6 gas cylinder 411.
into a C2H4 gas cylinder diluted to 10vol % with H2 ,
When forming the upper layer C, a B 2 H 6 gas cylinder 41 is used.
When forming the upper layer D in the Si(CH 3 ) 4 cylinder in which 1 is diluted to 10 vol% with H 2 , the B 2 H 6 gas cylinder 411 is mixed with C 2 H in the same way as in the formation of the upper layer B. 4 gas cylinder, Ar gas cylinder 409, H 2 10vol%
When forming the upper layers F and G in the SiF 4 gas cylinder containing SiF 4 gas cylinder 410, the SiF 4 gas cylinder 410 was heated with H 2 for 10
【表】
vol%に稀釈されたSiH4ガスボンベにArガスボン
ベ409をN2ガスボンベ、H2で10vol%に稀釈さ
れたNH3ガスボンベに夫々変えた。
実施例1と同様の中間層、光導電層に第4表に
示す上部層A〜Fを有する像形成部材6枚を各々
実施例1と同様の操作、条件にて像形成を行つて
転写紙に転写したところ、極めて鮮明なトナー像
が得られた。
実施例 12
実施例8と同様の操作、条件にて形成された像
形成部材を6枚作成し第4図に示す装置に光導電
層を下にし固定部材406に堅固に固定して基板
402とした。
光導電層上に形成する上部層を実施例11と同様
にして形成した第4表に示す上部層A〜Fを有す
る像形成部材6枚を各々実施例1と同様の操作、
条件にて像形成を行つて転写紙に転写したところ
極めて鮮明なトナー像が得られた。
実施例 13
実施例10と同様の操作、条件にて形成された像
形成部材を6枚形成し、第4図に示す装置に光導
電層を下にして固定部材406に堅固に固定して
基板402とした。
光導電層上に形成する上部層を実施例11と同様
にして形成した第4表に示す上部層A〜Fを有す
る像形成部材6枚を、各々実施例1と同様の操作
条件にて像形成を行つて転写紙に転写したところ
何れも帯電極性に対する依存性がなく極めて鮮明
なトナー像が得られた。[Table] The SiH 4 gas cylinder diluted to vol% and the Ar gas cylinder 409 were replaced with N 2 gas cylinder and NH 3 gas cylinder diluted with H 2 to 10 vol%. Six image forming members each having the same intermediate layer and photoconductive layer as in Example 1 and upper layers A to F shown in Table 4 were subjected to image formation under the same operations and conditions as in Example 1 to form a transfer paper. When the toner image was transferred to a 3D printer, an extremely clear toner image was obtained. Example 12 Six image forming members were prepared using the same operations and conditions as in Example 8, and were firmly fixed to a fixing member 406 with the photoconductive layer facing down in the apparatus shown in FIG. did. The upper layer formed on the photoconductive layer was formed in the same manner as in Example 11. Six image forming members having upper layers A to F shown in Table 4 were each subjected to the same operations as in Example 1,
When an image was formed under these conditions and transferred to transfer paper, an extremely clear toner image was obtained. Example 13 Six image forming members were formed using the same operations and conditions as in Example 10, and were firmly fixed to a fixing member 406 with the photoconductive layer facing down in the apparatus shown in FIG. It was set to 402. Six image forming members each having upper layers A to F shown in Table 4, each having an upper layer formed on the photoconductive layer formed in the same manner as in Example 11, were imaged under the same operating conditions as in Example 1. When the toner images were formed and transferred to transfer paper, extremely clear toner images were obtained that were independent of charging polarity.
第1図及び第2図は各々本発明の光導電部材の
好適な実施態様例の構成を説明する為の模式的構
成図、第3図、第4図は各々本発明の光導電部材
を製造する場合の装置の一例を示す模式的説明図
である。
100,200……光導電部材、101,20
1……支持体、102,202……中間層、10
3,203……光導電層、104,204……自
由表面、205……上部層。
FIGS. 1 and 2 are schematic configuration diagrams for explaining the configuration of preferred embodiments of the photoconductive member of the present invention, and FIGS. 3 and 4 each illustrate the manufacture of the photoconductive member of the present invention. FIG. 100,200...Photoconductive member, 101,20
1... Support, 102, 202... Intermediate layer, 10
3,203...Photoconductive layer, 104,204...Free surface, 205...Top layer.
