JPS58220445A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS58220445A
JPS58220445A JP10334282A JP10334282A JPS58220445A JP S58220445 A JPS58220445 A JP S58220445A JP 10334282 A JP10334282 A JP 10334282A JP 10334282 A JP10334282 A JP 10334282A JP S58220445 A JPS58220445 A JP S58220445A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
type
silicon film
groove
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10334282A
Other languages
Japanese (ja)
Inventor
Satoshi Shinozaki
篠崎 慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10334282A priority Critical patent/JPS58220445A/en
Publication of JPS58220445A publication Critical patent/JPS58220445A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To obtain an IC which has high reliability by separating a flat ultrafine element being manufactured as designed without using thermal oxidation for a high temperature long period nor mechanical polishing technique and forming an element on an insular region. CONSTITUTION:A hole is opened at an SiO2 film 2 on a p type Si substrate, a reactive ion etching is performed to form grooves 4. An SiO2 film 5 is covered, and a p<+> type layer 6 which has 1/2 or smaller than the width of the groove is superposed on the overall surface. Then, a p<+> type layer 6' is allowed to selectively remain by reactive ion etching on the wall surface of the groove 4, an n<-> type polysilicon 7 is superposed on the overall surface to bury the grooves 4. A p<+> type layer 8 is formed by heat treating it at a low temperature and diffusing from the layer 6 to the layer 7. When the polysilicon 7 is selectively removed with KOH, the surface of the polysilicon unit 9 becomes substantially equal level to the surface of the film 2 on an insular region, thereby completing the isolating region 10. An FET is formed as normally on the insular region. According to the method, the redistribution of the diffused layer before the step of isolating an element can be prevented, characteristics are improved, the isolating layer can be formed by a substantially defined size, and mechanical polishing is not employed. Accordingly the characteristics of the element are not degraded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体集積回路の製造方法に関し、特に素子分
離領域の形成工程を改良した半導体集積回路の製造方法
に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor integrated circuit, and more particularly to a method for manufacturing a semiconductor integrated circuit in which the process for forming element isolation regions is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体集積回路は、集積容量の増大、論理機能の多様化
によシ増々大)規模化する傾向が強くなっそいみ。それ
に伴ない素子の微細化は際限なく要求され、2μm、1
μm1強いてはサブミクロンの領域に突入しようとして
いる。このようなリングラフイー技術の発展による集積
回路の大規模化への可能性は、微細化に適した素子構造
の改良と合せて初めて実現化される。つ、tシ、素子間
分離技術の革新が強く要求されるわけで、従来のpn接
合分離技術よシ誘電体による分離技術の開発が積極的に
行われてきた。例えば、■シリコン基板の一部を選択的
に厚い5I02膜に変えることによシ素子間を分離する
選択酸化分離技術(LOCO8、l5oplan*r 
) 、■シリコン基板の一部をデーラス化し、さらに酸
化することによシ分離する技術(lPO3:Inaul
atlanbyoxldlzsd Porous 5l
lIcon )、07字形に分離すべき所を異方性工、
チングし、表面を酸化したあと多結晶シリコンを埋込み
、その後機械的に研磨し、平坦化する技術(VIP:V
−grooマ・l5olation polyorys
tal b’aakflll 、V−ATE”。
Semiconductor integrated circuits are becoming increasingly large in scale due to increased integration capacity and diversification of logical functions. Along with this, there is an endless demand for miniaturization of elements, such as 2μm, 1μm, etc.
μm1 is about to enter the submicron region. The possibility of increasing the scale of integrated circuits through the development of such link graph technology will only be realized when element structures suitable for miniaturization are improved. First, there is a strong demand for innovation in isolation technology between elements, and active efforts have been made to develop isolation technology using dielectrics rather than conventional pn junction isolation technology. For example, ■ Selective oxidation isolation technology (LOCO8, 15oplan*r) that isolates silicon elements by selectively changing a part of the silicon substrate to a thick 5I02 film
) ,■ Technology to separate a part of the silicon substrate by making it redundant and further oxidizing it (lPO3: Inaul
atlanbyoxldlzsd Porous 5l
lIcon), the part that should be separated into 07 figures is anisotropic,
technology (VIP: V
-groo ma・l5olation polyories
tal b'aakflll, V-ATE”.

V@rticIILI Anlsotrople Et
ahlng)等があシ、それぞれデバイスへの適用が図
られている。
V@rticIILI Anlsotrople Et
ahlng), etc., and each is being applied to devices.

