JPH0126548B2 - - Google Patents

Info

Publication number
JPH0126548B2
JPH0126548B2 JP56202231A JP20223181A JPH0126548B2 JP H0126548 B2 JPH0126548 B2 JP H0126548B2 JP 56202231 A JP56202231 A JP 56202231A JP 20223181 A JP20223181 A JP 20223181A JP H0126548 B2 JPH0126548 B2 JP H0126548B2
Authority
JP
Japan
Prior art keywords
oxide film
region
base oxide
film
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56202231A
Other languages
Japanese (ja)
Other versions
JPS58102557A (en
Inventor
Michihiro Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20223181A priority Critical patent/JPS58102557A/en
Publication of JPS58102557A publication Critical patent/JPS58102557A/en
Publication of JPH0126548B2 publication Critical patent/JPH0126548B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts

Description

【発明の詳細な説明】 本発明は半導体装置とくに絶縁分離形バイポー
ラ集積回路に関するもので、特に絶縁分離形バイ
ポーラ集積回路の基板の電極を集積回路表面より
取り出すことを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to an insulation-separated bipolar integrated circuit, and more particularly, an object of the present invention is to take out electrodes of a substrate of an insulation-separated bipolar integrated circuit from the surface of the integrated circuit.

バイポーラ集積回路の高速化、低消費電力化、
高密度化を目的とした微細化構造のデパイスが既
に数多く提案され、その中で従来のP形分離領域
を酸化膜に置き替える絶縁分離形のバイポーラ集
積回路が、容量の低下、微細化といつた点で有利
で今後の有望な構造である。
Higher speed, lower power consumption of bipolar integrated circuits,
A number of devices with miniaturized structures for the purpose of higher density have already been proposed, and among them, bipolar integrated circuits with insulation isolation, in which the conventional P-type isolation region is replaced with an oxide film, have been proposed due to the decrease in capacitance and miniaturization. This structure is advantageous in that it has a promising future.

第1図に従来の絶縁分離形バイポーラICの構
造断面図を示す。図中、1はP形半導体基板、2
はn+埋込み層、3はチヤンネルストツパーとし
てのp+埋込層、4はコレクタ領域であるn形エ
ピタキシヤル層、5はP形のベース領域、6はコ
レクタコンタクトをとるためのn+領域、7はn+
のエミツタ領域、8はトランジスタ間を分離する
分離酸化膜、9はコレクタとベースを分離するた
めの酸化膜、10はベース電極とエミツタ電極を
分離するための酸化膜である。
Figure 1 shows a cross-sectional view of the structure of a conventional isolated bipolar IC. In the figure, 1 is a P-type semiconductor substrate, 2
is an n + buried layer, 3 is a p + buried layer as a channel stopper, 4 is an n-type epitaxial layer which is a collector region, 5 is a P-type base region, and 6 is an n + region for making a collector contact. , 7 is n +
8 is an isolation oxide film for separating the transistors, 9 is an oxide film for separating the collector and the base, and 10 is an oxide film for separating the base electrode and the emitter electrode.

この第1図の構造で分るように絶縁分離法は、
多くの接合側面が絶縁膜のため接合容量が小さく
なり、高速化に有利である。分離絶縁膜とベース
あるいはエミツタとの間との寸法マージンが不必
要のためトランジスタセルの微細化に適している
等の利点がある。しかしながら、従来のpn操合
分離構造では、p形分離領域が無いために基板の
電位は裏面からしか与えることができないという
重大な欠点を有する。基板の電位が表面から与え
ることができないことはラツチアツプが発生しや
すいという悪影響をおよぼす。すなわち、通常バ
イポーラICのラツチアツプの一つの大きな原因
は、基板電位がIC全体にわたつて均一で、最も
低い電位に固定できなくなるところにある。した
がつてそれを防止するために、ラツチアツプが発
生しやすそうな箇所の基板電位は、できるかぎり
表面より配線によつて与える方が望ましい。この
ことは特にICが大規模大面積化あるいは微細化
のためにエピタキシヤル層を薄くしたときに顕著
に現われる。
As you can see from the structure in Figure 1, the insulation isolation method is
Since many of the junction sides are insulating films, the junction capacitance is reduced, which is advantageous for speeding up. It has advantages such as being suitable for miniaturization of transistor cells because a dimensional margin between the isolation insulating film and the base or emitter is unnecessary. However, the conventional pn-operated isolation structure has a serious drawback in that, because there is no p-type isolation region, the potential of the substrate can only be applied from the back side. The fact that the potential of the substrate cannot be applied from the surface has the adverse effect of making latch-up more likely. That is, one major cause of latch-up in normal bipolar ICs is that the substrate potential is uniform throughout the IC and cannot be fixed at the lowest potential. Therefore, in order to prevent this, it is preferable to apply the substrate potential at locations where latch-up is likely to occur as much as possible through wiring rather than on the surface. This becomes especially noticeable when the epitaxial layer of an IC is made thinner in order to increase the size or miniaturize the IC.

