JPH0212260A - Electrophotographic sensitive body and production of same - Google Patents

Electrophotographic sensitive body and production of same

Info

Publication number
JPH0212260A
JPH0212260A JP63164478A JP16447888A JPH0212260A JP H0212260 A JPH0212260 A JP H0212260A JP 63164478 A JP63164478 A JP 63164478A JP 16447888 A JP16447888 A JP 16447888A JP H0212260 A JPH0212260 A JP H0212260A
Authority
JP
Japan
Prior art keywords
photoreceptor
ratio
plasma
layer
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63164478A
Other languages
Japanese (ja)
Inventor
Shiro Narukawa
成川 志郎
Hisashi Hayakawa
尚志 早川
Kunio Ohashi
邦夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63164478A priority Critical patent/JPH0212260A/en
Priority to US07/332,775 priority patent/US4971878A/en
Priority to CN 89103212 priority patent/CN1029162C/en
Priority to EP89303300A priority patent/EP0336700B1/en
Priority to DE68928210T priority patent/DE68928210T2/en
Priority to KR1019890004485A priority patent/KR910007719B1/en
Publication of JPH0212260A publication Critical patent/JPH0212260A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance electric conductivity and potential stability of an amorphous silicon photosensitive body by specifying a ratio of the integrated intensity of infrared spectra of a photoconductive layer at about 880cm<-1> to that at about 840cm<-1>. CONSTITUTION:The photoconductive layer is made of the amorphous silicon (a-Si) type material, and the ratio of the integrated intensity of its infrared spectra at about 880cm<-1> I1 to that at about 840cm<-1> I2 is regulated to 0.2<I2/I1<0.6, thus permitting heating of a substrate to be made unnecessary for such a photosensitive body by using the electron cyclotron resonance method, said intensity ratio to be controlled in a proper range, and accordingly, the conductivity and potential stability of the a-Si photosensitive body to be enhanced.

Description

【発明の詳細な説明】 ta+産業上の利用分野 この発明は、光導電層がアモルファスシリコン(以下、
a−5iという、)系材料からなる電子写真感光体およ
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION ta+ Industrial Field of Application This invention provides a photoconductive layer made of amorphous silicon (hereinafter referred to as
The present invention relates to an electrophotographic photoreceptor made of a)-based material referred to as a-5i, and a method for manufacturing the same.

伽)従来の技術 光導電層がa−Si系(含H等)材料からなる電子写真
感光体(以下、a−Si感光体という。)は、無公害、
高光感度、高硬度(Hv : 1500〜2000kg
/鰭2)等の多くの優れた特性を有しているため理想的
な感光材料として開発が進められている。
B) Conventional technology An electrophotographic photoreceptor (hereinafter referred to as an a-Si photoreceptor) whose photoconductive layer is made of an a-Si-based (containing H, etc.) material is non-polluting,
High light sensitivity, high hardness (Hv: 1500-2000kg
Because it has many excellent properties such as / fin 2), it is being developed as an ideal photosensitive material.

a−Si感光体は一般的にはプラズマCVD法。The a-Si photoreceptor is generally produced using the plasma CVD method.

スパッタリング法等の方法により製造されている。プラ
ズマCVD法は、アルミニウム等の感光体基体を装着し
た真空槽内にモノシラン、ジシラン等の原料ガスを導入
し、高周波電力印加によるグロー放電によって原料ガス
を分解して、基体上にI(を含むa−5i層を堆積させ
るものである。またスパッタリング法はSiウェハをタ
ーゲットとし、H2および^r、 汁e等の希ガスを導
入し高周波電力を印加してグロー放電を行うことにより
ターゲットをスパッタしてHを含むa−Si層を堆積さ
せるものである。
It is manufactured by a method such as a sputtering method. In the plasma CVD method, a raw material gas such as monosilane or disilane is introduced into a vacuum chamber equipped with a photoreceptor substrate such as aluminum, and the raw material gas is decomposed by a glow discharge caused by the application of high-frequency power. The sputtering method uses a Si wafer as a target, and sputters the target by introducing H2 and rare gases such as ^r and e, and applying high frequency power to perform glow discharge. Then, an a-Si layer containing H is deposited.