しかし、これらの分離技術は、それぞれ一長一短があシ
、特徴を生がしてデバイスへ適用する必要がある。中で
も■の選択酸化分離技術は、MOS LSI、バイポー
ラLSI共に適用され、高集積化にとって、最も有効な
技術として考えられているが、高温で長時間シリコン基
板を酸化すること、によシ、選択的に厚い酸化膜形成を
させるため、:そのグロセス工程に伴なう種々の問題が
生じている。例えば、MO8デバイスにおいては特性を
決めるチャネル領域の幅(w)がサイド酸化によるノ4
ターン変形で変化し特性にバラツキを生じる。また、シ
リコン基板をエツチング後酸化する選択酸化分離法にお
いては、いわゆるバーズ−ビーク、バーズ・へ、ド等で
のAt配線の段切れが生じる。さらに、厚い酸化膜形成
に高温で長時間熱処理が必要であるため、バイポーラデ
バイスにおいては、埋込み層からの外方拡赦が起シ、接
合耐圧の低下をまねくこと郷、デノ々イス特性に悪い影
響を与える問題が発生し、あらかじめ、これらを考慮し
設計する必要がある。■のI−ラス化による分離法本、
その後の体積変化でウニノ・−に歪みを生じ、ウニノー
−の破壊、接合リーク等の発生があシ、まだ実用化に至
っていない。さらに■のシリコン基板を異方性工、チン
グした後表面を酸化し、つづい、て全面に多結晶シリコ
ンを堆積し、表面から機械的に研磨することにより平坦
化する分離技術は、プロセスの問題点が表面研磨技術に
集約され、特に加工精度に問題があり、歩留シ低下に基
づくコスト高、機械的研磨による素子特性への悪影響等
が考えられ、特殊デバイスな除色実用化されていない。
However, each of these separation techniques has advantages and disadvantages, and it is necessary to take advantage of their characteristics and apply them to devices. Among them, the selective oxidation isolation technology described in (2) is applied to both MOS LSI and bipolar LSI, and is considered the most effective technology for high integration. In order to form a relatively thick oxide film, various problems have arisen in connection with the growth process. For example, in MO8 devices, the width (w) of the channel region, which determines the characteristics, is due to side oxidation.
Changes due to turn deformation, causing variations in characteristics. Further, in the selective oxidation separation method in which a silicon substrate is etched and then oxidized, breaks in the At wiring occur at so-called bird's beaks, bird's holes, holes, and the like. Furthermore, since long-term heat treatment at high temperatures is required to form a thick oxide film, outward expansion from the buried layer occurs in bipolar devices, leading to a reduction in junction breakdown voltage and deterioration of the denoise characteristics. Problems that have a negative impact will occur, and it is necessary to take these into account in advance when designing. ■Separation method book by I-rathization,
The subsequent change in volume causes distortion in the UNINO, resulting in destruction of the UNINO, joint leakage, etc., and it has not yet been put to practical use. Furthermore, the separation technology described in (2) involves anisotropically processing and etching the silicon substrate, oxidizing the surface, depositing polycrystalline silicon on the entire surface, and flattening it by mechanically polishing the surface, which is a process problem. The problems are concentrated in the surface polishing technology, and there are problems with processing accuracy, high costs due to decreased yield, and negative effects on device characteristics due to mechanical polishing, so special devices for color removal have not been put into practical use. .

〔発明の目的〕[Purpose of the invention]

