JPH081895B2 - Method for forming amorphous silicon film - Google Patents

Method for forming amorphous silicon film

Info

Publication number
JPH081895B2
JPH081895B2 JP60124442A JP12444285A JPH081895B2 JP H081895 B2 JPH081895 B2 JP H081895B2 JP 60124442 A JP60124442 A JP 60124442A JP 12444285 A JP12444285 A JP 12444285A JP H081895 B2 JPH081895 B2 JP H081895B2
Authority
JP
Japan
Prior art keywords
film
plasma
chamber
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60124442A
Other languages
Japanese (ja)
Other versions
JPS61281519A (en
Inventor
浩二 秋山
栄一郎 田中
晋匡 倉本
昭雄 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60124442A priority Critical patent/JPH081895B2/en
Publication of JPS61281519A publication Critical patent/JPS61281519A/en
Publication of JPH081895B2 publication Critical patent/JPH081895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基体たとえば導電性基板に非晶質シリコン
膜を形成する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for forming an amorphous silicon film on a substrate such as a conductive substrate.

従来の技術 ハロゲン原子を含む非晶質シリコン膜(以下a−Si:
X:H膜と略記する。但し、X=F,Cl,Br)は、水素のみ含
有する非晶質シリコン膜(以下a−Si:H膜と略記す
る。)に比べて、耐熱性が優れており、また光照射によ
る膜構造の変化が少ない等の利点をもつことから、太陽
電池または電子写真感光体への開発が活発に行われてい
る。中でも、原料ガスであるSiF4が低価格で入手し易
く、しかも膜の電気的特性および安定性が優れているこ
とから、a−Si:F:H膜に関する研究が最も盛んに行われ
ている。
2. Description of the Related Art Amorphous silicon films containing halogen atoms (hereinafter a-Si:
Abbreviated as X: H film. However, X = F, Cl, Br) is superior in heat resistance to an amorphous silicon film containing only hydrogen (hereinafter abbreviated as a-Si: H film), and is a film formed by light irradiation. Since it has advantages such as little change in structure, it is actively developed into a solar cell or an electrophotographic photoreceptor. Above all, SiF 4, which is a raw material gas, is easily available at a low price, and since the electric characteristics and stability of the film are excellent, researches on the a-Si: F: H film are most actively conducted. .

従来、a−Si:X:H(X=F,Cl,Br)膜の形成方法とし
て最も良く利用されているのがグロー放電分解法であ
る。この方法は、第2図に示すように、真空容器21内に
ガス導入口22から原料ガスたとえばSiF4とH2の混合ガス
あるいはSiF4とSiH4の混合ガスを、シャワー状に穴を開
けた電極23を通して導入し、基板24に対向配置された電
極23に高周波電力を高周波電源25から印加してプラズマ
を発生させて原料ガスを分解し、ヒーター26により200
〜350℃に加熱された基板24表面上にa−Si:F:H膜を形
成する。
Conventionally, the glow discharge decomposition method has been most widely used as a method for forming an a-Si: X: H (X = F, Cl, Br) film. According to this method, as shown in FIG. 2, a source gas such as a mixed gas of SiF 4 and H 2 or a mixed gas of SiF 4 and SiH 4 is opened in a vacuum vessel 21 from a gas inlet 22 in a shower shape. Is introduced through the electrode 23, and high frequency power is applied from the high frequency power source 25 to the electrode 23 arranged to face the substrate 24 to generate plasma and decompose the raw material gas.
An a-Si: F: H film is formed on the surface of the substrate 24 heated to 350 ° C.

発明が解決しようとする問題点 従来のa−Si:F:H膜の形成方法であるSiF4とH2の混合
ガスを原料ガスとするグロー放電分解法では、プラズマ
中のフッ素ラジカルがエッチング作用をもつため、成膜
可能な条件が非常に狭い領域に限られており、成膜でき
る場合においても成膜速度は1〜2μm/hと小さい。成
膜可能な条件を広くし、かつ成膜速度を上げるため、Si
F4とH2の混合ガスを使用する代わりに、SiF4とSiH4の混
合ガスまたは、SiF4とSiH4とH2の混合ガスまたはSiH2F2
を原料ガスとして使用することが試みられているが、成
膜速度は2〜3μm/hと小さく、a−Si:F:H膜の成膜速
度の大幅な向上は実現できていない。従って、電子写真
用感光体を必要とされる15μm以上のa−Si:F:H膜を形
成するためには5時間以上を要することになり、電子写
真用感光体の迅速な量産を可能にできない。また、成膜
速度を上げるためにSiF4流量を増加すると、原料ガス中
の気相反応により粉状のシリコンが大量に発生し、成膜
装置内の排気系に目づまりを起こす問題を生じる。
Problems to be Solved by the Invention In the glow discharge decomposition method using a mixed gas of SiF 4 and H 2 as a raw material gas, which is a conventional method for forming an a-Si: F: H film, fluorine radicals in plasma have an etching action. Therefore, the conditions under which film formation is possible are limited to a very narrow region, and even when film formation is possible, the film formation rate is as low as 1 to 2 μm / h. In order to broaden the film formation conditions and increase the film formation speed,
Instead of using a mixed gas of F 4 and H 2, a mixed gas of SiF 4 and SiH 4 or a mixed gas of SiF 4 and SiH 4 and H 2 or SiH 2 F 2
However, the film forming rate is as small as 2 to 3 μm / h, and the film forming rate of the a-Si: F: H film has not been significantly improved. Therefore, it takes 5 hours or more to form an a-Si: F: H film having a thickness of 15 μm or more, which is required for the electrophotographic photoconductor, and enables rapid mass production of the electrophotographic photoconductor. Can not. Further, when the SiF 4 flow rate is increased to increase the film formation rate, a large amount of powdery silicon is generated due to the gas phase reaction in the raw material gas, which causes a problem that the exhaust system in the film formation apparatus is clogged.

