JPH01275493A - 酸化物超電導体単結晶の育成方法 - Google Patents

酸化物超電導体単結晶の育成方法

Info

Publication number
JPH01275493A
JPH01275493A JP63100280A JP10028088A JPH01275493A JP H01275493 A JPH01275493 A JP H01275493A JP 63100280 A JP63100280 A JP 63100280A JP 10028088 A JP10028088 A JP 10028088A JP H01275493 A JPH01275493 A JP H01275493A
Authority
JP
Japan
Prior art keywords
oxide superconductor
single crystal
powder
oxide
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63100280A
Other languages
English (en)
Inventor
Shiyunji Nomura
俊自 野村
Hisashi Yoshino
芳野 久士
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63100280A priority Critical patent/JPH01275493A/ja
Publication of JPH01275493A publication Critical patent/JPH01275493A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高品質で大型な酸化物超電導体単結晶の育成
方法に関する。
(従来の技術) ゛近年、Ba−La−Cu−0系の層状ペロブスカイト
型の酸化物が高い臨界温度を存する可能性のあることが
発表されて以来、各所で酸化物超電導体の研究が行われ
ている( Z、Pbys、B Condenscd H
alter 64.189−193(198[i)) 
、その中でもY−Ba−Cu−0系で代表される酸素欠
陥を有する欠陥ペロブスカイト型の酸化物超電導体は、
臨界温度が90 K以上と液体窒素以上の高い温度を有
することが確認されている( Phys、Rev、Le
tt、Vol 。
58、No、9,908−910)。
さらに、1988年には、臨界温度が105にのB1−
5r−Ca−Cu−0系の超電導酸化物が発見されるに
至った(日本経済新聞昭和63年1月22日等)。
このB1−5r−Ca−Cu−0系の超電導酸化物は、
Ba−La−Cu−0系やY−Ba−Cu−0系の超電
導酸化物に比べて、臨界温度が高いばかりでなく、高価
な希土類元素が不要であること、水分等に対する化学的
安定性が高いことなどの利点があり、より優れた酸化物
超電導材料である。
このような酸化物超電導体は、結晶性の酸化物であるた
め、これらを各種超電導装置として利用する場合には、
その焼結体を使用することが試みられている、しかし、
この酸化物超電導体は、その結晶の0面に沿って超電導
電流が流れるという性質を有しているため、電流密度を
高めるためには結晶を一定方向に配列させることが必要
とされている。
ところで、酸化物超電導体の焼結体を得る際に、酸化物
超電導体粉末を単に焼結させただけでは多結晶体となり
、結晶の配列方向がランダムであるため、上述したよう
に臨界電流密度が不十分なものになってしまう。そこで
、結晶方位が一定な単結晶のある程度の大きさを有する
バルクを得ることが可能となれば、臨界電流密度などの
超電導特性が向上された各種電子デバイスなどの超電導
装置を形成することが可能になる。また、酸化物超電導
体の物性の解明においても酸化物超電導体単結晶は必要
とされている。
そこで、溶融法等により酸化物超電導体単結晶を作製す
ることが試みられているが、高品質でしかもある程度の
大きさを有する単結晶は得られて上述したように、現状
では高品質でしかもある程度の大きさを有する酸化物超
電導体単結晶の製造方法が見出されていない。
本発明は、このような事情に対処すべくなされたもので
、高品質でしかもある程度の大きさを有する酸化物超電
導体単結晶の製造方法を提供することを目的とする。
本発明の酸化物超電導体単結晶の製造方法は、酸化物超
電導体粉末または加熱により酸化物超電導体となる原料
粉末にBi2O3とCuOからなる厳刑を加えた混合物
を用いフラックス法により育成することを特徴としてい
る。
本発明に使用される酸化物超電導体粉末は、例えば以下
のようにして製造される。
まず、B is S r SCa s Cu等の構成元
素を十分混合する。混合の際には、Bi  O、SrC
Os Ca CO% Cu O等の酸化物や炭酸塩を原
料として用いることができるほか、他の焼成後酸化物に
転化する硝酸塩、水酸化物等の化合物を用いてもよい。