本発明は機械的に研摩技術を使用せず、平坦で微細な素
子分離領域が形成された半導体集積回路を製造し得る方
法を提供しようとするものである〇 〔発明の概要〕 本発明は半導体基体に反応性イオンエツチング(RIE
)によシ略垂直な側面を有する溝部を形成する工程と、
酸化処理等により前記溝部内面に薄い絶縁膜を形成する
工程と、溝部を含む全面に該溝部の幅の1/2以下の膜
厚の第1導電型の第1多結晶シリコン膜を堆積し、RI
Eによシ核多結晶シリコン膜を工、チングして溝部内側
面のみに多結晶シリコン膜を残存させる工程と、半導体
基体全面に第2導電型の第2多結晶シリコン膜を前記溝
部が十分埋まる程度に堆積する工程と熱処理を施し°こ
残存多結晶シリコン膜中の第1導[型不純物を溝部内の
第2多結晶シリコン膜部分に拡散させて第1導電型に変
換し、第2多結晶シリコン膜を溝部内と基体上とで導電
型によシ分離する工程と、第2導!型の第2多結晶シリ
コン膜のみを選択的に除去する工程とによって、溝部と
これに埋設された第1導電型の多結晶シリコンとからな
シ、表面が平坦で微細な素子分離領域を形成することを
骨子とする。
The present invention aims to provide a method for manufacturing a semiconductor integrated circuit in which flat and fine isolation regions are formed without using mechanical polishing techniques. Reactive ion etching (RIE) on the substrate
) forming a groove having substantially vertical sides;
forming a thin insulating film on the inner surface of the trench by oxidation treatment or the like; depositing a first polycrystalline silicon film of a first conductivity type with a thickness of 1/2 or less of the width of the trench over the entire surface including the trench; R.I.
A process of etching and etching a polycrystalline silicon film using E to leave the polycrystalline silicon film only on the inner surface of the groove, and a step of applying a second polycrystalline silicon film of a second conductivity type to the entire surface of the semiconductor substrate so that the groove is fully covered. The first conductivity type impurity in the remaining polycrystalline silicon film is diffused into the second polycrystalline silicon film portion in the trench, converted to the first conductivity type, and the second conductivity type impurity is converted to the first conductivity type. The process of separating the polycrystalline silicon film into conductivity types within the groove and on the substrate, and the second conductivity! By selectively removing only the second polycrystalline silicon film of the mold, a fine element isolation region with a flat surface is formed from the trench and the first conductivity type polycrystalline silicon buried therein. The main point is to do so.

〔発明の実施例〕[Embodiments of the invention]

次に1本発明をnチャンネルMO8I Cの製造に適用
した例について第1図(−)〜(g)を参照して説明す
る。
Next, an example in which the present invention is applied to the manufacture of an n-channel MO8IC will be described with reference to FIGS. 1(-) to 1(g).

(1)まず、p型シリコン基板1を熱酸イヒして、その
表面に酸化膜2を形成した後、フォトエツチング技術に
より素子分離領域予定部の酸化膜2を除去して開口部3
・・・を形成した(第1図(^)図示)。つづいて、フ
ォトレジスト又は(図示せず)ψ〜化膜2をマスクとし
てRIEにより露出した基板1部分を選択的にエツチン
グ除去して例えば幅1.5μmで所望深さの溝部4を形
成した後、熱処理を施して溝部4内面に枦1えば厚さ3
000Xの酸化膜5を成長させた(第1図(b)図示)
(1) First, the p-type silicon substrate 1 is thermally oxidized to form an oxide film 2 on its surface, and then the oxide film 2 in the intended element isolation region is removed using photoetching technology to form the opening 3.
... was formed (as shown in Figure 1 (^)). Subsequently, the exposed portion of the substrate 1 is selectively etched away by RIE using a photoresist or (not shown) film 2 as a mask to form a groove 4 having a width of 1.5 μm and a desired depth, for example. , heat treatment is applied to the inner surface of the groove 4 so that the thickness is 3.
An oxide film 5 of 000X was grown (as shown in FIG. 1(b)).
.

(11)次いで、全面に溝部40幅の1/2以−丁、例
えば厚さ3000Xの高濃度p型不純物(ゾロン)を含
む第1多結晶シリコン膜6を堆積した(第1図(C)図
示)。つづい不、RIIによシ第1多結晶シリコン膜6
をその一厚程度エッチング除去した。この時、RIEは
基板1に対して垂直方向にのみエツチングが進行するた
め、溝部4の内側面にのみ第1多結晶シリコン膜6′が
残存した。ひきつづき、全面に例えば厚さ6000Xの
低濃度n型不純物(砒素)を含む第2多結晶シリコン膜
7を堆積して溝部4内を十分埋込んだ(第1図(d)図
示)。なお、低濃度n型不純物を含む第2多結晶シリコ
ン膜の代りに、アンドープの第2多結晶シリコン膜を用
いてもよい。
(11) Next, a first polycrystalline silicon film 6 containing a high concentration p-type impurity (zolon) was deposited on the entire surface to a thickness of more than 1/2 of the width of the trench 40, for example, 3000× (see FIG. 1(C)). (Illustrated). Continuing with RII, the first polycrystalline silicon film 6
was removed by etching to about one thickness. At this time, since RIE etching progresses only in the direction perpendicular to the substrate 1, the first polycrystalline silicon film 6' remains only on the inner surface of the trench 4. Subsequently, a second polycrystalline silicon film 7 containing a low concentration n-type impurity (arsenic) was deposited on the entire surface to a thickness of, for example, 6000×, to sufficiently fill the trench 4 (as shown in FIG. 1(d)). Note that an undoped second polycrystalline silicon film may be used instead of the second polycrystalline silicon film containing a low concentration of n-type impurity.