また、グロー放電分解法では、膜形成に費されるエネ
ルギの一部を基板加熱による熱エネルギが担っており、
Si原子とF原子の結合エネルギがSi原子とH原子の結合
エネルギに比べて大きいことから、a−Si:F:H膜の成膜
時の基板温度は、a−Si:H膜の場合よりも高くしなけれ
ばならず、通常250℃以上に設定される。従って、グロ
ー放電分解法では、耐熱性の乏しい有機物上にa−Si:
F:H膜を形成することが困難であるという欠点を有す
る。
Further, in the glow discharge decomposition method, a part of the energy consumed for film formation is carried by the thermal energy of the substrate heating,
Since the bond energy between Si atoms and F atoms is larger than the bond energy between Si atoms and H atoms, the substrate temperature at the time of forming the a-Si: F: H film is higher than that in the case of the a-Si: H film. Must also be raised and is usually set at 250 ° C or higher. Therefore, in the glow discharge decomposition method, a-Si:
It has a drawback that it is difficult to form an F: H film.

更に、グロー放電分解法で作製したa−Si:F:H膜の大
きな問題点は、成膜中に膜が汚染され易いことである。
グロー放電分解法で作製したa−Si:F:H膜中には、C原
子,O原子およびN原子が1018〜1020(個/cm3)不純物
として混入していることが、イオンマイクロプローブ分
析法(IMA)や二次イオン質量分析法(SIMS)によって
明らかにされている。これらの不純物は、プラズマ中の
フッ素ラジカルが真空容器壁や電極と反応し、プラズマ
中にF原子と結合した不純物が取り込まれ、膜中に混入
したものと考えられている。また、このように膜中に混
入した不純物は、膜の電気的特性の劣化を引き起こすた
め、a−Si:F:H膜の電気的特性がa−Si:H膜に比べて劣
っている原因にもなっている。
Further, a major problem of the a-Si: F: H film produced by the glow discharge decomposition method is that the film is easily contaminated during film formation.
In the a-Si: F: H film produced by the glow discharge decomposition method, C atoms, O atoms, and N atoms are mixed in as 10 18 to 10 20 (pieces / cm 3 ) impurities. It has been revealed by probe analysis (IMA) and secondary ion mass spectrometry (SIMS). It is considered that the fluorine radicals in the plasma react with the walls of the vacuum container and the electrodes, the impurities bound to the F atoms are taken into the plasma, and are mixed in the film. In addition, the impurities thus mixed in the film cause deterioration of the electrical characteristics of the film, and thus the electrical characteristics of the a-Si: F: H film are inferior to those of the a-Si: H film. It is also becoming.

本発明は、上記の問題点を解決するためのものであ
り、粉体を生成することなく高速で成膜でき、膜中への
不純物の混入を抑制し、基板温度を室温に設定しても成
膜を可能にしたa−Si:X:H(X=F,Cl,Br)膜の形成方
法に関するものである。
The present invention is to solve the above-mentioned problems, can form a film at a high speed without generating powder, suppress mixing of impurities into the film, and set the substrate temperature to room temperature. The present invention relates to a method for forming an a-Si: X: H (X = F, Cl, Br) film that enables film formation.

問題点を解決するための手段 真空容器内に膜形成室とプラズマ生成室を分割して設
け、両室はプラズマ流の通過窓を介して接続する。プラ
ズマ生成室に所定のプラズマ生成用ガスを導入し、マイ
クロ波電力をプラズマ生成室に印加するとともにプラズ
マ生成室内に磁場を形成することにより、プラズマ生成
室内に電子サイクロトロン共鳴を発生させてプラズマ生
成用ガスをプラズマ化し、磁場の強さがプラズマ生成室
から膜形成室に向かって小さくなる磁場を使ってそのプ
ラズマ膜形成室に導き、膜形成室に導入するシリコン原
子およびハロゲン原子含有の分子を有するガスとプラズ
マとを接触させて、膜形成室内に配置した基体上にa−
Si:X:H(X=F,Cl,Br)膜を形成する。
Means for Solving the Problems A film formation chamber and a plasma generation chamber are provided separately in a vacuum container, and both chambers are connected via a plasma flow passage window. A predetermined gas for plasma generation is introduced into the plasma generation chamber, microwave power is applied to the plasma generation chamber, and a magnetic field is formed in the plasma generation chamber to generate electron cyclotron resonance in the plasma generation chamber and generate plasma. It has a molecule containing silicon atoms and halogen atoms, which is introduced into the film formation chamber by guiding the gas into the plasma formation chamber by using a magnetic field in which the magnetic field strength decreases from the plasma generation chamber toward the film formation chamber. The gas and plasma are brought into contact with each other to form a- on the substrate placed in the film forming chamber.
A Si: X: H (X = F, Cl, Br) film is formed.