(C,)発明が解決しようとする課題 しかしながら上述したような方法でa −Si5光体を
形成した場合、 ■ a −Si感光体が充分な光感度を持つためには感
光体基体を加熱しなければならず、そのためにa−Si
層のH含有量が多くなってしまい、電気伝導度が10−
” s/cm程度と大きくなって電荷保持率が悪くなっ
てしまう。電気伝導度はBを添加(原料ガス:8ilt
、等)することにより多少向上するが、それでもせいぜ
いIQ−11〜10−125/cs程度にしかならない
(C,) Problems to be Solved by the Invention However, when an a-Si5 photoreceptor is formed by the method described above, ■ In order for the a-Si photoreceptor to have sufficient photosensitivity, the photoreceptor substrate must be heated. Therefore, a-Si
The H content of the layer increases, and the electrical conductivity decreases to 10-
” The charge retention rate becomes large as it becomes about s/cm.The electric conductivity is increased by adding B (raw material gas: 8ilt).
, etc.), it will improve to some extent, but it will still only be about IQ-11 to 10-125/cs at most.

という感光体特性の問題が生じるとともにBを添加した
場合には原料コストが高くなる問題があり、またa −
5i悪感光製造過程において、■ 成膜速度が遅い。
In addition to the problem of photoreceptor characteristics such as a-
In the 5i photosensitive manufacturing process, (1) the film formation rate is slow;

■ 原料ガスの利用効率が悪い。■ Inefficient use of raw material gas.

■ 非常に多(の粉末状の5i−Hポリマーが副産物と
して生成され、堆積中に感光体基体表面に付着して堆積
欠陥を生じさせる。
(2) A large amount of powdered 5i-H polymer is produced as a by-product and adheres to the photoreceptor substrate surface during deposition, causing deposition defects.

等の問題があり、コスト高になってしまったり、歩留ま
りが悪くなってしまう問題があった。
There are problems such as high cost and low yield.

この発明の目的は上記問題に鑑み、a −Si感光体の
組成を限定することにより電荷保持率の良い電子写真感
光体を提供し、またその感光体の製造方法を提供するこ
とにある。
In view of the above problems, an object of the present invention is to provide an electrophotographic photoreceptor with a good charge retention rate by limiting the composition of the a-Si photoreceptor, and also to provide a method for manufacturing the photoreceptor.

(d1課題を解決するための手段 この発明のa −3i悪感光は光導電層の赤外分光スペ
クトルのほぼ880cm−’の積分強度1.と、ほぼa
4oem−’の積分強度■2の比がほぼ、0.2 <(
Iz/II)  <0.6となるように限定したもので
あり、 またそのa−Si感光体の光導電層を電子サイクロトロ
ン共鳴法による形成したことを特徴としている。
(Means for Solving the d1 Problems) The a-3i ill-sensitivity light of this invention has an integrated intensity of approximately 880 cm-' in the infrared spectrum of the photoconductive layer, and approximately a
The integrated intensity of 4oem-' ■The ratio of 2 is approximately 0.2 <(
Iz/II) <0.6, and is characterized in that the photoconductive layer of the a-Si photoreceptor is formed by electron cyclotron resonance method.

(e1作用 赤外分光スペクトルにおいてほぼ2000cm−’付近
には5i−H結合のピークが現れ、ほぼ800〜900
C1ll −’付近には5iltのピークが現れる。ま
た、SiH2において、5iI(!単体で存在する場合
にはほぼ880c@伺付近にのみ吸収がみられ、ポリマ
ー状((Si11g)n)で存在する場合にはほぼ88
0cm−’付近とほぼ840C11−’付近の両方に吸
収がみられる。
(In the e1 action infrared spectrum, a peak of 5i-H bond appears around 2000 cm-',
A peak of 5ilt appears near C1ll-'. In addition, in SiH2, absorption is observed only around 880c @ 5iI (!) when it exists alone, and approximately 880c when it exists in the form of a polymer ((Si11g)n).
Absorption is seen both around 0 cm-' and around 840C11-'.

a−Si感光体の場合、5iHzと(SiHz)nとが
混在しており、その両者の比率によって電気伝導度等の
感光体特性が左右されることは従来より言われていた。
In the case of an a-Si photoreceptor, 5iHz and (SiHz)n coexist, and it has been said that the photoreceptor characteristics such as electrical conductivity are influenced by the ratio of the two.