(li+ )  次いで、熱処理を施した。この時、第
1図(e)に示す如く、溝部4内側面の高濃度p型不純
物を含む残存多結晶シリコン膜6′からゾロンが同溝部
4内の第2多結晶シリコン膜7部分に拡散してp+型の
多結晶シリコン部8が形成された。この場合、表面に堆
積した第2多結晶シリコン膜7がp型に変換しないよう
に低温(800〜900°C)で熱処理する必要がある
。なお、この熱処理工程において、溝部4内面には酸化
膜5が被匈されているため、溝部4周辺へのp型不純物
の拡散を阻止できる。
(li+) Then, heat treatment was performed. At this time, as shown in FIG. 1(e), zolon diffuses from the remaining polycrystalline silicon film 6' containing high concentration p-type impurities on the inner surface of the trench 4 to the second polycrystalline silicon film 7 within the same trench 4. A p+ type polycrystalline silicon portion 8 was thus formed. In this case, it is necessary to perform heat treatment at a low temperature (800 to 900° C.) so that the second polycrystalline silicon film 7 deposited on the surface does not convert to p-type. In this heat treatment step, since the oxide film 5 is coated on the inner surface of the trench 4, diffusion of p-type impurities to the periphery of the trench 4 can be prevented.

(1■)次いで、n型多結晶シリコンの選択エツチング
であるKOHを用いてエツチングを行なった。この時、
・n型不純物を含む第2多結晶シリコン膜7部分が選択
的にエツチング除去され、溝部4内の多結晶シリコンは
p型となっているためほとんどエツチングされず、同溝
部4内がp型多結晶シリコン体9で埋められると共に該
多結晶シリコン体90表面は島状領域上の酸化膜2表面
と略同レベルとなシ、これらによって素子分離領域10
が形成された(第1図(f)図示)。。
(1) Next, etching was performed using KOH, which is selective etching of n-type polycrystalline silicon. At this time,
- The portion of the second polycrystalline silicon film 7 containing n-type impurities is selectively etched away, and since the polycrystalline silicon in the trench 4 is p-type, it is hardly etched, and the inside of the trench 4 is p-type polycrystalline silicon. The surface of the polycrystalline silicon body 90 is filled with the crystalline silicon body 9 and is at approximately the same level as the surface of the oxide film 2 on the island region.
was formed (as shown in FIG. 1(f)). .

(V)  次いで、基板1表面Q酸化膜2を除去し、再
度熱酸化を施して素子分離領域10で分離された島状の
基板1領域にy−ト酸化膜11・・・を形成すると°共
に、素子分離領域10を構成するp型多結晶シリコン体
9の露出面に厚い酸化膜12を成長させた。つづいて、
常法に従って全面に多結晶シリコン膜を堆積し、フォト
エツチング技術によりパターニングして島状の基板1領
域に選択的にf−ト電極13・・・を形成した後、f−
ト電極13・・・及び素子分離領域10をマスクとして
れ型不純物、例えば砒素をイオン注入し、活性化してソ
ース、ドレイン領域としてのn+型領領域14・・を形
成し、nチャンネルMO8ICの製造した(第1図葎)
図示)。
(V) Next, the Q oxide film 2 on the surface of the substrate 1 is removed and thermal oxidation is performed again to form a y-t oxide film 11 on the island-shaped region of the substrate 1 separated by the element isolation region 10. At the same time, a thick oxide film 12 was grown on the exposed surface of the p-type polycrystalline silicon body 9 constituting the element isolation region 10. Continuing,
A polycrystalline silicon film is deposited on the entire surface according to a conventional method, and patterned using photoetching technology to selectively form f-t electrodes 13 on the island-shaped substrate 1 region.
Using the gate electrodes 13 and the element isolation region 10 as a mask, ion-implanted impurities, such as arsenic, are ion-implanted and activated to form n+ type regions 14 as source and drain regions, thereby manufacturing an n-channel MO8IC. (Figure 1)
(Illustrated).

