JPH01259566A - Semiconductor device and manufacture of the same - Google Patents

Semiconductor device and manufacture of the same

Info

Publication number
JPH01259566A
JPH01259566A JP63087614A JP8761488A JPH01259566A JP H01259566 A JPH01259566 A JP H01259566A JP 63087614 A JP63087614 A JP 63087614A JP 8761488 A JP8761488 A JP 8761488A JP H01259566 A JPH01259566 A JP H01259566A
Authority
JP
Japan
Prior art keywords
gate
region
forming
gate electrode
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63087614A
Other languages
Japanese (ja)
Inventor
Masahiko Azuma
雅彦 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63087614A priority Critical patent/JPH01259566A/en
Publication of JPH01259566A publication Critical patent/JPH01259566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To improve the efficiency of write and erase operations of a reloadable fixed storage element, by installing both specific semiconductor storage element and insulated gate type transistor on one semiconductor substrate. CONSTITUTION:A logical element MOS transistor TL of LDD structure and a reloadable fixed storage element not of LDD structure--EPROM (TM) are installed on one semiconductor substrate. This means that a logical element short-channelized for high integration and a high speed operation is composed of the insulated gate type transistor TL of LDD structure for prevention of the changes of the element characteristic caused by the formation of hot carrier. The reloadable fixed storage element TM having a floating gate is not of LDD structure and a drain area 16 and a source area 17 are directly connected with the lower part of a gate 14 to enhance the electric field strength of the edge of the drain 16. This improves the efficiency of write and erase operations.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置及びその製造方法、特にフローティングゲー
トを有し書替え可能な半導体記憶素子とLDD構造の論
理素子とが併設されるMO3型半導体装置及びその製造
方法の改良に関し、上記書替え可能な固定記憶素子の書
込み、消去の効率を向上せしめることを目的とし、フロ
ーティングな下層ゲートを含む多層構造のゲートと、多
層構造ゲートの下部領域に直に接するドレイン領域及び
ソース領域を持ち、該下層ゲートに電荷を貯えることに
よって情報の記憶がなされる半導体記憶素子と、単層構
造のゲートを有しドレイン及びソース領域とゲート下部
領域との間に該ドレイン及びソース領域と同導電型を有
する該ドレイン及びソース領域より低不純物濃度のオフ
セッHi域を設けた絶縁ゲート型トランジスタとが、同
一半導体基板上に併設されて構成される半導体装置及び
その製造方法に関する。
[Detailed Description of the Invention] [Summary] A semiconductor device and its manufacturing method, particularly an MO3 type semiconductor device in which a rewritable semiconductor memory element having a floating gate and an LDD structure logic element are provided, and its manufacturing method. Regarding the improvement, the purpose is to improve the writing and erasing efficiency of the above-mentioned rewritable fixed memory element. A semiconductor memory element having a region and storing information by storing charge in the lower gate, and a semiconductor memory element having a single-layer gate and having the drain and source region between the drain and source region and the gate lower region. The present invention relates to a semiconductor device in which an insulated gate transistor having an offset Hi region with a lower impurity concentration than the drain and source regions having the same conductivity type is arranged on the same semiconductor substrate, and a method for manufacturing the same.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置及びその製造方法、特にEFROM
若しくはE”FROM等のフローティングゲートを含む
多層ゲート構造の半導体記憶素子とLDD構造の絶縁ゲ
ート型トランジスタとが併設される半導体装置及びその
製造方法の改良に関する。
The present invention relates to a semiconductor device and a method for manufacturing the same, particularly an EFROM.
Alternatively, the present invention relates to improvements in a semiconductor device in which a semiconductor memory element with a multilayer gate structure including a floating gate such as an E"FROM and an insulated gate transistor with an LDD structure are provided together, and a method for manufacturing the same.

近時論理素子と固定記憶素子とが併設されるマイクロコ
ンピュータ等の半導体ICにおいては、データ処理機能
の多用化を図るために、固定記憶素子として、EPRO
MやE2PROM等、フローティングゲートを含む多層
ゲート構造を有しデータの書替えが可能な半導体記憶素
子が多く使われるようになって来ている。
Recently, in semiconductor ICs such as microcomputers that have both logic elements and fixed memory elements, EPRO is used as the fixed memory element in order to increase the number of data processing functions.
Semiconductor memory elements such as M and E2PROM, which have a multilayer gate structure including a floating gate and are capable of rewriting data, are increasingly being used.