本発明は、上記欠点を補い、IC表面より基板
のコンタクトをとれるようにした絶縁分離形バイ
ポーラ集積回路を提案するものである。
The present invention corrects the above-mentioned drawbacks and proposes an isolated bipolar integrated circuit in which contact can be made with the substrate from the surface of the IC.

以下図面に従つて本発明の構成を示す。第2図
に本発明の一実施例の断面図を示す。図中1〜1
0まで各要素は第1図のそれらと同一である。1
1はp形拡散領域であり、チヤンネルストツパー
としての高濃度領域ならびに基板へのコンタクト
を取るための高濃度領域を兼ねている。12は選
択酸化法によつて形成された分離絶縁膜である。
13,14,15,16は各々基板、ベース、エ
ミツタ、コレクタの電極である。つまり第2図の
特徴は、このp形拡散領域11と分離絶縁膜12
にあり、特にその形成方法に特徴がある。
The configuration of the present invention will be shown below with reference to the drawings. FIG. 2 shows a sectional view of an embodiment of the present invention. 1 to 1 in the diagram
The elements up to 0 are the same as those in FIG. 1
Reference numeral 1 denotes a p-type diffusion region, which serves both as a high concentration region as a channel stopper and as a high concentration region for making contact with the substrate. 12 is an isolation insulating film formed by a selective oxidation method.
13, 14, 15, and 16 are substrate, base, emitter, and collector electrodes, respectively. In other words, the feature of FIG. 2 is that the p-type diffusion region 11 and the isolation insulating film 12
It is particularly characterized by its formation method.

次に第3図に従つて本発明の製造方法の一実施
例を説明する。まず工程Aに示すようにp形埋込
領域21、n形埋込領域22をp形半導体基板1
内に選択的に形成した後、n形エピタキシヤル層
23を成長させ、その後第1の下地酸化膜24を
エピタキシヤル層23上に形成した後、第1の窒
化膜25を形成する。その後第1の窒化膜25お
よび第1の下地酸化膜24をマスクとして選択的
にエピタキシヤル層23を途中までエツチングす
る。ここまでは従来の絶縁分離工程と同一であ
る。
Next, an embodiment of the manufacturing method of the present invention will be described with reference to FIG. First, as shown in step A, a p-type buried region 21 and an n-type buried region 22 are formed on a p-type semiconductor substrate 1.
After selectively forming the n-type epitaxial layer 23 on the epitaxial layer 23, the first base oxide film 24 is formed on the epitaxial layer 23, and then the first nitride film 25 is formed. Thereafter, the epitaxial layer 23 is selectively etched halfway using the first nitride film 25 and the first base oxide film 24 as a mask. The steps up to this point are the same as the conventional insulation separation process.

次に工程Bに示すように、第2の下地酸化膜2
6を形成し、さらに第2の窒化膜27を形成す
る。
Next, as shown in step B, the second base oxide film 2
6 is formed, and further a second nitride film 27 is formed.

次に工程Cに示すように、まず第2の窒化膜2
7をフオトエツチングにより選択的に除去した
後、その第2の窒化膜27をマスクとして第2の
下地酸化膜26をエツチングする。なおこの時、
第2の窒化膜27および第2の下地酸化膜26は
工程Cに図示するように、将来分離領域となるべ
き、エピタキシヤル層23を途中までエツチング
した領域の一部に残すようにする。
Next, as shown in step C, first, the second nitride film 2
After selectively removing 7 by photo-etching, the second base oxide film 26 is etched using the second nitride film 27 as a mask. Furthermore, at this time,
As shown in step C, the second nitride film 27 and the second base oxide film 26 are left in a part of the region where the epitaxial layer 23 is partially etched, which will become an isolation region in the future.