しかして、本発明方法によれば次のような種種の効果を
有する・ ■ 選択酸化法のように高温長時間の熱処理を必要とし
ないため、素子分離工程前の不純物拡散層の再分布等を
防止でき、素子特性の改善を図ることかでらる・ ■ 選択酸化法のように厚い酸化膜を選択的に成長する
必要がないため、パターン変形も少なく、微細な素子分
離領域を形成できると共に、マスク寸法によシ素子分離
領域の寸法な略規定できるため、集積度を向上で自る。
Therefore, the method of the present invention has the following various effects: (1) Since it does not require high-temperature and long-term heat treatment unlike the selective oxidation method, redistribution of the impurity diffusion layer before the element isolation process can be prevented. ■ Since there is no need to selectively grow a thick oxide film as in the selective oxidation method, there is less pattern deformation and it is possible to form fine device isolation regions. Since the dimensions of the element isolation region can be approximately determined by the mask dimensions, the degree of integration can be improved.

■ 従来のV字形工、チングによう素子分離法の如自機
械的研摩技術を用いないため、高歩留り、低コストで平
坦な素子分離領域を形成できるはかシか、半導体基板へ
の応力発生による素子特性の悪化を解消できる。
■ Unlike conventional V-shape processing and chipping, device separation methods do not use mechanical polishing techniques, so flat device isolation regions can be formed at high yields and at low cost. It is possible to eliminate deterioration of device characteristics due to

■ 誘電体分離の特長である接合容量の低減、集積度の
向上、配線の浮遊容量の低減等も、従来と同様に兼ね備
えている。
■ It also has the same characteristics of dielectric isolation, such as reduced junction capacitance, increased degree of integration, and reduced wiring stray capacitance.

なお、上記実施例の溝部4の形成工程において第2図に
示す如く酸化膜2とこの上の設けたシリコン窒化膜15
をマスクとして行ない、該シリコン窒化膜15を残置さ
せ、同様に第1.多結晶シリコン膜6の堆積後、RIE
によシ多結晶シリコン膜6をエツチングして残存多結晶
シリコン膜6′を形成し、更にシリコン窒化膜16と残
存多結晶シリコン膜6′をマスクとして溝部4底面に露
出した酸化膜5を選択的に工、チング除去すれば、実施
例の(li+ >工程において残存多結晶シリコン膜6
′からの?ロン拡散に際して同時に溝部4底面にp型チ
ャンネルカ、ト領域16を形成できる。
In addition, in the process of forming the groove portion 4 in the above embodiment, as shown in FIG.
was performed as a mask, the silicon nitride film 15 was left, and the first. After depositing the polycrystalline silicon film 6, RIE
Then, the polycrystalline silicon film 6 is etched to form a remaining polycrystalline silicon film 6', and the oxide film 5 exposed on the bottom surface of the trench 4 is selected using the silicon nitride film 16 and the remaining polycrystalline silicon film 6' as a mask. If the etching and etching are removed, the remaining polycrystalline silicon film 6 will be removed in the (li+> step of the embodiment).
'from? A p-type channel region 16 can be simultaneously formed on the bottom surface of the groove portion 4 during the diffusion.

また、上記実施例ではnmの第2多結晶シリコン膜部分
をKOHによシ選択エツチングすることによシ素子分離
領域を形成したが、この方法に限定されない。例えばi
・1多結晶シリコン膜と第2多結晶シリコン膜の導電型
を逆転させ、第1多結晶シリコン膜には高濃度のn型不
純物を、第2多結晶シリコン膜には低濃度のp型不純物
を、含有させ、前述の第1図(e)の表面層の多結晶シ
リコンをp型とする。つづいて、第3図に示す如く例え
ばHF溶液中で定電圧を加えて電流を流し、第3図に示
す如く溝部4内のれ+型多結晶シリコン17及び基板1
上のp型多結晶シリコン膜18のみを選択的にポーラス
化する。
Further, in the above embodiment, the element isolation region was formed by selectively etching the nm-thick second polycrystalline silicon film portion with KOH, but the method is not limited to this. For example i
・The conductivity types of the first polycrystalline silicon film and the second polycrystalline silicon film are reversed, and the first polycrystalline silicon film is doped with a high concentration of n-type impurity, and the second polycrystalline silicon film is doped with a low concentration of p-type impurity. The polycrystalline silicon of the surface layer shown in FIG. 1(e) is made p-type. Subsequently, as shown in FIG. 3, for example, a constant voltage is applied in an HF solution to flow a current, and as shown in FIG.
Only the upper p-type polycrystalline silicon film 18 is selectively made porous.

その後、ウェット酸素雰囲気中の多孔質シリコン膜を低
温酸化し、酸化膜を除去して表面が平坦な素子分離領域
を形\成してもよい。
Thereafter, the porous silicon film may be oxidized at a low temperature in a wet oxygen atmosphere, and the oxide film may be removed to form an element isolation region with a flat surface.