この比率は赤外分光スペクトルにおける880(Jl−
’、  840備−1の積分強度(Jα(w)/wd呵
)の比It(ほぼ840a*−’付近の強度)/r+(
ほぼ880 cm−’付近の強度)を指標とすることが
でき、この比をほぼ0.2 < (It/It) <0
.6に設定することによって電気伝導度等のa −Si
感光体特性を良好なものにできる。
This ratio is 880 (Jl-
', the ratio of the integrated intensity (Jα(w)/wd呵) of 840a*-1 (intensity approximately around 840a*-')/r+(
The intensity around 880 cm-' can be used as an index, and this ratio can be calculated as approximately 0.2 < (It/It) < 0
.. By setting it to 6, the electrical conductivity etc.
Photoreceptor characteristics can be improved.

第1図は前記積分強度比(lx/It)と電気伝導度、
明導電率との関係を表した図であり、上記範囲において
電気伝導度が10−” s/cm程度、明導電率が1O
−bcIA/v程度と良好な値を示している。
Figure 1 shows the integrated intensity ratio (lx/It) and electrical conductivity,
This is a diagram showing the relationship between bright conductivity and bright conductivity.
-bcIA/v, which is a good value.

またa−Si感光体を形成する場合、電子サイクロトロ
ン共鳴法(以下、ECR法という、)を用いると基盤加
熱の必要がなく、前記積分強度比が良好な範囲となるa
−Si感光体を形成することが可能となる。
In addition, when forming an a-Si photoreceptor, if electron cyclotron resonance method (hereinafter referred to as ECR method) is used, there is no need to heat the substrate, and the integrated intensity ratio can be within a good range.
-It becomes possible to form a Si photoreceptor.

(f)実施例 第3図はこの発明のa−Si感光体を形成するECR法
の堆積装置の概略図である。
(f) Embodiment FIG. 3 is a schematic diagram of an ECR deposition apparatus for forming an a-Si photoreceptor of the present invention.

装置は水素プラズマを発生させるプラズマ室1と、a−
3i層を堆積させる堆積室2とを有している。プラズマ
室1と堆積室2とはプラズマ引出窓で通じており、図示
しない油拡散ポンプ、油回転ポンプにより真空排気され
る。
The device includes a plasma chamber 1 that generates hydrogen plasma, and a-
It has a deposition chamber 2 in which the 3i layer is deposited. The plasma chamber 1 and the deposition chamber 2 communicate with each other through a plasma extraction window, and are evacuated by an oil diffusion pump and an oil rotary pump (not shown).

プラズマ室1は空胴共振器構成でなり、導波管4から2
.45(Jzのマイクロ波が導入される。なお、マイク
ロ波導入窓5はマイクロ波が通過できる石英ガラス板で
できている。プラズマ室1にはH2ガスが導入される。
The plasma chamber 1 has a cavity resonator configuration, and the waveguides 4 to 2
.. A microwave of 45 (Jz) is introduced. The microwave introduction window 5 is made of a quartz glass plate through which the microwave can pass. H2 gas is introduced into the plasma chamber 1.

プラズマ室1の周囲には磁気コイル6.7が配置されて
いる。磁気コイル6はプラズマ発生磁界(875G)を
発生させ、磁気コイル7はプラズマ室1で発生したプラ
ズマを堆積室2に引き出すための発散磁界を発生する。
A magnetic coil 6.7 is arranged around the plasma chamber 1. The magnetic coil 6 generates a plasma generation magnetic field (875G), and the magnetic coil 7 generates a divergent magnetic field for drawing out the plasma generated in the plasma chamber 1 to the deposition chamber 2.