一方これら半導体ICの高集積化が進み、該ICに論理
素子として配設される絶縁ゲート型トランジスタはショ
ートチャネル化されて来ており、ショートチャネル化さ
れた際に発生するホットキャリアによる特性の変動を防
止するために、高不純物濃度のドレイン及びソース領域
とゲート下部領域との間に低不純物濃度のオフセット領
域を設けたL[lD積構造絶縁ゲート型トランジスタが
用いられる かかる半導体ICにおいてはデータ処理速度を向上させ
るために、LDD構造の絶縁ゲート型トランジスタで構
成される論理回路動作の高速化と、EM?OMやE2P
ROM等の固定記憶素子の書替え効率の向上が要望され
る。
On the other hand, as these semiconductor ICs become more highly integrated, the insulated gate transistors disposed as logic elements in these ICs are becoming short-channeled, and their characteristics change due to hot carriers generated when they are short-channeled. In order to prevent data processing in such a semiconductor IC in which an L[lD product structure insulated gate transistor is used, an offset region with a low impurity concentration is provided between the drain and source regions with a high impurity concentration and the lower gate region. In order to improve the speed, we are increasing the speed of logic circuit operation consisting of insulated gate transistors with LDD structure and EM? OM and E2P
It is desired to improve the rewriting efficiency of fixed storage elements such as ROM.

〔従来の技術〕[Conventional technology]

上記書替え可能な半導体記憶素子例えばEFROMと論
理素子であるLDD構造の絶縁ゲート型トランジスタと
が併設される半導体装置は、従来第4図(a)〜(C1
を参照して以下に説明する工程によって形成されていた
Conventionally, a semiconductor device in which the above-mentioned rewritable semiconductor memory element, such as an EFROM, and an insulated gate transistor with an LDD structure as a logic element are provided together is shown in FIGS.
It was formed by the steps described below with reference to.

第4図(al参照 即ち例えばp−型シリコン(St)基板51面にフィー
ルド酸化膜52及びその下部のp型チャネルストッパ5
3によって画定表出された第1、第2の素子形成領域5
4.55を有する被処理基板を用い、通常の方法により
、第1の素子形成領域54上に第1のゲート酸化膜56
、第1のポリSiNよりなるフローティングゲート電極
57、第2のゲート酸化膜58、第2のポリSiよりな
るコントロールゲート雪掻59が順次積層されてなるメ
モリ素子の多層ゲートGdを形成し、且つ第2の素子形
成領域55上に第2のゲート酸化膜58上に第2のポリ
St層よりなる第1のゲート電極60が積層されてなる
論理素子の単層ゲートGsを形成し、次いで上記多層ゲ
ート G4及び単層ゲートG、をマスクにして第1及び
第2の素子形成領域54及び55に選択的に燐(P4)
を低濃度にイオン注入してドレイン及びソースのオフセ
ット領域となるn型領域61.62.63.64を形成
する。
FIG. 4 (see al), that is, for example, a field oxide film 52 on a p-type silicon (St) substrate 51 and a p-type channel stopper 5 below the field oxide film 52.
3, the first and second element forming regions 5 are defined by
A first gate oxide film 56 is formed on the first element formation region 54 by a normal method using a substrate to be processed having a diameter of 4.55.
, a first floating gate electrode 57 made of poly-SiN, a second gate oxide film 58, and a control gate snowflake 59 made of second poly-Si are sequentially laminated to form a multilayer gate Gd of a memory element, and On the second element formation region 55, a single layer gate Gs of a logic element is formed by laminating a first gate electrode 60 made of a second polySt layer on a second gate oxide film 58, and then the above-mentioned Phosphorus (P4) is selectively applied to the first and second element forming regions 54 and 55 using the multilayer gate G4 and the single layer gate G as masks.
N-type regions 61, 62, 63, and 64, which will become drain and source offset regions, are formed by ion implantation at a low concentration.