Claims (1)
ン原子を含むアモルフアス材料で構成されている
光導電層と、これ等の間に設けられ、前記支持体
側から前記光導電層中へのキヤリアの注入を阻止
し且つ電磁波照射によつて前記光導電層中に生じ
前記支持体側に向つて移動するキヤリアの前記光
導電層側から前記支持体側への通過を許す機能を
有する中間層とを備えた光導電部材に於いて、前
記中間層がシリコン原子と窒素原子とハロゲン原
子とを構成要素とするアモルフアス材料で構成さ
れており、30〜1000Åの層厚を有することを特徴
とする光導電部材。 2 前記光導電層の上部表面に、シリコン原子を
母体とし、水素原子及びハロゲン原子の少なくと
もいずれか一方と、炭素原子、窒素原子、及び酸
素原子の中の少なくとも一つと、を含むアモルフ
アス材料で構成された上部層を有する特許請求の
範囲第1項の光導電部材。 3 前記光導電層の上部表面に、無機絶縁材料又
は有機絶縁材料からなる上部層を有する特許請求
の範囲第1項の光導電部材。 4 前記光導電層の上部表面に、電荷像形成面と
なる自由表面を有し、0.5〜70μの層厚を有する表
面被覆層が設けてある特許請求の範囲第1項の光
導電部材。[Scope of Claims] 1. A support, a photoconductive layer made of an amorphous material having silicon atoms as a matrix and containing halogen atoms, and a photoconductive layer provided between these, from the support side into the photoconductive layer. an intermediate layer having a function of preventing carriers from being injected into the photoconductive layer and allowing carriers generated in the photoconductive layer and moving toward the support by electromagnetic wave irradiation to pass from the photoconductive layer side to the support side; The photoconductive member is characterized in that the intermediate layer is made of an amorphous material whose constituent elements are silicon atoms, nitrogen atoms, and halogen atoms, and has a layer thickness of 30 to 1000 Å. Photoconductive member. 2. The upper surface of the photoconductive layer is made of an amorphous material that has silicon atoms as its base material and includes at least one of hydrogen atoms and halogen atoms, and at least one of carbon atoms, nitrogen atoms, and oxygen atoms. A photoconductive member according to claim 1, having a top layer of 3. The photoconductive member according to claim 1, which has an upper layer made of an inorganic insulating material or an organic insulating material on the upper surface of the photoconductive layer. 4. The photoconductive member according to claim 1, wherein a surface coating layer having a free surface serving as a charge image forming surface and having a layer thickness of 0.5 to 70 μm is provided on the upper surface of the photoconductive layer.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55137151A JPS5762055A (en) | 1980-09-30 | 1980-09-30 | Photoconductive member |
US06/304,568 US4394426A (en) | 1980-09-25 | 1981-09-22 | Photoconductive member with α-Si(N) barrier layer |
AU75648/81A AU554181B2 (en) | 1980-09-25 | 1981-09-24 | Photoconductive device |
GB8128841A GB2087643B (en) | 1980-09-25 | 1981-09-24 | Photoconductive member |
DE813152399A DE3152399A1 (en) | 1980-09-25 | 1981-09-25 | Photoconductive member |
CA000386703A CA1181628A (en) | 1980-09-25 | 1981-09-25 | Photoconductive member including non-photoconductive layer containing amorphous silicon matrix containing nitrogen |
NL8104426A NL192142C (en) | 1980-09-25 | 1981-09-25 | Photoconductive organ. |
FR8118123A FR2490839B1 (en) | 1980-09-25 | 1981-09-25 | PHOTOCONDUCTIVE ELEMENT |
PCT/JP1981/000256 WO1982001261A1 (en) | 1980-09-25 | 1981-09-25 | Photoconductive member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55137151A JPS5762055A (en) | 1980-09-30 | 1980-09-30 | Photoconductive member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5762055A JPS5762055A (en) | 1982-04-14 |
JPS6341060B2 true JPS6341060B2 (en) | 1988-08-15 |
Family
ID=15192005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55137151A Granted JPS5762055A (en) | 1980-09-25 | 1980-09-30 | Photoconductive member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5762055A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59125736A (en) * | 1983-01-05 | 1984-07-20 | Tomoegawa Paper Co Ltd | Electrophotographic sensitive body and its manufacture |
JPS6187160A (en) * | 1984-10-05 | 1986-05-02 | Fuji Electric Co Ltd | Electrophotographic sensitive body |
-
1980
- 1980-09-30 JP JP55137151A patent/JPS5762055A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5762055A (en) | 1982-04-14 |