作用 真空容器内のプラズマ生成室は、マイクロ波電力およ
び磁場によりプラズマを生成する室であり、電子サイク
ロトロン共鳴を発生させる条件に設定することにより、
2×10-5〜0.1Torrの低圧力時においても放電の持続を
可能にしている。基体を配置した膜形成室とプラズマ生
成室は、プラズマ流をプラズマ生成室から基体へ輸送す
るための窓を設けた壁で分離されている。また、この窓
から磁力線が膜形成室の基体に向かって広がっているた
め、プラズマ生成室中の電子がこの磁力線に沿って基体
へ引き出される。この電子の移動に伴い、膜形成室内の
ガス分子の解離が行われるので、低圧力下で基体表面上
にのみ電離度の高いプラズマが輸送される。言い替えれ
ば、基体表面上に高密度のイオンおよびラジカルが形成
される。従って、基体表面上のみ高速で膜成長を行なう
ことができ、基体を除く他の部分への膜の付着および粉
体の生成がない。また、膜形成室においてプラズマは、
基体を除く他の部分との接触がないことから、膜形成室
の壁やガス導入管などからプラズマ中に不純物が混入
し、膜が汚染される問題もない。
Action The plasma generation chamber in the vacuum container is a chamber that generates plasma by microwave power and magnetic field, and by setting the conditions for generating electron cyclotron resonance,
Discharge can be sustained even at low pressure of 2 × 10 -5 〜 0.1 Torr. The film formation chamber in which the substrate is arranged and the plasma generation chamber are separated by a wall provided with a window for transporting the plasma flow from the plasma generation chamber to the substrate. Further, since the magnetic force lines spread from this window toward the substrate of the film formation chamber, the electrons in the plasma generation chamber are extracted to the substrate along the magnetic force lines. As the electrons move, gas molecules in the film forming chamber are dissociated, so that plasma having a high ionization degree is transported only onto the surface of the substrate under a low pressure. In other words, high-density ions and radicals are formed on the surface of the substrate. Therefore, the film can be grown at high speed only on the surface of the substrate, and the film is not attached to other portions except the substrate and the powder is not generated. In addition, plasma in the film formation chamber
Since there is no contact with other parts except the substrate, there is no problem that impurities are mixed into the plasma from the wall of the film forming chamber or the gas introduction pipe to contaminate the film.

膜形成に消費されるエネルギは、基体に入射するイオ
ンの有するエネルギで与えられるため、基体温度を室温
付近に設定している場合においても膜形成を行うことが
可能である。
Since the energy consumed for forming the film is given by the energy of the ions incident on the substrate, the film can be formed even when the substrate temperature is set to around room temperature.

実施例 第1図は、本発明の実施例において使用したa−Si:
X:H(X=F,Cl,Br)膜形成装置である。真空容器は、基
板1を配置した膜形成室2と、マグネトロン電源3が導
波管4で接続されたプラズマ生成室5から成る。プラズ
マ生成室5の周囲には、プラズマ中に電子サイクロトロ
ン共鳴を引き起し、更にプラズマを膜形成室2内の基板
1上に窓6から引き出すための磁場を形成する磁気コイ
ル7が設置されている。また、基板1は、ヒーター8に
よる加熱あるいは、給排水口9に冷却水を循環すること
により冷却を行うことができる。プラズマ生成室5に第
1ガス導入口10より供給されるプラズマ生成用のガスに
は、H2、NO2、NO、N2ONH3、N2、O2、Cl2、HCl、HBr、SO
2、H2S、CO、CO2、He、Ar、Ne、Kr、Xe、CH4、C2H6のう
ち何れか1つ、あるいはこれらの組合せからなる混合ガ
スの使用が好ましい。また、a−Si:X:H(X=F,Cl,B
r)膜の原料ガスは、窓6と基体1との間に設置された
リング状の第2ガス導入管11より膜形成室2に供給され
る。原料ガスとしては、具体的にはSiF4、Si2F6、SiH
F3、SiH2F2、SiH3F、のうち1種類、あるいはこれらの
組合せからなる混合ガスの使用が好ましく、また、これ
らのガスにSiCl4、SiHCl3、SiH2Cl2、SiH3Cl、SiH3Br、
SiH2Br2、SiHBr3、SiCl3Br、SiCl2Br2、SiClBr3などを
混合したガスの使用が好ましい。ここで、上記の原料ガ
スは、成膜速度を上げるためにSiH4,Si2H6,Si3H8,Si
4H10のようなシランガスを混合しても良く、また、H2,H
e,Ne,Ar,N2のようなガスで希釈して使用することも可能
である。
Example FIG. 1 shows a-Si used in the examples of the present invention:
X: H (X = F, Cl, Br) film forming apparatus. The vacuum container is composed of a film forming chamber 2 in which a substrate 1 is arranged and a plasma generating chamber 5 to which a magnetron power source 3 is connected by a waveguide 4. A magnetic coil 7 is installed around the plasma generation chamber 5 to induce electron cyclotron resonance in the plasma and to form a magnetic field for extracting the plasma from the window 6 on the substrate 1 in the film formation chamber 2. There is. The substrate 1 can be cooled by heating with the heater 8 or by circulating cooling water through the water supply / drainage port 9. The gas for plasma generation supplied from the first gas inlet 10 to the plasma generation chamber 5 includes H 2 , NO 2 , NO, N 2 ONH 3 , N 2 , O 2 , Cl 2 , HCl, HBr, SO.
It is preferable to use a mixed gas composed of any one of 2 , 2 , H 2 S, CO, CO 2 , He, Ar, Ne, Kr, Xe, CH 4 , and C 2 H 6 , or a combination thereof. In addition, a-Si: X: H (X = F, Cl, B
r) The raw material gas for the film is supplied to the film forming chamber 2 through a ring-shaped second gas introduction pipe 11 provided between the window 6 and the substrate 1. As the raw material gas, specifically, SiF 4 , Si 2 F 6 , SiH
It is preferable to use one of F 3 , SiH 2 F 2 , and SiH 3 F, or a mixed gas thereof, and to use these gases, SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , and SiH 3 Cl. , SiH 3 Br,
It is preferable to use a gas in which SiH 2 Br 2 , SiHBr 3 , SiCl 3 Br, SiCl 2 Br 2 , SiClBr 3 and the like are mixed. Here, the above-mentioned source gases are SiH 4 , Si 2 H 6 , Si 3 H 8 , and Si in order to increase the film formation rate.
Silane gas such as 4 H 10 may be mixed, and H 2 , H
It is also possible to use it after diluting it with a gas such as e, Ne, Ar or N 2 .