このような装置によりa −3i悪感光を形成するには
、まず堆積室2のほぼ中央部に感光体基体8をセットす
る。感光体基体8はたとえばアルミニウム等からなるド
ラム状のものが用いられる。そして排気系によりプラズ
マ室1.堆積室2を排気し、プラズマ室1にはHzガス
を、また堆積室2には原料ガス(SiHt、C1,等)
をN2それぞれ導入する、さらに、プラズマ室lにマイ
クロ波を導入するとともに、磁気コイル6.7にて磁界
を発生させる。するとプラズマ室1で11□ガスがプラ
ズマとなり、このプラズマがプラズマ引出窓3から堆積
室2へ引き出されて、SiH4等の原料ガスをプラズマ
にする。これによって、原料ガスのプラズマが感光体基
体8上に堆積する。感光体基体8は支持体により回転さ
れるため、表面に均一なa −3i層が形成される。な
お、感光体基体8の加熱は行われない。
In order to form an a-3i photosensitive image using such an apparatus, the photoreceptor base 8 is first set approximately in the center of the deposition chamber 2. The photoreceptor base 8 is a drum-shaped member made of, for example, aluminum. Then, the plasma chamber 1. Deposition chamber 2 is evacuated, Hz gas is supplied to plasma chamber 1, and source gas (SiHt, C1, etc.) is supplied to deposition chamber 2.
Further, microwaves are introduced into the plasma chamber 1, and a magnetic field is generated by the magnetic coils 6.7. Then, the 11□ gas becomes plasma in the plasma chamber 1, and this plasma is drawn out from the plasma extraction window 3 to the deposition chamber 2, and the raw material gas such as SiH4 is turned into plasma. As a result, plasma of the source gas is deposited on the photoreceptor substrate 8. Since the photoreceptor substrate 8 is rotated by the support, a uniform a-3i layer is formed on the surface. Note that the photoreceptor base 8 is not heated.

通常のa−3t悪感光は基体上にブロッキング層、光導
電層9表面層の三層のa −3i層が形成されたもので
あり、a −3i層の形成条件を変えて三層のa−3i
層が形成される。第3図はa −5i層形成条件を表し
た図であり、図示するような各条件でブロッキング層、
光導電N2表面層が積層される、このECR法によりa
 −Si層を形成すれば、■ 比較的低い圧力(10−
”10−’torr)で安定したプラズマを生成するこ
とができ、反応種の2次反応を抑えて粉末状5i−Hポ
リマー等の発生を抑制して、良好なa−Si層の形成を
行うことができる。
A normal a-3t photosensitive photo is one in which three a-3i layers, a blocking layer and a surface layer of a photoconductive layer 9, are formed on a substrate. -3i
A layer is formed. FIG. 3 is a diagram showing the conditions for forming the a-5i layer, and under each condition shown in the figure, the blocking layer,
By this ECR method a photoconductive N2 surface layer is deposited.
- If a Si layer is formed, ■ Relatively low pressure (10-
A stable plasma can be generated at 10-'torr), suppressing secondary reactions of reactive species, suppressing the generation of powdery 5i-H polymer, etc., and forming a good a-Si layer. be able to.

■ 電子のエネルギーが高く、従来のプラズマCVD法
に比べて導入ガスの分解、励起、イオン化が著しく向上
し、成膜速度を向上させ(23μm/hr程度)、また
導入ガスの利用効率も向上させる(49%程度)ことが
できる。
■ The energy of the electrons is high, and the decomposition, excitation, and ionization of the introduced gas are significantly improved compared to conventional plasma CVD methods, increasing the film formation rate (approximately 23 μm/hr) and improving the utilization efficiency of the introduced gas. (about 49%).

■ 速度のイオン衝撃により感光体基体8を加熱するこ
となく光感度の高い良質のa −3i層を形成すること
ができ、加熱を行わないためa −Si層中の(SiH
z)n Iを抑えることができる。
■ A high-quality a-3i layer with high photosensitivity can be formed without heating the photoreceptor substrate 8 due to high-speed ion bombardment.
z) n I can be suppressed.

という利点がある。There is an advantage.

なお、a −Si導電型の制御は従来のプラズマCVD
法と同様に、p型の場合には例えばB2H4等の第■族
元素を含む原料ガスを、またn型の場合にはPII+等
の第■族元素を含む原料ガスを導入すれば良(、たとえ
ば第3図に示したような条件で形成されるa −Si感
光体はp型のものである。
Note that control of the a-Si conductivity type is performed using conventional plasma CVD.
Similarly to the method, in the case of p-type, it is sufficient to introduce a source gas containing a group Ⅰ element such as B2H4, and in the case of n-type, a source gas containing a group Ⅰ element such as PII+ is introduced. For example, the a-Si photoreceptor formed under the conditions shown in FIG. 3 is of the p-type.