次にこの状態で高圧酸化によつて分離酸化を行
ない、エピタキシヤル層で形成された各島領域4
を分離した後第1および第2の窒化膜25,27
と第1および第2の下地酸化膜24,26を除去
する。工程Dにこの時の状態を示している。なお
図中2はn形埋込み領域、3はチヤンネルストツ
パーを形成しているp形埋込領域、8,12は分
離絶縁膜、11は3と同じp形埋込領域である
が、図のように絶縁膜の酸化形成の際エピタキシ
ヤル層4中にp形埋込領域21からの拡散が進行
して表面までp形反転させたものであり、基板へ
の電極取り出し用のコンタクト領域となる。な
お、この領域は、p形埋込領域21の不純物濃度
ならびに高圧酸化の条件によつて十分p形に反転
するとは限らないので、この後のベース拡散工程
でこの部分も同時に開孔し、p形不純物を添加す
る場合もある。
Next, in this state, isolation oxidation is performed by high pressure oxidation to separate each island region 4 formed of the epitaxial layer.
After separating the first and second nitride films 25, 27
Then, the first and second base oxide films 24 and 26 are removed. Step D shows the state at this time. In the figure, 2 is an n-type buried region, 3 is a p-type buried region forming a channel stopper, 8 and 12 are isolation insulating films, and 11 is the same p-type buried region as 3. As shown, during the oxidation of the insulating film, diffusion from the p-type buried region 21 progresses into the epitaxial layer 4, and the p-type is inverted to the surface, which becomes a contact region for taking out the electrode to the substrate. . Note that this region may not be sufficiently inverted to the p-type depending on the impurity concentration of the p-type buried region 21 and the conditions of high-pressure oxidation, so this region is also opened at the same time in the subsequent base diffusion step, and the p-type becomes p-type. In some cases, form impurities are added.

以上Dまでの工程が本発明の特徴となるところ
である。したがつて工程Eならびにそれ以後は従
来の絶縁分離形バイポーラ集積回路の工程と同一
である。
The steps up to D above are the characteristics of the present invention. Therefore, Step E and the subsequent steps are the same as those for conventional isolated bipolar integrated circuits.

すなわち、工程Dの後、ベース領域5とコレク
タ領域4を分離する分離酸化膜9を形成し、さら
に全面に酸化膜を形成した後、ベース領域のみを
開孔、p形不純物を拡散しベース領域5を形成す
る。この時前述のように基板へのコンタクト領域
も同時に開孔して、p形不純物の拡散を行う。こ
の後再び全面に酸化膜を形成してエミツタ拡散を
行うべき部分のみ開孔してn形不純物を拡散し、
エミツタ7および、コレクタコンタクト領域6を
形成する。しかるのち、電極コンタクトを形成し
て第2図の構造が完成する。
That is, after step D, an isolation oxide film 9 is formed to separate the base region 5 and the collector region 4, and an oxide film is further formed on the entire surface. A hole is opened only in the base region, and p-type impurities are diffused to form the base region. form 5. At this time, as described above, holes are also opened in the contact region to the substrate at the same time to diffuse p-type impurities. After this, an oxide film is again formed on the entire surface, holes are opened only in the areas where emitter diffusion is to be performed, and n-type impurities are diffused.
Emitter 7 and collector contact region 6 are formed. Thereafter, electrode contacts are formed to complete the structure shown in FIG.

以上の特徴を端的に述べると、分離絶縁膜を形
成すべき領域に、エピタキシヤル層をエツチング
した後、第2のSi3N4膜を設け、その後絶縁膜を
酸化により形成することにより、第2のSi3N4
の下には分離用の酸化膜を形成せずに、この部分
をp形基板への電極取り出し口とすることであ
る。
To summarize the above characteristics, after etching the epitaxial layer in the region where the isolation insulating film is to be formed, a second Si 3 N 4 film is provided, and then the insulating film is formed by oxidation. No isolation oxide film is formed under the Si 3 N 4 film of No. 2, and this portion is used as an electrode outlet to the p-type substrate.

以上実施例に基づいて説明したように、本発明
によれば、比較的容易に、しかもあまり大きな占
有面積を必要とせずに、分離領域中に基板へのコ
ンタクト領域を持つた絶縁分離形のバイポーラ等
の集積回路を得ることができる。しかも本発明の
利点はトランジスタの各プロフアイルに影響をお
よぼすような工程が全く無いために、トランジス
タの特性を従来のままに保つことが可能である。
As described above based on the embodiments, according to the present invention, an isolated type bipolar structure having a contact region to the substrate in the isolation region can be manufactured relatively easily and without requiring a large occupied area. It is possible to obtain integrated circuits such as the following. Moreover, the advantage of the present invention is that there is no process that affects each profile of the transistor, so it is possible to maintain the characteristics of the transistor as before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の絶縁分離形バイポーラ集積回路
の構造を示す断面図、第2図は本発明の一実施例
の集積回路を示す断面図、第3図A〜Eは本発明
の一実施例の集積回路の製造方法を示す工程断面
図である。 1……p形半導体基板、4,23……n形エピ
タキシヤル層、5……ベース領域、11……p形
拡散領域、12……分離絶縁膜、13……基板電
極、24……第1の下地酸化膜、25……第1の
窒化膜、26……第2の下地酸化膜、27……第
2の窒化膜。
FIG. 1 is a sectional view showing the structure of a conventional isolation type bipolar integrated circuit, FIG. 2 is a sectional view showing an integrated circuit according to an embodiment of the present invention, and FIGS. 3 A to E are an embodiment of the present invention. FIG. 3 is a process cross-sectional view showing a method of manufacturing an integrated circuit. DESCRIPTION OF SYMBOLS 1...p-type semiconductor substrate, 4, 23...n-type epitaxial layer, 5...base region, 11...p-type diffusion region, 12...isolation insulating film, 13...substrate electrode, 24...th 1 base oxide film, 25... first nitride film, 26... second base oxide film, 27... second nitride film.