a−Si:X:H(X=F,Cl,Br)膜のpn制御には不純物の
ドーピングが必要であり、p型非晶質シリコン膜の場
合、ドーピングガスとしてB2H6,BF3,BCl3,BBr3,(CH
3)3Al,(C2H5)3Al,(iC4H9)3Al,(C2H5)3In,(CH3)3G
a,(C2H5)3Gaの使用が好ましく、n型非晶質シリコン膜
の場合、PH3,PF3,PF5,PCl2F,PCl2F3,PCl3,PBr3
AsH3,AsF3,AsF5,AsCl3,AsBr3,SbH3,SbF3,SbC
l3,H2Seをドーピングガスとして使用できる。これらの
ドーピングガスは、第1ガス導入口10から上記のプラズ
マ生成用ガスと混合して導入する。あるいは、第2ガス
導入口11から、上記の原料ガスに混合して膜形成室2に
導入する。
Impurity doping is necessary for pn control of an a-Si: X: H (X = F, Cl, Br) film, and in the case of a p-type amorphous silicon film, B 2 H 6 and BF 3 are used as a doping gas. , BCl 3 , BBr 3 , (CH
3 ) 3 Al, (C 2 H 5 ) 3 Al, (iC 4 H 9 ) 3 Al, (C 2 H 5 ) 3 In, (CH 3 ) 3 G
It is preferable to use a, (C 2 H 5 ) 3 Ga, and in the case of an n-type amorphous silicon film, PH 3 , PF 3 , PF 5 , PCl 2 F, PCl 2 F 3 , PCl 3 , PBr 3 ,
AsH 3 , AsF 3 , AsF 5 , AsCl 3 , AsBr 3 , SbH 3 , SbF 3 , SbC
l 3 and H 2 Se can be used as a doping gas. These doping gases are mixed with the above-mentioned plasma generating gas and introduced from the first gas inlet 10. Alternatively, it is mixed with the above-mentioned raw material gas through the second gas introduction port 11 and introduced into the film forming chamber 2.

また、膜の高抵抗化を図るために、a−Si:X:H(X=
F,Cl,Br)膜に炭素を添加する場合、CnH2n+2,CnH
2n(n=1,2,3,4,5),CH3F,CH3Cl,C2H5Cl,CH3Br,C
2H5Br(CH3)4Siのうち何れか1つあるいはこれらの組合
せから成る混合ガスを上記プラズマ生成用ガスと混合し
て第1ガス導入口10から導入する。または、上記原料ガ
スと混合して第2ガス導入口11より膜形成室2に導入す
る。
In order to increase the resistance of the film, a-Si: X: H (X =
When carbon is added to the F, Cl, Br) film, CnH 2n + 2 , CnH
2n (n = 1,2,3,4,5), CH 3 F, CH 3 Cl, C 2 H 5 Cl, CH 3 Br, C
A mixed gas composed of any one of 2 H 5 Br (CH 3 ) 4 Si or a combination thereof is mixed with the above-mentioned plasma generating gas and introduced from the first gas inlet 10. Alternatively, it is mixed with the raw material gas and introduced into the film forming chamber 2 through the second gas inlet 11.