更に本発明は上記実施例の如きnチャンネルMO8I 
Cの製造のみに限らず、pチャンネルMO8I C,C
MO8I C,I2L、或いは第4図に示す如自バイポ
ーラIC等にも同様に適用できる。
Furthermore, the present invention provides an n-channel MO8I as in the above embodiment.
Not limited to manufacturing only p-channel MO8I C,C
The present invention can be similarly applied to MO8IC, I2L, or the bipolar IC shown in FIG. 4.

但し、第4図・に示す如く・々イポーラICに適用する
・場合はp型シリコン基板21上のn型シリコ7層22
に該基板21にまで達する溝部23を形成し、この°・
溝部23を酸化膜24を介してp型(もしくはn型)の
多結晶シリコン体25で埋め込んで素子分離領域26を
形成する。なお、第4図中の27はれ+型埋込み層、2
8はp型ベース領域、29はn++エミッタ領域、80
はn++コレクタ取出し領域、31はコンタクトホール
が開口された層間絶縁膜である。
However, as shown in FIG.
A groove 23 reaching the substrate 21 is formed in the groove 23.
The trench 23 is filled with a p-type (or n-type) polycrystalline silicon body 25 via an oxide film 24 to form an element isolation region 26. Note that 27 in FIG.
8 is a p-type base region, 29 is an n++ emitter region, 80
3 is an n++ collector extraction region, and 31 is an interlayer insulating film in which a contact hole is opened.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く1本発明によれば高温製時間の熱酸化
処理を行なうことなく、かつVIP法等の機械的研摩技
術を使用せず、平坦で所期目的のマスク設計どおりの微
細な素子分離領域を形成でき、ひいCはこの素子形成領
域で囲まれた島状の素子形成領域にトランジスタ等を形
成することにより高信頼性、高性能、高集積度の半導体
集積回路を高歩留りで製造し得る方法を提供できる。
As described in detail above, according to the present invention, it is possible to produce flat and fine elements according to the desired mask design without performing thermal oxidation treatment during high-temperature manufacturing time and without using mechanical polishing techniques such as the VIP method. By forming an isolation region and forming transistors, etc. in the island-shaped element formation area surrounded by this element formation area, highly reliable, high performance, and highly integrated semiconductor integrated circuits can be manufactured at a high yield. We can provide a possible method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(几)〜(g)は本発明の実施例におけるnチャ
ンネルMO8ICの製造工程を示す断面図、第2図ネル
ストツ・臂領域も形成する工程を示す断面−1第3図は
多結晶シリコン膜のポーラス化により素子分離工程を形
成するのを説明した断面図、第4図は本発明方法によシ
得られたバイポーラICを示す断面図である。 1.21・・冒)型シリコン基板、4.23・・・溝部
、5,24・・・酸化膜、6・・・第1多結晶シリコン
膜、6′・・・残存多結晶シリコン膜、7・・・第2多
結晶シリコン膜、8・・・pm、多結晶シリコン部、9
.25・・・多結晶シリコン体、10.26・・・米子
分離領域、13・・・r−ト電極、14・・・n+型領
領域16・・・p型チャンネルストツノヤ領域、18・
・・ポーラス化されたp型多結晶シリコン膜、22・・
・n型シリコン層、27・・・n+型坪込み層、28・
・・p型ベース領域、29・・・n+型工ξツタ領域、
80・・・計型コレクタ取出し領域。
1(g) to 1(g) are cross-sectional views showing the manufacturing process of an n-channel MO8IC according to an embodiment of the present invention. FIG. FIG. 4 is a cross-sectional view illustrating the formation of an element isolation step by making a silicon film porous, and FIG. 4 is a cross-sectional view showing a bipolar IC obtained by the method of the present invention. 1.21...Groove type silicon substrate, 4.23...Groove portion, 5, 24...Oxide film, 6...First polycrystalline silicon film, 6'...Remaining polycrystalline silicon film, 7... Second polycrystalline silicon film, 8... pm, polycrystalline silicon portion, 9
.. 25... Polycrystalline silicon body, 10. 26... Yonago isolation region, 13... r-to electrode, 14... n+ type region 16... p type channel strike region, 18.
...Porous p-type polycrystalline silicon film, 22...
・N-type silicon layer, 27...n+ type depression layer, 28.
...p type base region, 29...n+ type engineering ξ ivy region,
80...Meter type collector extraction area.