さらには共沈法等で得たシュウ酸塩等を用いてもよい。
B1−5r−Ca−Cu−0系酸化物超電導体を構成す
る元素は、基本的に化学量論比の組成となるように混合
するが、多少製造条件等との関係でずれていても差支え
ない。
例えば、B i 2  molに対しくS r +Ca
) 3mol 。
Cu2molが標準組成であるが、実用上はBi2O3
3に対して、Sr+CaB±0.6 mol 、 Cu
2±0.4 mol程度のずれは問題ない。
そして前述の原料を充分に混合した後、800℃程度の
温度条件で仮焼して反応させる。
この後、この仮焼物をボールミル、サンドグラインダ、
その他公知の手段により粉砕することにより酸化物超電
導体粉末が得られる。
本発明の酸化物超電導体単結晶の製造方法についてさら
に詳述すると、まず上述したような方法により作製した
酸化物超電導体粉末、あるいは前述した酸化物超電導体
の原料粉末にBi2O3とCuOとからなるフラックス
とを混合した後高温に保持し、均一に溶融して、その後
徐冷して単結晶を育成する。
また本発明に使用するフラックスとしては、酸化物超電
導単結晶の構成成分を用いているため、結晶中に不純物
としてとり込まれることが少なく、超電導特性をそこな
うことなく品質の高い単結晶を育成することができる。
フラックスとして一方の構成元素であるアルカリ土類を
含むと、混合物の融点が高くなり、超電導相が分解する
ため、安定して酸化物超電導単結晶を得ることができな
くなるためである。またフラックスにC,u O単体を
用いても酸化物超電導単結晶を得ることができるが、C
uOに対する融解度が小さく育成できる単結晶はせいぜ
い2m11口程度である。
本発明に使用するフラックスとしては、Cu OとBi
2O3を同時に含むことが必要であるが、Bi  Oは
一般に蒸気圧がやや高くBi2O3を高濃度に含む場合
育成中の組成変動が起りやすい。一方Bi2O3濃度が
低い場合には得られる結晶のサイズが小さくなる傾向に
ある。従って、フラックス中の1/2Bi203とCu
Oとの比は1:3〜3:1程度が好ましい。
また、酸化物超電導体と融剤との混合比は、使用する融
剤に対する酸化物超電導体の溶解度によ次いで、この酸
化物超電導体と融剤との混合物を、この混合物の液相生
成温度、あるいは液相生成温度以上の温度で溶融液内が
均一となるように一定時間保持した後、結晶析出温度範
囲内を所定の速度で徐冷する。
この徐冷を行う温度範囲は、融剤と原料との混合比によ
って異なるが、はぼ融解温度より600℃以内程度の範
囲内である。また、この徐冷速度は、当然ながら余り大
きければ充分に単結晶を育成することが不可能となり、
また小さいほど核発生が少なく大きい単結晶を得ること
ができるが、あまり小さくして温度調節精度が低下する
と逆に単結晶の品質に悪影響を及ぼすので、20℃/時
間〜0.1℃/時間の範囲が好ましい。
また、この徐冷の際に、温度勾配をもうけて徐冷したり
、種結晶を使用することも可能である。
(作 用) 本発明の酸化物超電導単結晶の育成方法において、Bi
2O3とCuOを同時に含むフラックスを用いるため、
大型で高品質単結晶を得ることが可能となる。
(実施例) 次に、本発明の実施例について説明する。
実施例1 比較例 Bi  O,5rCO5CaCO、CuO粉末を用いて
1 / 2 B i 20333.3モル96、Sr0
18.7モル%、Ca 018.7モル%、Cu O3
3,3モル%となるように総H100g秤量し十分混合
した後、アルミナルツボに充てんして電気炉で大気中1
000℃で24時間かけて充分均一に融解した後、75
0℃まで250時間かけて徐冷し、その後炉冷して20
 mm X 20 m++* X 5 mmの大きさの
酸化物超電導単結晶を得た。
比較として実施例と同一の条件で組成比を、1 / 2
 B i20320.0モル%、S r O15,0モ
ル%、Ca O15,0モル%、Cu 050.0モル
%となるように秤量し単結晶を育成し、3 mm X 
1 mm X  0.2mmの単結晶を得た。
このようにして得た酸化物超電導体単結晶について、X
線回折を行い単結晶体であることを確認した。第1図は
この結晶の電気抵抗の温度特性を示す。
図から明らかなように、この酸化物超電導体単結晶の臨
界温度、電気抵抗の急激な降下開始温度と電気抵抗が零
となる値との差・ΔTcおよび臨界電流密度をJjJ定
したところ、臨界温度84に1ΔT c I Kとそれ
ぞれ優れた値が得られた。
一方比較例として育成した結晶のTcは、72IくΔT
c〜10 Kであった。
[発明の効果] 以上の実施例から明らかなように本発明の酸化物超電導
単結晶の育成方法によれば、B12o3とCuOとを同
時に含むフラックスを用゛いたフラックス法により育成
するため、大型で品質の高い酸化物超電導体単結晶を得
ることが可能となる。
【図面の簡単な説明】
第1図は、本発明の実施例における酸化物超電導体単結
晶の電気抵抗率の温度特性を示す図。

Claims (1)