次に、形成されるa −Si感光体の特性の説明をする
Next, the characteristics of the formed a-Si photoreceptor will be explained.

第1図は「作用」で示したようにS+H1と(SiHi
)nとの割合を示すための指標である赤外分光スペのう
ち吸収強度比の異なるA−Dの4点についてその他の特
性を表した図である。吸収強度比(Iz/b)が0.2
〜0.6の範囲にあるB、Cであると感度も良く、電荷
保持率が従来のプラズマCVD装置により形成されたa
−5i悪感光よりも向上しており、このa −5i5光
体を用いて画像形成を行ったところカブリ等のない高品
質の像を得ることができた。またこの図からは、0.2
〜0.6の範囲を外れたA、Dにおいては電荷保持率は
向上しているが、感度、残留電位が悪く使用上好ましく
ないことも分かる。
Figure 1 shows S+H1 and (SiHi
) is a diagram showing other characteristics of four points A to D having different absorption intensity ratios in the infrared spectroscopy spectrum, which is an index for showing the ratio with n. Absorption intensity ratio (Iz/b) is 0.2
B and C in the range of ~0.6 have good sensitivity and a charge retention rate that is higher than that of a formed by conventional plasma CVD equipment.
This is an improvement over the -5i illuminant, and when an image was formed using this a-5i5 photon, a high quality image without fogging etc. could be obtained. Also, from this figure, 0.2
It can be seen that in A and D outside the range of ~0.6, although the charge retention rate is improved, the sensitivity and residual potential are poor, making them undesirable for use.

なお吸収強度比が0.2〜0.3の範囲のa −Si層
の水素量を定量分析したところ40〜50 aL%であ
った。水素量をこの範囲にすることによって感光体の暗
比抵抗、明導電率を良好な値にすることができる。
A quantitative analysis of the amount of hydrogen in the a-Si layer with an absorption intensity ratio in the range of 0.2 to 0.3 revealed that it was 40 to 50 aL%. By controlling the amount of hydrogen within this range, the dark resistivity and bright conductivity of the photoreceptor can be made to have good values.

またこのようなa−Si層の形成方法は、電子写真感光
体に限らず太陽電池、イメージセンサ等のデバイスに適
用することも可能である。
Furthermore, this method of forming an a-Si layer can be applied not only to electrophotographic photoreceptors but also to devices such as solar cells and image sensors.

(g1発明の効果 この発明の電子写真感光体は、Sil+□と(Sit(
z)nとの割合が良好な状態であるので、a −Si感
光体の電気伝導度、電荷保持率を向上させることができ
、高品質画像を形成することができる。ECR法を装置
を用いてa −Si層を形成すると感光体基体を加熱す
る必要がないので積分強度比(Iz/l+)をほぼ0.
2.〜0.4の範囲内にすることができ、上述したよう
な良い感光体を形成することができる。またECR法に
よれば成膜速度、原料ガスの利用効率を向上させること
ができるとともに、粉末状の5t−Hポリマーが発生す
ることがなく、製造コストを安価にするとともに感光体
の歩留まりを向上させることができる。
(g1 Effect of the invention The electrophotographic photoreceptor of this invention has Sil+□ and (Sit(
Since the ratio with z)n is in a good state, the electrical conductivity and charge retention rate of the a-Si photoreceptor can be improved, and high-quality images can be formed. When an a-Si layer is formed using an ECR method, there is no need to heat the photoreceptor substrate, so the integrated intensity ratio (Iz/l+) can be kept at approximately 0.
2. 0.4, and a good photoreceptor as described above can be formed. In addition, the ECR method can improve the film formation speed and raw material gas utilization efficiency, and does not generate powdered 5t-H polymer, which reduces manufacturing costs and improves the yield of photoreceptors. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