Claims (1)

【特許請求の範囲】 (IJ  半導体基体の素子分離領域予定部に溝部を選
択的に形成する工程と、この溝部内面を薄い絶縁膜で覆
う工程と、前記溝部内側面に第1導電型の第1多結晶シ
リコン膜を選択的に形成する工程と、前記溝部が十分埋
まるように半導体基体の全面に第2導電型の第2多結晶
シリコン膜を堆積する工程と、熱処理を施して溝部内側
面の第1多結晶シリコン膜から第1導電型不純物を該溝
部内、の第2多結晶シリコン膜部分に拡散させ、第1導
電型に変換した後、前記半導体基体上の第1導電型不純
物を含まない第2多結晶シリコン膜部分を除去する工程
と、前記溝部で包囲された島状の半導体基体表面に少な
くとも1つのpn接合を含む素子を形成する工程とを具
備したことを特徴とする半導体集積回路の製造方法。 (2)  第1導電型としてp型を、第2導電型として
れ型を用い、半導体基体上の第2多結晶シリコン膜部分
の除去をエツチング液を用いゼ行なうことを特徴とする
特許請求の範囲第1項記載の半導体集積回路の製造方法
。 (3)  第1導電型としてn型を、第2導電型として
p型を用い、半導体基体上の第2多結晶シリコン膜部分
の除去を、ポーラス化と酸化により行なうことを特徴と
する特許請求の範囲第1項記載の半導体集積回路の製造
方法。
[Claims] (IJ) A step of selectively forming a groove in a portion of a semiconductor substrate where an element isolation region is to be formed, a step of covering the inner surface of the groove with a thin insulating film, and a step of forming a groove of a first conductivity type on the inner surface of the groove. (1) selectively forming a polycrystalline silicon film, depositing a second polycrystalline silicon film of a second conductivity type over the entire surface of the semiconductor substrate so as to sufficiently fill the trench, and heat-treating the inner surface of the trench. After diffusing the first conductivity type impurity from the first polycrystalline silicon film into the second polycrystalline silicon film portion in the trench and converting it to the first conductivity type, the first conductivity type impurity on the semiconductor substrate is A semiconductor characterized by comprising the steps of: removing a portion of the second polycrystalline silicon film that does not contain the second polycrystalline silicon film; and forming an element including at least one pn junction on the surface of the island-shaped semiconductor substrate surrounded by the groove. A method for manufacturing an integrated circuit. (2) Using a p-type as the first conductivity type and a di-type as the second conductivity type, removing the second polycrystalline silicon film portion on the semiconductor substrate using an etching solution. A method for manufacturing a semiconductor integrated circuit according to claim 1, characterized in that: (3) using n type as the first conductivity type and p type as the second conductivity type, and using the second polycrystalline silicon on the semiconductor substrate; 2. The method of manufacturing a semiconductor integrated circuit according to claim 1, wherein the film portion is removed by making it porous and oxidizing.
JP10334282A 1982-06-16 1982-06-16 Manufacture of semiconductor integrated circuit Pending JPS58220445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10334282A JPS58220445A (en) 1982-06-16 1982-06-16 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10334282A JPS58220445A (en) 1982-06-16 1982-06-16 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS58220445A true JPS58220445A (en) 1983-12-22