第4図(bl参照 次いで、表出するゲート酸化膜56及び58をウォッシ
ュアウトした後、Si表出面に不純物ブロック用酸化膜
65を形成し、次いで該基板上にサイドウオールに相当
する厚さのSiO2膜を気相成長させ、次いでリアクテ
ィブイオンエツチング(RIE )処理による該SiO
□膜の全面エツチング手段により上記5iOz膜をエッ
チバンクし、前記多層ゲートG。
FIG. 4 (see BL) Next, after washing out the exposed gate oxide films 56 and 58, an impurity blocking oxide film 65 is formed on the exposed Si surface, and then a layer of a thickness corresponding to the sidewall is formed on the substrate. A SiO2 film is grown in a vapor phase, and then the SiO2 film is grown by a reactive ion etching (RIE) process.
□ Etch bank the 5iOz film by etching the entire surface of the film to form the multilayer gate G.

及び単層ゲートG、の側面に選択的に上記SiO□膜よ
りなるサイドウオール状SiO□膜66を残留形成させ
る。
A sidewall-like SiO□ film 66 made of the above SiO□ film is selectively formed on the side surfaces of the single-layer gate G and the single-layer gate G.

第4図(C)参照 そして上記両側面のサイドウオール状5in2膜66を
含む多層ゲートGd及び単層ゲートGSをマスクにして
素子形成領域54及び55に高濃度の砒素(As” )
をイオン注入して第1のn1型高濃度ドレイン領域68
、第1のn゛型型温濃度ソース領域69び第2のn0型
高濃度ドレイン領域70、第2のn°型型温濃度ソース
領域71形成する。ここで67はイオン注入のダメージ
防止用のスルー酸化膜を示す。
Referring to FIG. 4(C), a high concentration of arsenic (As'') is applied to the element forming regions 54 and 55 using the multilayer gate Gd and single layer gate GS including the sidewall-like 5in2 films 66 on both sides as masks.
is ion-implanted to form the first n1 type heavily doped drain region 68.
, a first n° type hot doped source region 69, a second n0 type heavily doped drain region 70, and a second n° type warm doped source region 71 are formed. Here, 67 indicates a through oxide film for preventing damage during ion implantation.

従って従来[EPROM等の多層ゲートを有して書替え
可能な半導体記憶素子とLDD構造の絶縁ゲート型トラ
ンジスタよりなる論理素子とが併設される半導体装置に
おける上記半導体記憶素子は、必然的に高濃度のドレイ
ン及びソース領域69及び70とチャネルが形成される
多層ゲートG aの下部領域との間には低濃度のオフセ
ット領域61及び62が介在する構造を有していた。
Therefore, in a conventional semiconductor device in which a rewritable semiconductor memory element having a multilayer gate such as an EPROM and a logic element consisting of an insulated gate transistor with an LDD structure are installed together, the semiconductor memory element described above inevitably has a high concentration. It had a structure in which low concentration offset regions 61 and 62 were interposed between the drain and source regions 69 and 70 and the lower region of the multilayer gate Ga where the channel was formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そのために従来の同一基板上にLDD構造の絶縁ゲート
型トランジスタで構成される論理素子と併設されるEP
ROMやE2PROM等の書替え可能な固定記憶素子に
おいては、上記低濃度のオフセット領域61及び62の
持つ抵抗によって、該記憶素子のドレイン側に充分な電
界が集中されず、書替え即ち書込み、消去等の効率が大
幅に低下するという問題があった。
To achieve this, conventional EPs are installed alongside logic elements consisting of insulated gate transistors with an LDD structure on the same substrate.
In rewritable fixed memory elements such as ROM and E2PROM, due to the resistance of the low-concentration offset regions 61 and 62, a sufficient electric field is not concentrated on the drain side of the memory element, so that rewriting, writing, erasing, etc. There was a problem in that efficiency was significantly reduced.