Claims (1)

【特許請求の範囲】 1 第1導電形の領域が選択的に形成された前記
第1導電形の半導体基体上に形成した第2導電形
の半導体層上に第1の下地酸化膜、第1の窒化膜
を形成し、前記第1の窒化膜ならびに第1の下地
酸化膜を選択的に開孔し、前記半導体層の一部を
エツチングして凹部を形成し、第2の下地酸化膜
を全面に形成しその表面に第2の窒化膜化を形成
し、前記第2の窒化膜ならびに第2の下地酸化膜
を選択的に除去し、前記半導体層の凹部の一部
に、前記第2の窒化膜および第2の下地酸化膜を
残し前記半導体層の凹部の前記第1、第2の窒化
膜および下地酸化膜に覆われていない部分を選択
的に酸化し、前記第2の窒化膜および第2の下地
酸化膜を除去し、露出した前記領域上に電極を形
成することを特徴とする半導体装置の製造方法。 2 第2の窒化膜と第2の下地酸化膜によつて覆
われ、酸化されなかつた前記半導体層の領域に、
ベース形成時に同時に第1導電形の不純物を添加
することを特徴とする特許請求の範囲第1項に記
載の半導体装置の製造方法。
[Scope of Claims] 1. A first base oxide film, a first base oxide film on a semiconductor layer of a second conductivity type formed on the semiconductor substrate of the first conductivity type in which regions of the first conductivity type are selectively formed. forming a nitride film, selectively opening holes in the first nitride film and a first base oxide film, etching a portion of the semiconductor layer to form a recess, and forming a second base oxide film. A second nitride film is formed on the entire surface, the second nitride film and the second base oxide film are selectively removed, and the second nitride film is formed in a part of the recess of the semiconductor layer. selectively oxidizes a portion of the recessed portion of the semiconductor layer that is not covered with the first and second nitride films and the base oxide film, leaving behind the nitride film and the second base oxide film, and oxidizes the second nitride film. and a method for manufacturing a semiconductor device, comprising removing the second base oxide film and forming an electrode on the exposed region. 2. In the region of the semiconductor layer covered by the second nitride film and the second base oxide film and not oxidized,
2. The method of manufacturing a semiconductor device according to claim 1, wherein impurities of the first conductivity type are added at the same time as forming the base.
JP20223181A 1981-12-14 1981-12-14 Semiconductor device and manufacture thereof Granted JPS58102557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20223181A JPS58102557A (en) 1981-12-14 1981-12-14 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20223181A JPS58102557A (en) 1981-12-14 1981-12-14 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58102557A JPS58102557A (en) 1983-06-18
JPH0126548B2 true JPH0126548B2 (en) 1989-05-24

Family

ID=16454127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20223181A Granted JPS58102557A (en) 1981-12-14 1981-12-14 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58102557A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140644A (en) * 1980-04-02 1981-11-04 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS5810834A (en) * 1981-07-10 1983-01-21 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140644A (en) * 1980-04-02 1981-11-04 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS5810834A (en) * 1981-07-10 1983-01-21 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPS58102557A (en) 1983-06-18

Similar Documents

Publication Publication Date Title
JPH1070281A (en) Semiconductor device and fabrication thereof
US4933737A (en) Polysilon contacts to IC mesas
US4825281A (en) Bipolar transistor with sidewall bare contact structure
JPS58220445A (en) Manufacture of semiconductor integrated circuit
US4631568A (en) Bipolar transistor construction
JP2615646B2 (en) Manufacturing method of bipolar transistor
JPS5852817A (en) Semiconductor device and manufacture thereof
JPH0126548B2 (en)
KR100311103B1 (en) Manufacturing method of semiconductor device
JPS61172346A (en) Semiconductor integrated circuit device
JPS63133662A (en) Manufacture of semiconductor device
JPS6237543B2 (en)
JP2534667B2 (en) Semiconductor device and manufacturing method thereof
JP2780711B2 (en) Method for manufacturing semiconductor device
JPH056965A (en) Semiconductor integrated circuit and manufacture thereof
JP2764988B2 (en) Semiconductor device
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPH02278736A (en) Semiconductor device
JPS61244059A (en) Manufacture of semiconductor device
JPH0793367B2 (en) Semiconductor memory device and manufacturing method thereof
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS6113392B2 (en)
JPS60170258A (en) Manufacture of semiconductor device
JPH10135320A (en) Formation of semiconductor element separating layer
JPH08213473A (en) Semiconductor integrated circuit device and its manufacture