実施例1 第1図に示す真空排気したプラズマ生成室5に、水素
希釈した800ppm濃度のB2H6:20sccmおよびN2O:1sccmを第
1ガス導入口10より導入し、SiF4:40sccmを第2ガス導
入口11より膜形成室2に導入し、膜形成室2内の圧力を
1×10-2〜10-4Torrに排気バルブを調節した。磁気コイ
ル7に電流を流し、プラズマ生成室5内に磁場を発生さ
せ、100〜600W,2.45GHzのマイクロ波電力をプラズマ生
成室5に印加してプラズマを発生させ、50〜250℃に加
熱したAl基板上1上に0.5〜2.0μmのp型a−Si:F:H膜
を形成した。続いて、補償用の水素希釈した2ppm濃度の
B2H6:20sccmを第1ガス導入口10より導入し、SiF4:40sc
cmを第2ガス導入口11より導入し、圧力1×10-2〜1×
10-4Torr,マイクロ波電力100〜600Wの条件でi型a−S
i:F:H膜を15〜20μmを堆積した。次に、H2:20sccmを第
1ガス導入口10より導入し、SiF4:20sccm,CH4:20sccmを
第2ガス導入口11より導入して、圧力1×10-2〜5×10
-4Torr,マイクロ波電力300〜500Wの条件で表面層として
炭素添加したa−Si:F:H膜を500〜2000Å作成し、電子
写真感光体を形成した。
Example 1 The first plasma generation chamber 5 was evacuated shown in FIG hydrogen diluted 800ppm concentration of B 2 H 6: 20sccm and N 2 O: 1 sccm was introduced from the first gas inlet 10, SiF 4: 40 sccm Was introduced into the film forming chamber 2 through the second gas inlet 11, and the exhaust valve was adjusted so that the pressure in the film forming chamber 2 was 1 × 10 −2 to 10 −4 Torr. An electric current is applied to the magnetic coil 7 to generate a magnetic field in the plasma generation chamber 5, and microwave power of 100 to 600 W and 2.45 GHz is applied to the plasma generation chamber 5 to generate plasma, which is heated to 50 to 250 ° C. A p-type a-Si: F: H film having a thickness of 0.5 to 2.0 μm was formed on the Al substrate 1. Then, for compensating hydrogen diluted 2ppm concentration
B 2 H 6 : 20sccm was introduced from the first gas inlet 10 and SiF 4 : 40sc
cm is introduced from the second gas inlet 11 and the pressure is 1 × 10 -2 to 1 ×
I-type aS under the conditions of 10 -4 Torr and microwave power 100-600W
An i: F: H film was deposited to a thickness of 15 to 20 μm. Next, H 2 : 20sccm is introduced from the first gas introduction port 10, SiF 4 : 20sccm, CH 4 : 20sccm is introduced from the second gas introduction port 11, and the pressure is 1 × 10 −2 to 5 × 10.
A carbon-added a-Si: F: H film was prepared as a surface layer under the conditions of -4 Torr and microwave power of 300 to 500 W by 500 to 2000Å to form an electrophotographic photoreceptor.

上記の様にして得られた電子写真感光体は、帯電々位
+600〜+950V、白色光における表面電位の半減露光量
(以下光感度E50と定義する)0.55〜1.20lux-secであ
り、良好な特性を示した。
The electrophotographic photosensitive member obtained as described above has a charge potential of +600 to +950 V and a half-exposure amount of surface potential in white light (hereinafter, referred to as photosensitivity E 50 ) of 0.55 to 1.20 lux-sec, which is excellent. It showed various characteristics.

実施例2 プラズマ生成室5に水素希釈した400ppm濃度のPH3:20
sccmを第1ガス導入口10より導入し、SiH2:40sccmを第
2ガス導入口11より膜形成室2に導入し、膜形成室2内
の圧力が1×10-2〜10-4Torrになるように排気バルブを
調節し、100〜600W,2.45GHzのマイクロ波電力をプラズ
マ生成室5に印加し、磁気コイル7に電流を流し、50〜
250℃に加熱したAl基板1上に、n型a−Si:F:H膜を0.5
〜2.0μm形成し、次に、H2:20sccmを第1ガス導入口10
から、SiH2F2:40sccmを第2ガス導入口11より導入し、
圧力1×10-2〜1×10-4Torr、マイクロ波電力100〜600
Wでノンドープa−Si:F:H膜を15〜20μm形成した。続
いて、N2:20sccmを第1ガス導入口10から、SiH2F2:15sc
cmを第2ガス導入口11から導入し、圧力1×10-2〜1×
10-4Torr、マイクロ波電力300〜500Wで表面保護層の窒
化シリコン膜を600〜1500Å堆積し、電子写真感光体を
形成した。
Example 2 PH 3 : 20 having a concentration of 400 ppm diluted with hydrogen in the plasma generation chamber 5
sccm was introduced through the first gas inlet 10, SiH 2 : 40 sccm was introduced through the second gas inlet 11 into the film forming chamber 2, and the pressure inside the film forming chamber 2 was 1 × 10 −2 to 10 −4 Torr. Adjust the exhaust valve so that 100 ~ 600W, 2.45GHz microwave power is applied to the plasma generation chamber 5, current is passed through the magnetic coil 7, 50 ~
On the Al substrate 1 heated to 250 ° C., an n-type a-Si: F: H film of 0.5 is formed.
To 2.0 μm, and then H 2 : 20 sccm is added to the first gas inlet 10
From which SiH 2 F 2 : 40 sccm was introduced through the second gas inlet 11.
Pressure 1 × 10 -2 〜 1 × 10 -4 Torr, microwave power 100〜600
A non-doped a-Si: F: H film was formed with W to a thickness of 15 to 20 μm. Then, N 2 : 20 sccm is fed from the first gas inlet 10 to SiH 2 F 2 : 15 sc
cm is introduced from the second gas inlet 11 and the pressure is 1 × 10 -2 to 1 ×
An electrophotographic photosensitive member was formed by depositing a silicon nitride film as a surface protective layer at 600 to 1500Å at 10 -4 Torr and microwave power of 300 to 500 W.