そこで本発明は、LDD構造の論理素子と併設されるフ
ローティングゲートを有し書替え可能な固定記憶素子の
書込み、消去の効率を向上せしめることを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to improve the writing and erasing efficiency of a rewritable fixed memory element that has a floating gate and is provided with an LDD structure logic element.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、フローティングな下層ゲートを含む多層構
造のゲートと、多層構造ゲートの下部領域に直に接する
ドレイン領域及びソース領域を持ち、該下層ゲートに電
荷を貯えることによって情報の記憶がなされる半導体記
憶素子と、単層構造のゲートを有しドレイン及びソース
?■域とゲート下部領域との間に該ドレイン及びソース
領域と同導電型を有する該ドレイン及びソース領域より
低不純物濃度のオフセット領域を設けた絶縁ゲート型ト
ランジスタとが、同一半導体基板上に併設されてなる本
発明による半導体装置、及び半導体基板が絶縁膜によっ
て画定表出されてなる一導電型の第1及び第2の素子形
成領域上に第1のゲート絶縁膜を形成した後、第1の導
電体膜によって該第1の素子形成領域の全面上を選択的
に覆う被覆体と該第2の素子形成領域上を選択的に覆っ
て横切る第1のゲート電極とを同時に形成する工程と、
該第1のゲート電極をマスクにして該第2の素子形成領
域に選択的にオフセット領域形成用の第1の反対導電型
不純物を導入する工程と、該基板の全面上に絶縁膜を形
成し、該絶縁膜を異方性ドライエツチング手段により全
面エツチングして、該被覆体と第1のゲート電極の側面
とに選択的に該絶縁膜をサイドウオール状に残留させる
工程と、少なくとも該被覆体の表面に第2のゲート絶縁
膜を形成した後、該被覆体上に第2の導電体膜よりなる
第2のゲート電極を形成する工程と、該第2のゲート電
極に整合して該被覆体をパターニングし該第2のゲート
電極の下部にフローティングな第3のゲート電極を形成
する工程と、ドレイン、ソース領域形成用の第2の反対
導電型不純物を、該第1の素子形成領域に該第2及び第
3のゲート電極をマスクにして選択的に導入すると同時
に、該第2素子形成領域に該サイドウオール状絶縁膜を
含む第1のゲート電極をマスクにして選択的に4人する
工程とを含む本発明による半導体装置の製造方法によっ
て解決される。
The above problem is a semiconductor that has a multilayer gate including a floating lower gate, a drain region and a source region that are in direct contact with the lower region of the multilayer gate, and stores information by storing charge in the lower gate. Does it have a memory element, a single layer gate, a drain and a source? (2) An insulated gate transistor is provided with an offset region having the same conductivity type as the drain and source regions and a lower impurity concentration than the drain and source regions between the region and the lower gate region, and an insulated gate transistor is provided on the same semiconductor substrate. After forming a first gate insulating film on the first and second element formation regions of one conductivity type in which the semiconductor device and the semiconductor substrate are defined and exposed by an insulating film, simultaneously forming a covering body selectively covering the entire surface of the first element formation region with a conductor film and a first gate electrode selectively covering and crossing the second element formation region;
selectively introducing a first opposite conductivity type impurity for forming an offset region into the second element formation region using the first gate electrode as a mask; and forming an insulating film over the entire surface of the substrate. etching the entire surface of the insulating film using an anisotropic dry etching means to selectively leave the insulating film in a sidewall shape on the covering body and the side surface of the first gate electrode; After forming a second gate insulating film on the surface of the coating, forming a second gate electrode made of a second conductive film on the coating, and forming the coating in alignment with the second gate electrode. forming a floating third gate electrode under the second gate electrode, and applying a second opposite conductivity type impurity for forming the drain and source regions to the first element formation region. While selectively introducing the second and third gate electrodes using the second and third gate electrodes as masks, at the same time, selectively introducing four electrodes into the second element formation region using the first gate electrode including the sidewall-like insulating film as a mask. The problem is solved by a method for manufacturing a semiconductor device according to the present invention, which includes steps.

〔作 用〕[For production]

即ち本発明に係る半導体装置においては、論理素子とし
て用いる絶縁ゲート型トランジスタは、ショートチャネ
ル化されるので、ドレイン及びソース領域とゲート下部
領域との間に低不純物濃度のオフセット領域を設け、こ
れによってホットキャリアの発生を抑止して素子特性の
変動が防止される。
That is, in the semiconductor device according to the present invention, since the insulated gate transistor used as the logic element is short-channeled, an offset region with a low impurity concentration is provided between the drain and source regions and the lower gate region. By suppressing the generation of hot carriers, variations in device characteristics are prevented.

且つまた、ホットキャリアをフローティングゲート中に
注入することによって書込みがなされる多層ゲート構造
の固定記憶素子は、ドレイン及びソース領域とゲート下
部領域との間に低不純物濃度のオフセット領域を設けず
に高不純物濃度のドレイン領域及びソース領域が直にチ
ャネルの形成されるゲート下部領域に接するようにして
、書込み及び消去に際しドレイン領域のゲート側端部の
電界強度が充分に高まるようにし、これによってホット
キャリアの発生効率を高めて書込み及び消去を容易且つ
効率的にする。
In addition, a fixed memory element with a multilayer gate structure in which writing is performed by injecting hot carriers into the floating gate has a high impurity concentration without providing an offset region with a low impurity concentration between the drain and source regions and the lower gate region. The impurity-concentrated drain and source regions are placed in direct contact with the lower gate region where the channel is formed, so that the electric field strength at the gate-side edge of the drain region is sufficiently increased during writing and erasing, thereby preventing hot carriers. To make writing and erasing easier and more efficient by increasing the generation efficiency.