した図、第2図は積分強度比の異なる感光体のそれぞれ
の特性を表した図、第3図はECR法を用いたa−Si
堆積装置の概略図、第4図はa −Si層の成膜条件を
表した図である。 プラズマ室、 一堆積室、 −プラズマ引出窓、 −4波管、 一マイクロ波導入窓、 一導光体基体。
Figure 2 is a diagram showing the characteristics of photoreceptors with different integrated intensity ratios, and Figure 3 is a diagram showing the characteristics of a-Si using the ECR method.
FIG. 4, which is a schematic diagram of the deposition apparatus, is a diagram showing the conditions for forming the a-Si layer. a plasma chamber, a deposition chamber, a plasma extraction window, a four-wave tube, a microwave introduction window, and a light guide substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)光導電層がアモルファスシリコン系材料からなる
電子写真感光体であって、 光導電層の赤外分光スペクトルにおいて、ほぼ880c
m^−^1の積分強度I_1と、ほぼ840cm^−^
1の積分強度I_2の比がほぼ、 0.2<(I_2/I_1)<0.6 である電子写真感光体。
(1) An electrophotographic photoreceptor in which the photoconductive layer is made of an amorphous silicon-based material, and the infrared spectrum of the photoconductive layer is approximately 880c.
The integrated intensity I_1 of m^-^1 is approximately 840 cm^-^
An electrophotographic photoreceptor in which the ratio of integrated intensity I_2 of 1 is approximately 0.2<(I_2/I_1)<0.6.
(2)前記光導電層を電子サイクロトロン共鳴法により
堆積させる電子写真感光体の製造方法。
(2) A method for manufacturing an electrophotographic photoreceptor, in which the photoconductive layer is deposited by an electron cyclotron resonance method.
JP63164478A 1988-04-04 1988-06-30 Electrophotographic sensitive body and production of same Pending JPH0212260A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63164478A JPH0212260A (en) 1988-06-30 1988-06-30 Electrophotographic sensitive body and production of same
US07/332,775 US4971878A (en) 1988-04-04 1989-04-03 Amorphous silicon photosensitive member for use in electrophotography
CN 89103212 CN1029162C (en) 1988-04-04 1989-04-03 Electrophotographic photosensitive member
EP89303300A EP0336700B1 (en) 1988-04-04 1989-04-04 An electrophotographic photosensitive member
DE68928210T DE68928210T2 (en) 1988-04-04 1989-04-04 Electrophotographic photosensitive member
KR1019890004485A KR910007719B1 (en) 1988-04-04 1989-04-04 Electrographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63164478A JPH0212260A (en) 1988-06-30 1988-06-30 Electrophotographic sensitive body and production of same

Publications (1)

Publication Number Publication Date
JPH0212260A true JPH0212260A (en) 1990-01-17

Family

ID=15793938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63164478A Pending JPH0212260A (en) 1988-04-04 1988-06-30 Electrophotographic sensitive body and production of same

Country Status (1)

Country Link
JP (1) JPH0212260A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381361A (en) * 1986-09-26 1988-04-12 Canon Inc Manufacture of electrophotographic sensitive body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381361A (en) * 1986-09-26 1988-04-12 Canon Inc Manufacture of electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
US4532199A (en) Method of forming amorphous silicon film
JPH06287760A (en) Plasma treating device and treatment
US4760008A (en) Electrophotographic photosensitive members and methods for manufacturing the same using microwave radiation in magnetic field
JPH0215174A (en) Microwave plasma cvd device
JP3630831B2 (en) Method for forming deposited film
JPH081895B2 (en) Method for forming amorphous silicon film
JPH1081968A (en) Production of amorphous silicon coating
JPH0212260A (en) Electrophotographic sensitive body and production of same
JPH071395B2 (en) Electrophotographic photoreceptor
JPH0521983B2 (en)
JPS5860747A (en) Electrophotographic receptor
US4971878A (en) Amorphous silicon photosensitive member for use in electrophotography
JPH11150283A (en) Manufacture of polycrystalline silicon thin film
JPS6273622A (en) Formation of amorphous semiconductor film
JP3295133B2 (en) Manufacturing method of amorphous semiconductor
JPH03242653A (en) Electrophotographic sensitive body
Hazra et al. Highly photosensitive helium diluted amorphous silicon 1.5 eV band gap: Role of pressure
JPH01204057A (en) Manufacture of electrophotographic sensitive body
JPH01277245A (en) Electrophotographic sensitive body
JPH0212265A (en) Production of electrophotographic sensitive body
JP2867150B2 (en) Microwave plasma CVD equipment
JP2925310B2 (en) Deposition film formation method
JPH0647738B2 (en) Method for forming deposited film by plasma CVD method
JPH0234863A (en) Electrophotographic sensitive body
JPS61283112A (en) Forming method for amorphous semiconductor film