上記の様にして得られた電子写真感光体は、帯電々位
−650〜−940Vで、白色光における光感度E50は0.64〜1,
20lux-secであり、良好な特性を示した。
The electrophotographic photosensitive member obtained as described above has a charging potential of −650 to −940 V and a photosensitivity E 50 in white light of 0.64 to 1,
It was 20 lux-sec and showed good characteristics.

実施例3 ITO透明電極を蒸着したガラス板上に、1−フェニル
−3−(P−ジエチルアミノスチリル)−5−(P−ジ
エチルアミノフェニル)ピラゾリン:1g,ポリカーボネー
ト:1g,塩化メチレン:1gから成る塗布液を塗布乾燥し、
真空中80℃でアニールして、10〜20μmの有機半導体層
を形成した。このITO電極上に有機半導体層を形成した
ガラス板1を膜形成室2内に配置し、真空排気した後、
プラズマ生成室5にH2:20secmを第1ガス導入口10より
導入し、更に、SiF4:20sccm,SiH4:5sccmを第2ガス導入
口11より膜形成室2に導入し、圧力1×10-2〜1×10-4
Torr、マイクロ波電力100〜600Wでノンドーブ非晶質シ
リコン膜0.5〜2μmを有機半導体層上に形成した。続
いて、プラズマ生成室5にAr:20sccmを第1ガス導入口1
0より導入し、SiF4:10sccm,CH4:10sccmを第2ガス導入
口11より膜形成室2に導入し、圧力1×10-2〜1×10-4
Torr、マイクロ波電力300〜500Wで、表面保護層として5
00〜2000Åのシリコンカーバイド膜を堆積し、機能分離
型電子写真感光体を形成した。但し、非晶質シリコン膜
およびシリコンカーバイド膜形成時の基板温度は、給排
水口9から冷却水を循環させることにより、常に室温に
保った。このため、非晶質シリコン膜およびシリコンカ
ーバイド膜を有機半導体膜上に形成しても、有機半導体
層表面の変形および変質は生じなかった。
Example 3 Coating of 1-phenyl-3- (P-diethylaminostyryl) -5- (P-diethylaminophenyl) pyrazoline: 1 g, polycarbonate: 1 g, methylene chloride: 1 g on a glass plate on which an ITO transparent electrode was deposited. Apply the liquid and dry,
Annealing was performed in vacuum at 80 ° C. to form an organic semiconductor layer having a thickness of 10 to 20 μm. The glass plate 1 having the organic semiconductor layer formed on the ITO electrode is placed in the film forming chamber 2 and evacuated,
H 2 : 20secm was introduced into the plasma generation chamber 5 through the first gas inlet 10, and SiF 4 : 20sccm and SiH 4 : 5sccm were introduced into the film forming chamber 2 through the second gas inlet 11, and the pressure was 1 ×. 10 -2 ~ 1 x 10 -4
A non-doped amorphous silicon film of 0.5 to 2 μm was formed on the organic semiconductor layer with Torr and microwave power of 100 to 600 W. Then, Ar: 20 sccm was placed in the plasma generation chamber 5 at the first gas inlet 1
0F, SiF 4 : 10sccm, CH 4 : 10sccm are introduced into the film forming chamber 2 through the second gas inlet 11, and the pressure is 1 × 10 -2 to 1 × 10 -4.
Torr, microwave power 300-500W, 5 as surface protection layer
A silicon carbide film of 00 to 2000 Å was deposited to form a function-separated electrophotographic photoreceptor. However, the substrate temperature during the formation of the amorphous silicon film and the silicon carbide film was always kept at room temperature by circulating cooling water from the water supply / drain port 9. Therefore, even if the amorphous silicon film and the silicon carbide film were formed on the organic semiconductor film, the surface of the organic semiconductor layer was not deformed or deteriorated.

上記の様にして得られた電子写真感光体は、帯電々位
は+500〜+900Vで、白色光における光感度E50は1.2〜
3.6lux・secであった。
The electrophotographic photosensitive member obtained as described above has a charged position of +500 to +900 V and a photosensitivity E 50 in white light of 1.2 to
It was 3.6 lux · sec.