以上によって上記半導体装置の情報処理速度及び信頼性
が向上する。
With the above, the information processing speed and reliability of the semiconductor device are improved.

〔実施例〕〔Example〕

以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.

第1図は本発明の構造の一実施例を示す模式側断面図(
a)及び模式平面図(b)、第2図(a)〜(g)は本
発明の方法の一実施例の工程断面図、第3図(al〜(
flは同実施例の工程平面図である。
FIG. 1 is a schematic side sectional view (
a) and a schematic plan view (b), FIGS. 2(a) to (g) are process sectional views of an embodiment of the method of the present invention, and FIGS.
fl is a process plan view of the same example.

全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.

本発明に係る半導体装置は例えば第1図(a)及び(b
lに示すように論理素子であるLDD構造のMOSトラ
ンジスタ(T、)と、LDD構造を有しない書替え可能
な固定記憶素子即ちEFROM(TM )とが同一半導
体基板に併設された構造を有する。
The semiconductor device according to the present invention is illustrated in FIGS. 1(a) and 1(b), for example.
As shown in FIG. 1, it has a structure in which an LDD structure MOS transistor (T), which is a logic element, and a rewritable fixed memory element, or EFROM (TM), which does not have an LDD structure are provided on the same semiconductor substrate.

なお図中、1はp−型Si基板、2はフィールド酸化膜
、3はp型チャネルストッパ、4及び5は第1及び第2
の素子形成領域、6は第1のゲート酸化膜、7は記憶素
子のフローティングゲ−1・電極、8は論理素子駆動用
の第1のゲート電極、9及び10はn型オフセット領域
、11はサイドウオール状SiO□膜、12は第2のゲ
ート酸化膜、14は記憶素子のコントロールゲート電極
、16は記憶素子に配設された第1のn゛型トドレイン
領域17は同第1のn゛゛ソース領域、18は論理素子
に配設された第2のn゛型トドレイン領域19は同第2
のn゛゛ソース領域を示す。
In the figure, 1 is a p-type Si substrate, 2 is a field oxide film, 3 is a p-type channel stopper, 4 and 5 are first and second
, 6 is a first gate oxide film, 7 is a floating gate electrode of a memory element, 8 is a first gate electrode for driving a logic element, 9 and 10 are n-type offset regions, 11 is an A sidewall-like SiO□ film, 12 a second gate oxide film, 14 a control gate electrode of a memory element, and 16 a first n-type drain region 17 disposed in the memory element; A source region 18 is a second n-type drain region 19 disposed in the logic element.
This shows the n゛゛ source region of .

上記実施例に係る半導体装置は、例えば以下に第2図(
a)〜(gl及び第3図(al〜([1を参照して説明
する本発明に係る製造方法によって形成される。
The semiconductor device according to the above embodiment is illustrated in FIG. 2 (
a) to (gl) and FIG. 3 (al to ([1)].

第2図(a)及び第3図(a)参照 即ち従来通り例えばp−型のSi基板1面が表面に形成
されたフィールド酸化膜2とその下部のp型チャネルス
トッパ3とによって画定表出された第1及び第2の素子
形成領域4及び5を有する被処理基板を形成し、先ず熱
酸化法等により上記素子形成領域4及び5の表面に第1
のゲート酸化膜6を形成した後、通常の気相成長工程、
不純物ドープ工程、パターニング工程を経て第1の素子
形成領域4上に該領域4上を覆い導電性を有する第1の
ポリSi層よりなるポリSi被覆体107を、また第2
の素子形成領域6上に同第1のポリSi層からなり該領
域6上を横切る第1のゲート電極8を形成する。
Refer to FIGS. 2(a) and 3(a). That is, as in the conventional art, for example, one surface of a p-type Si substrate is defined and exposed by a field oxide film 2 formed on the surface and a p-type channel stopper 3 below the field oxide film 2. A substrate to be processed having first and second element forming regions 4 and 5 is formed, and first a first layer is formed on the surfaces of the element forming regions 4 and 5 by thermal oxidation or the like.
After forming the gate oxide film 6, a normal vapor phase growth process,
After an impurity doping step and a patterning step, a poly-Si covering 107 made of a first poly-Si layer covering the first element forming region 4 and having conductivity is formed on the first element forming region 4, and a second
A first gate electrode 8 made of the same first poly-Si layer and crossing over the region 6 is formed on the element formation region 6 .