    【特許請求の範囲】
  1.  Bi系酸化物超電導体粉末又は加熱によりBi系酸化
    物超電導体となる原料粉末にBi_2O_3とCuOと
    からなる融剤を加えた混合物を用いフラックス法により
    育成することを特徴とする酸化物超電導体単結晶の育成
    方法。
JP63100280A 1988-04-25 1988-04-25 酸化物超電導体単結晶の育成方法 Pending JPH01275493A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63100280A JPH01275493A (ja) 1988-04-25 1988-04-25 酸化物超電導体単結晶の育成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63100280A JPH01275493A (ja) 1988-04-25 1988-04-25 酸化物超電導体単結晶の育成方法

Publications (1)

Publication Number Publication Date
JPH01275493A true JPH01275493A (ja) 1989-11-06

Family

ID=14269787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63100280A Pending JPH01275493A (ja) 1988-04-25 1988-04-25 酸化物超電導体単結晶の育成方法

Country Status (1)

Country Link
JP (1) JPH01275493A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104276A1 (ja) * 2003-05-21 2004-12-02 Japan Science And Technology Agency ビスマスを構成元素に含む多元系酸化物単結晶の製造方法
CN100334262C (zh) * 2003-05-21 2007-08-29 独立行政法人科学技术振兴机构 含有铋作为构成元素的多元素氧化物单晶的制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104276A1 (ja) * 2003-05-21 2004-12-02 Japan Science And Technology Agency ビスマスを構成元素に含む多元系酸化物単結晶の製造方法
JP2005001987A (ja) * 2003-05-21 2005-01-06 Japan Science & Technology Agency ビスマスを構成元素に含む多元系酸化物単結晶の製造方法
EP1627940A1 (en) * 2003-05-21 2006-02-22 Japan Science and Technology Agency Method for producing single crystal of multi- element oxide single crystal containing bismuth as constituting element
KR100713866B1 (ko) * 2003-05-21 2007-05-04 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 비스무트를 구성원소로 포함하는 다원계 산화물 단결정의제조방법
CN100334262C (zh) * 2003-05-21 2007-08-29 独立行政法人科学技术振兴机构 含有铋作为构成元素的多元素氧化物单晶的制造方法
US7442252B2 (en) 2003-05-21 2008-10-28 Japan Science And Technology Agency Method for producing single crystal of multi-element oxide single crystal containing bismuth as constituting element
JP4612340B2 (ja) * 2003-05-21 2011-01-12 独立行政法人科学技術振興機構 ビスマスを構成元素に含む多元系酸化物単結晶の製造方法
EP1627940A4 (en) * 2003-05-21 2011-09-07 Japan Science & Tech Agency PROCESS FOR PRODUCING MULTI-ELEMENT OXIDE MONOCRYSTAL CONTAINING BISMUTH AS COMPONENT

Similar Documents

Publication Publication Date Title
US4721547A (en) Process for producing single crystal of garnet ferrite
US4921834A (en) Flux method of growing oxide superconductors
US5240903A (en) Oxide superconductor comprising babo3 dispersions (where b is zr, sn, ce or ti)
Fratello et al. Nickel containing perovskites
US5374611A (en) Preparation and composition of superconducting copper oxides based on Ga-O layers
JPH01275493A (ja) 酸化物超電導体単結晶の育成方法
US5356868A (en) Highly oriented superconductor oxide ceramic platelets and process for the production thereof
JPH02275776A (ja) 超電導体の製造方法
JPH0255298A (ja) 酸化物超電導体単結晶の育成方法
JPH01157499A (ja) 酸化物超電導体単結晶の製造方法
Bernik et al. The thermal stability of Bi superconductors in the Bi (Pb)-Sr-Ca-Cu-O system
JP3330962B2 (ja) 酸化物超電導体の製造方法
JPH0818910B2 (ja) 酸化物超電導単結晶の製造方法
JPH01282187A (ja) 酸化物超電導体単結晶の製造方法
JPH02120234A (ja) 酸化物超電導体の製造方法
JP3157183B2 (ja) 酸化物超電導体の製造法
JP3157184B2 (ja) 酸化物超電導体の高密度体の製造法
JPH02243519A (ja) 酸化物超伝導体及びその製造方法
JP2838312B2 (ja) 酸化物超伝導物質
JPH0753218A (ja) Bi系超伝導物質の製造方法
Sastry et al. On the synthesis and structure of single-phase (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O 10
JPH02229787A (ja) 酸化物超伝導体の作製方法
JPS63315572A (ja) 超伝導体の製造方法
JPH01203257A (ja) 超電導体の製造方法
JPH01278449A (ja) 酸化物超電導体の製造方法