実施例1〜3で作成したa−Si:F:H膜の成膜速度は8
〜16μm/hであり、グロー放電分解法で得られる成膜速
度の2〜4倍有り、高い成膜速度を得た。更にシリコン
の粉体はほとんど生じることがなかった。また、C,O,N
原子を故意にドープしていないa−Si:F:H膜の膜中に含
まれているC,O,N原子の密度を、二次イオン質量分析法
(SINS)を使って測定したところ、〜1017(個/cm3
とグロー放電分解法で得られるa−Si:F:H膜に比べて1
桁以上小さい値が得られ、本発明により作成したa−S
i:F:H膜は、不純物の汚染が少ないことが明らかになっ
た。また、実施例1〜3では、平板の電子写真感光体を
製作したが、基板が円筒状の場合でも、円筒の軸を中心
に回転しながら膜形成を行えば、容易に電子写真感光ド
ラムを製作できる。
The film formation rate of the a-Si: F: H film formed in Examples 1 to 8 is 8.
˜16 μm / h, which is 2 to 4 times the film formation rate obtained by the glow discharge decomposition method, and a high film formation rate was obtained. Furthermore, almost no silicon powder was generated. Also, C, O, N
When the densities of C, O, and N atoms contained in the film of the a-Si: F: H film in which the atoms were not intentionally doped were measured by secondary ion mass spectrometry (SINS), ~ 10 17 (pieces / cm 3 )
And a-Si: F: H film obtained by glow discharge decomposition method
A value smaller than an order of magnitude is obtained, and aS produced by the present invention is used.
It was revealed that the i: F: H film was less contaminated with impurities. Further, in Examples 1 to 3, a flat-plate electrophotographic photosensitive member was manufactured. However, even when the substrate has a cylindrical shape, if the film is formed while rotating about the axis of the cylinder, the electrophotographic photosensitive drum can be easily formed. Can be manufactured.

発明の効果 本発明は、真空容器内をプラズマ生成室および膜形成
室に分離し、プラズマ生成室で生成したプラズマを膜形
成室内に配置した基体上に取出し、基体表面上に効率良
く、イオンおよびラジカルを輸送し、基体上にa−Si:
X:H(X=F,Cl,Br)膜を形成する方法であり、粉体を発
生させることなく高速で膜を堆積することができ、しか
も不純物の膜への汚染が少なく、室温の基板上にも高光
導電率の膜形成が可能であるため、非晶質シリコン膜を
使用するデバイスの量産性を高め、製造コストを低減で
きる。
EFFECTS OF THE INVENTION The present invention separates the interior of a vacuum chamber into a plasma generation chamber and a film formation chamber, takes out the plasma generated in the plasma generation chamber onto a substrate arranged in the film formation chamber, and efficiently removes ions and ions on the substrate surface. Radicals are transported and a-Si:
This is a method of forming an X: H (X = F, Cl, Br) film, which allows the film to be deposited at a high speed without generating powder, and has little contamination of the film with impurities, and a substrate at room temperature. Since it is possible to form a film having a high photoconductivity on the top, mass productivity of a device using an amorphous silicon film can be improved and manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例におけるa−Si:X:H(X=
F,Cl,Br)膜の形成方法を示す断面模式図、第2図は、
従来のa−Si:X:H(X=F,Cl,Br)膜の形成方法を示す
断面模式図である。 1……基板、2……膜形成室、3……マイクロ波電源、
4……マイクロ波導波管、5……プラズマ生成室、6…
…窓、7……磁気コイル、8……ヒーター、9……給排
水口、10……第1ガス導入口、11……第2ガス導入口。
FIG. 1 shows a-Si: X: H (X =
F, Cl, Br) cross-sectional schematic diagram showing the method of forming the film,
It is a cross-sectional schematic diagram which shows the formation method of the conventional a-Si: X: H (X = F, Cl, Br) film. 1 ... Substrate, 2 ... Film forming chamber, 3 ... Microwave power source,
4 ... Microwave waveguide, 5 ... Plasma generation chamber, 6 ...
... window, 7 ... magnetic coil, 8 ... heater, 9 ... water supply / drainage port, 10 ... first gas inlet, 11 ... second gas inlet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉本 晋匡 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 滝本 昭雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭59−131511(JP,A) 特開 昭55−102237(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shin Tadashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Akio Takimoto 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-59-131511 (JP, A) JP-A-55-102237 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空容器内をプラズマ生成室及び膜形成室
に分割し、前記プラズマ生成室に所定のプラズマ生成用
ガスを導入し、マイクロ波電力を前記プラズマ生成用ガ
スに印加し、前記プラズマ生成室の周囲に設けた磁気コ
イルによって前記プラズマ生成室内に電子サイクロトロ
ン共鳴を生じせしめる磁場を形成し、前記プラズマ生成
室にプラズマを発生させ、そのプラズマを前記磁気コイ
ルが形成する磁場を使って基体を配置した前記膜形成室
に導き、前記膜形成室にフッ素原子を含有するシリコン
化合物ガスを導入し、前記プラズマと前記フッ素原子を
含有するシリコン化合物ガスを接触させて、前記基体上
に少なくともフッ素原子を含有する非晶質シリコン膜を
形成することを特徴とする非晶質シリコン膜の形成方
法。
1. A vacuum chamber is divided into a plasma generating chamber and a film forming chamber, a predetermined plasma generating gas is introduced into the plasma generating chamber, microwave power is applied to the plasma generating gas, and the plasma is generated. A magnetic coil provided around the generation chamber forms a magnetic field that causes electron cyclotron resonance in the plasma generation chamber, plasma is generated in the plasma generation chamber, and the plasma is generated using the magnetic field formed by the magnetic coil to form a substrate. Is introduced into the film forming chamber, the silicon compound gas containing a fluorine atom is introduced into the film forming chamber, the plasma and the silicon compound gas containing a fluorine atom are brought into contact with each other, and at least fluorine on the substrate is introduced. A method for forming an amorphous silicon film, which comprises forming an amorphous silicon film containing atoms.
【請求項2】フッ素原子を含有するシリコン化合物ガス
及びプラズマ生成用ガスのうち少なくとも1つに、炭素
原子含有の分子を有するガスを混合する事を特徴とする
特許請求の範囲第1項記載の非晶質シリン膜の形成方
法。
2. A gas having a molecule containing a carbon atom is mixed with at least one of a silicon compound gas containing a fluorine atom and a gas for plasma generation. Method for forming amorphous sillin film.
【請求項3】フッ素原子を含有するシリコン化合物ガス
およびプラズマ生成用ガスのうち少なくとも1つに、周
期律表中の第IIIb族または第Vb族または第VIb族の元素
を含む分子を含有するガスを混合することを特徴とする
特許請求の範囲第1項記載の非晶質シリン膜の形成方
法。
3. A gas containing a molecule containing an element of Group IIIb, Vb or VIb in the periodic table, in at least one of a silicon compound gas containing a fluorine atom and a plasma generating gas. The method for forming an amorphous sillin film according to claim 1, characterized in that:
JP60124442A 1985-06-07 1985-06-07 Method for forming amorphous silicon film Expired - Lifetime JPH081895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60124442A JPH081895B2 (en) 1985-06-07 1985-06-07 Method for forming amorphous silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60124442A JPH081895B2 (en) 1985-06-07 1985-06-07 Method for forming amorphous silicon film