第2図(b)及び第3図(bll参 照−で上記ポリSi被覆体107、第1のゲート電極8
及びフィールド酸化膜2をマスクにして第2の素子形成
領域に選択的に10′6〜1QI7c、−1程度の低濃
度にn型オフセット領域形成用の燐(P”)をイオン注
入する。109.110は低濃度P゛゛入領域を示す。
In FIG. 2(b) and FIG. 3 (see bll), the poly-Si coating 107, the first gate electrode 8
Then, using the field oxide film 2 as a mask, ions of phosphorus (P'') for forming an n-type offset region are selectively implanted into the second element formation region at a low concentration of about 10'6 to 1QI7c, -1.109 .110 indicates a low concentration P input region.

第2図(C1及び第3図(C)参照 次いで上記基板上に厚さ2000人程度0サCVD−5
in膜を形成し、RIB処理による全面エツチングを行
って上記CVD−5in、膜をエッチバックし、第1の
ゲート電極8の側面に厚さ2000人程度0サイドウオ
ール状5iOz膜11を残留形成させる。この際ポリS
i被覆体107の側面にもサイドウオール状SiO□膜
11が形成される。
Refer to Figure 2 (C1 and Figure 3 (C)) Next, apply CVD-5 to a thickness of about 2,000 layers on the above substrate.
A 5iOz film is formed, and the entire surface is etched by RIB processing to etch back the CVD-5in film to form a residual sidewall-like 5iOz film 11 with a thickness of about 2000 on the side surface of the first gate electrode 8. . At this time, PolyS
A sidewall-like SiO□ film 11 is also formed on the side surface of the i-covering body 107.

第2図(d+及び第3図(dll参 照−で上記ポリSi被覆体107と第1のゲート電極8
上に例えば熱酸化により第2のゲート酸化膜12を形成
した後、該基板上に厚さ4000人程度0第2のポリS
i層を気相成長し、該第2のポリSi層に導電性を付与
した後、レジストパターン13をマスクにして該第2の
ポリSi層をバターニングしポリSi被覆体107上に
第2のポリSi層よりなるコントロールゲート電極14
を形成する。
The poly-Si coating 107 and the first gate electrode 8 are shown in FIG. 2 (d+ and FIG. 3 (dll)).
After forming a second gate oxide film 12 on the substrate by, for example, thermal oxidation, a second polysilicon film 12 with a thickness of about 4,000 mm is formed on the substrate.
After vapor-phase growing the i-layer and imparting conductivity to the second poly-Si layer, the second poly-Si layer is patterned using the resist pattern 13 as a mask to form a second poly-Si layer on the poly-Si coating 107. A control gate electrode 14 made of a poly-Si layer of
form.

第2図(el及び第3図(e)参照 次いで第2の素子形成領域5及び第1のゲート電極8の
延在領域上をレジスト膜15で覆い、上記レジストパタ
ーン13及びコントロールゲート電極14をマスクにし
て第2のゲート酸化膜12及びポリSi被覆体107を
パターニングし、コントロールゲート電極14の下部に
第2のゲート酸化膜12を介して前記第1のポリSi層
よりなるフローティングゲート電極7を形成する。
Refer to FIG. 2 (el) and FIG. 3 (e). Next, the second element forming region 5 and the extending region of the first gate electrode 8 are covered with a resist film 15, and the resist pattern 13 and the control gate electrode 14 are covered with a resist film 15. The second gate oxide film 12 and poly-Si coating 107 are patterned using a mask, and a floating gate electrode 7 made of the first poly-Si layer is formed below the control gate electrode 14 via the second gate oxide film 12. form.