Family

ID=14351463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10334282A Pending JPS58220445A (en) 1982-06-16 1982-06-16 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS58220445A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097789A2 (en) * 1982-06-30 1984-01-11 International Business Machines Corporation Method of filling trenches in semiconductor substrates with silicon
JPS6079737A (en) * 1983-10-05 1985-05-07 Nec Corp Manufacture of semiconductor device
US4554728A (en) * 1984-06-27 1985-11-26 International Business Machines Corporation Simplified planarization process for polysilicon filled trenches
JPS6161435A (en) * 1984-09-03 1986-03-29 Nec Corp Manufacture of semiductor device
JPS6190442A (en) * 1984-10-09 1986-05-08 Nec Corp Semiconductor device and manufacture thereof
JPS61112343A (en) * 1984-11-07 1986-05-30 Nec Corp Manufacture of semiconductor device
JPS62105445A (en) * 1985-10-31 1987-05-15 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of semiconductor device structure
JPS6441219A (en) * 1987-08-07 1989-02-13 Nec Corp Manufacture of semiconductor device
JPH01125971A (en) * 1987-11-11 1989-05-18 Seiko Instr & Electron Ltd C-mis semiconductor device and manufacture thereof
JPH01304723A (en) * 1988-06-01 1989-12-08 Matsushita Electric Ind Co Ltd Preparation of semiconductor device
JPH06101470B2 (en) * 1984-02-03 1994-12-12 アドバンスト・マイクロ・ディバイシズ・インコ−ポレ−テッド Integrated circuit device with active elements consisting of bipolar transistors formed in slots
EP0810650A2 (en) * 1996-05-16 1997-12-03 Siemens Aktiengesellschaft Uniform trench fill recess by means of isotropic etching
EP0822593A2 (en) * 1996-07-30 1998-02-04 International Business Machines Corporation A method of manufacturing an insulated gate field effect transistor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097789A2 (en) * 1982-06-30 1984-01-11 International Business Machines Corporation Method of filling trenches in semiconductor substrates with silicon
JPS6079737A (en) * 1983-10-05 1985-05-07 Nec Corp Manufacture of semiconductor device
JPH06101470B2 (en) * 1984-02-03 1994-12-12 アドバンスト・マイクロ・ディバイシズ・インコ−ポレ−テッド Integrated circuit device with active elements consisting of bipolar transistors formed in slots
US4554728A (en) * 1984-06-27 1985-11-26 International Business Machines Corporation Simplified planarization process for polysilicon filled trenches
EP0166207A2 (en) * 1984-06-27 1986-01-02 International Business Machines Corporation Simplified planarization process for polysilicon-filled trenches
JPS6113642A (en) * 1984-06-27 1986-01-21 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming separate region of semiconductor substrate
JPS6161435A (en) * 1984-09-03 1986-03-29 Nec Corp Manufacture of semiductor device
JPS6190442A (en) * 1984-10-09 1986-05-08 Nec Corp Semiconductor device and manufacture thereof
JPS61112343A (en) * 1984-11-07 1986-05-30 Nec Corp Manufacture of semiconductor device
JPS62105445A (en) * 1985-10-31 1987-05-15 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of semiconductor device structure
JPH0344419B2 (en) * 1985-10-31 1991-07-05 Intaanashonaru Bijinesu Mashiinzu Corp
US4745081A (en) * 1985-10-31 1988-05-17 International Business Machines Corporation Method of trench filling
JPS6441219A (en) * 1987-08-07 1989-02-13 Nec Corp Manufacture of semiconductor device
JPH01125971A (en) * 1987-11-11 1989-05-18 Seiko Instr & Electron Ltd C-mis semiconductor device and manufacture thereof
JPH01304723A (en) * 1988-06-01 1989-12-08 Matsushita Electric Ind Co Ltd Preparation of semiconductor device
EP0810650A2 (en) * 1996-05-16 1997-12-03 Siemens Aktiengesellschaft Uniform trench fill recess by means of isotropic etching
EP0810650A3 (en) * 1996-05-16 1998-03-18 Siemens Aktiengesellschaft Uniform trench fill recess by means of isotropic etching
EP0822593A2 (en) * 1996-07-30 1998-02-04 International Business Machines Corporation A method of manufacturing an insulated gate field effect transistor
EP0822593A3 (en) * 1996-07-30 1998-04-15 International Business Machines Corporation A method of manufacturing an insulated gate field effect transistor

Similar Documents

Publication Publication Date Title
US5011788A (en) Process of manufacturing semiconductor integrated circuit device and product formed thereby
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
JPH0449777B2 (en)
JP2001148479A (en) Semiconductor device having partial soi structure and its manufacture method
JPH0479133B2 (en)
JPS58220445A (en) Manufacture of semiconductor integrated circuit
EP0135243A1 (en) A method of producing a semiconductor structure on a substrate and a semiconductor device manufactured thereby
JPS6038866A (en) Method of producing metal-oxidized film-semiconductor integrated circuit
JPS60241261A (en) Semiconductor device and manufacture thereof
KR100311103B1 (en) Manufacturing method of semiconductor device
JPH0536712A (en) Semiconductor integrated circuit device and manufacture thereof
JPH09139382A (en) Manufacture of semiconductor device
JPS6129539B2 (en)
JPH0423828B2 (en)
JPH0338742B2 (en)
JPS6117143B2 (en)
JPS60117658A (en) Manufacture of mos dynamic memory
KR940008321B1 (en) Semiconductor device isolation method
JPH11261003A (en) Semiconductor device and its manufacture
JPS60235460A (en) Semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPS59200463A (en) Manufacture of bipolar semiconductor device
JPS6045037A (en) Substrate structure of semiconductor device and manufacture thereof
JPH0624247B2 (en) Method for manufacturing MIS type semiconductor device
JPH0513564A (en) Manufacture of semiconductor device