Publications (2)

Publication Number Publication Date
JPS61281519A JPS61281519A (en) 1986-12-11
JPH081895B2 true JPH081895B2 (en) 1996-01-10

Family

ID=14885603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60124442A Expired - Lifetime JPH081895B2 (en) 1985-06-07 1985-06-07 Method for forming amorphous silicon film

Country Status (1)

Country Link
JP (1) JPH081895B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658887B2 (en) * 1986-06-16 1994-08-03 株式会社日立製作所 Method for forming silicon-based amorphous film
JPH0666272B2 (en) * 1986-12-17 1994-08-24 株式会社日立製作所 Method for forming silicon-based amorphous film
JPS63152116A (en) * 1986-12-17 1988-06-24 Hitachi Ltd Formation of silicon amorphous alloy film
JPS63169385A (en) * 1987-01-05 1988-07-13 Semiconductor Energy Lab Co Ltd Formation of copying photosensitive body
JPS6456874A (en) * 1987-03-27 1989-03-03 Canon Kk Microwave plasma cvd device
JP2595002B2 (en) * 1988-01-13 1997-03-26 株式会社日立製作所 Microwave plasma processing method and apparatus
JPH01295412A (en) * 1988-05-24 1989-11-29 Sumitomo Metal Ind Ltd Plasma vapor growth apparatus
JPH0788583B2 (en) * 1990-03-08 1995-09-27 三菱電機株式会社 Plasma reactor
US6743700B2 (en) 2001-06-01 2004-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device and method of their production
US6676760B2 (en) 2001-08-16 2004-01-13 Appiled Materials, Inc. Process chamber having multiple gas distributors and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102237A (en) * 1979-01-31 1980-08-05 Hitachi Ltd Method and apparatus for plasma processing
JPS59131511A (en) * 1983-01-17 1984-07-28 Zenko Hirose Formation of film of amorphous silicon

Also Published As

Publication number Publication date
JPS61281519A (en) 1986-12-11

Similar Documents

Publication Publication Date Title
CA1159702A (en) Method for making photoconductive surface layer on a printing drum for electrostatic photocopying
US4405656A (en) Process for producing photoconductive member
US4927786A (en) Process for the formation of a silicon-containing semiconductor thin film by chemically reacting active hydrogen atoms with liquefied film-forming raw material gas on the surface of a substrate
AU594107B2 (en) Method for preparation of multi-layer structure film
US5178905A (en) Process for the formation of a functional deposited film by hydrogen radical-assisted cvd method utilizing hydrogen gas plasma in sheet-like state
JPS6410069B2 (en)
JPH081895B2 (en) Method for forming amorphous silicon film
JPS6348054B2 (en)
JPS6348057B2 (en)
US5100749A (en) Photosensitive member for electrophotography
EP0336700B1 (en) An electrophotographic photosensitive member
JPS63258016A (en) Manufacture of amorphous thin film
JPH0647738B2 (en) Method for forming deposited film by plasma CVD method
JPS6410066B2 (en)
JP2925310B2 (en) Deposition film formation method
JP2867150B2 (en) Microwave plasma CVD equipment
JPS6331553B2 (en)
JPS6325069B2 (en)
JP2753084B2 (en) Deposition film formation method
JP2598003B2 (en) Method for forming functional deposited film by microwave plasma CVD method
JPS6410067B2 (en)
JPH0212260A (en) Electrophotographic sensitive body and production of same
JPH0454941B2 (en)
JPH0473147B2 (en)
JPH0474699B2 (en)