第2図(f)及び第3図<n参照 次いでコントロールゲート電極7をマスクにし第1の素
子形成領域4に砒素(As’ )を10”am−’程度
の高濃度にイオン注入し、且つ同時に第2の素子形成領
域5に前記側面にサイドウオール状SiO□膜11を有
する第1のゲート電極8をマスクにして上記同様の濃度
にAs”をイオン注入し、所望の活性化熱処理を行って
第1の素子形成領域4に、フローティングゲート電極7
の下部領域に直に接する第1のn゛型トドレイン領域1
6びソース領域17を、また第2の素子形成領域5に第
1のゲート電極8の下部領域に接するn型オフセット領
域9.10及び該n型オフセット領域9.10の外側端
部に接する第2のn゛゛ドレイン領域18及びソース領
域19を形成する。
Refer to FIG. 2(f) and FIG. 3<n. Then, using the control gate electrode 7 as a mask, arsenic (As') is ion-implanted into the first element formation region 4 at a high concentration of about 10"am-', and At the same time, As'' is ion-implanted into the second element forming region 5 at the same concentration as above using the first gate electrode 8 having the sidewall-like SiO□ film 11 on the side surface as a mask, and a desired activation heat treatment is performed. A floating gate electrode 7 is formed in the first element formation region 4.
A first n-type drain region 1 directly in contact with a lower region of
6 and the source region 17, and an n-type offset region 9.10 in contact with the lower region of the first gate electrode 8 in the second element formation region 5, and an 2 n'' drain regions 18 and source regions 19 are formed.

第2図(0参照 以後通常通り不純物ブロック用酸化膜20の形成、層間
絶縁膜21の形成、コンタクト窓22.23.24.2
5等の形成、AI等よりなる記憶素子(T9)のワード
配線26、ビット配線27、及び論理素子(TL )の
ドレイン配線28、ソース配線29等の形成がなされて
本発明に係る半導体装置が完成する。
FIG. 2 (see 0) Formation of impurity blocking oxide film 20, formation of interlayer insulating film 21, contact window 22.23.24.2
5 and the like, the word wiring 26 and bit wiring 27 of the memory element (T9) made of AI etc., and the drain wiring 28 and source wiring 29 of the logic element (TL) are formed, and the semiconductor device according to the present invention is completed. Complete.

上記実施例に示されたように本発明の方法により容易に
形成される本発明に係る半導体装置においては、高集積
化し且つ高速化する目的でショートチャネル化される論
理素子はホットキャリアの発生による素子特性の変動を
防止するためにLDD構造を有する絶縁ゲート型トラン
ジスタで構成され、且つ該論理素子と同一基板状に併設
されるフローティングゲートを有し書替え可能な固定記
憶素子には、LDD構造を有せしめずにドレイン及びソ
ース領域とゲート下部領域とが直に接するようにしてド
レイン端部の電界強度を高め、これによって書込み及び
消去の効率を高めた書替え可能な固定記憶素子が用いら
れる。
As shown in the above embodiments, in the semiconductor device according to the present invention that is easily formed by the method of the present invention, logic elements that are short-channeled for the purpose of high integration and speeding up are caused by the generation of hot carriers. The LDD structure is used for a rewritable fixed memory element that is composed of an insulated gate transistor having an LDD structure to prevent variations in element characteristics and has a floating gate that is placed on the same substrate as the logic element. A rewritable fixed memory element is used in which the electric field strength at the end of the drain is increased by directly contacting the drain and source regions with the lower gate region without the need to form a gate, thereby increasing the efficiency of writing and erasing.

従って固定記憶素子情報の書替えが効率よく、且つ精度
よく行われるので、該半導体装置による情報処理速度及
び情報処理精度が向上する。
Therefore, the fixed memory element information can be rewritten efficiently and accurately, so that the information processing speed and information processing accuracy of the semiconductor device are improved.

なお本発明は固定記憶素子にE”FROMを用いる場合
にも勿論適用される。
Note that the present invention is of course applicable to the case where an E''FROM is used as a fixed memory element.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によればLDD構造の絶縁ゲー
ト型トランジスタと併設されるEPROMやE2PI?
OMの書込み、消去の効率及び精度が向上する。
As explained above, according to the present invention, an EPROM or an E2PI that is installed together with an insulated gate transistor with an LDD structure?
The efficiency and accuracy of writing and erasing OM is improved.

従って本発明によればLDD構造の絶縁ゲート型トラン
ジスタとEPROMやEtPROM等が併設される高集
積度半導体icの動作速度及び動作の信頼度の向上が図
れる。
Therefore, according to the present invention, it is possible to improve the operating speed and reliability of a highly integrated semiconductor IC in which an insulated gate transistor having an LDD structure, an EPROM, an EtPROM, etc. are provided together.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構造の一実施例を示す模式側断面図(
a)及び模式平面図(b)、 第2図(al〜(g)は本発明の方法の一実施例の工程
断面図、 第3図(al〜(f)は本発明の方法の一実施例の工程
平面図、 第4図(a)〜(C1は従来方法の工程断面図である。 図において、 =1はp−型Si基板、 2はフィールド酸化膜、 3はp型チャネルストッパ、 4及び5は第1及び第2の素子形成領域、6は第1のゲ
ート酸化膜、 7はフローティングゲー)・電極、 8は論理素子駆動用の第1のゲート電極、9及び10は
n型オフセット領域、 11はサイドウオール状SiO□膜、 12は第2のゲート酸化膜、 14はコントロールゲート電極、 16は第1のn゛型トドレイン領域 17は第1のn゛゛ソース領域、 18は第2のn゛型トドレイン領域 19は第2のn゛゛ソース領域を示す。 TLはL[lO槽構造MOS)ランジスタ、T二はEF
ROM を示す。 (の イリ′1さf[面図 (b)平面図 平りで明のネ鷺遣の一貢方午イ列の項弐国策;図 13Lシストでターン 弔 2 図
FIG. 1 is a schematic side sectional view (
a) and a schematic plan view (b), Fig. 2 (al to (g) are process sectional views of one embodiment of the method of the present invention, and Fig. 3 (al to (f) are one implementation of the method of the present invention A process plan view of the example, and FIGS. 4(a) to (C1 are process cross-sectional views of the conventional method. In the figure, =1 is a p-type Si substrate, 2 is a field oxide film, 3 is a p-type channel stopper, 4 and 5 are first and second element formation regions, 6 is a first gate oxide film, 7 is a floating gate electrode, 8 is a first gate electrode for driving a logic element, 9 and 10 are n-type 11 is a sidewall-like SiO□ film, 12 is a second gate oxide film, 14 is a control gate electrode, 16 is a first n-type drain region 17 is a first n-type source region, 18 is a first n-type drain region; The second n-type drain region 19 indicates the second n-type source region. TL is an L [IO tank structure MOS] transistor, and T2 is an EF transistor.
Indicates ROM. (Iri'1 f [Side view (b) Planar view of the Ming Dynasty's heron dispatch, the section of the tributary direction, the column of the two countries; Figure 13.

Claims (2)

【特許請求の範囲】[Claims] (1)フローティングな下層ゲートを含む多層構造のゲ
ートと、多層構造ゲートの下部領域に直に接するドレイ
ン領域及びソース領域を持ち、該下層ゲートに電荷を貯
えることによって情報の記憶がなされる半導体記憶素子
と、 単層構造のゲートを有しドレイン及びソース領域とゲー
ト下部領域との間に該ドレイン及びソース領域と同導電
型を有する該ドレイン及びソース領域より低不純物濃度
のオフセット領域を設けた絶縁ゲート型トランジスタと
が、 同一半導体基板上に併設されてなることを特徴とする半
導体装置。
(1) Semiconductor memory that has a multilayered gate including a floating lower gate, a drain region and a source region that are in direct contact with the lower region of the multilayered gate, and stores information by storing charge in the lower gate. an insulator having an element and a gate having a single-layer structure, and an offset region having a lower impurity concentration than the drain and source regions and having the same conductivity type as the drain and source regions between the drain and source regions and the lower gate region; A semiconductor device characterized in that a gate type transistor is provided on the same semiconductor substrate.
(2)半導体基板が絶縁膜によって画定表出されてなる
一導電型の第1及び第2の素子形成領域上に第1のゲー
ト絶縁膜を形成した後、第1の導電体膜によって該第1
の素子形成領域の全面上を選択的に覆う被覆体と該第2
の素子形成領域上を選択的に覆って横切る第1のゲート
電極とを同時に形成する工程と、 該第1のゲート電極をマスクにして該第2の素子形成領
域に選択的にオフセット領域形成用の第1の反対導電型
不純物を導入する工程と、 該基板の全面上に絶縁膜を形成し、該絶縁膜を異方性ド
ライエッチング手段により全面エッチングして、該被覆
体と第1のゲート電極の側面とに選択的に該絶縁膜をサ
イドウォール状に残留させる工程と、 少なくとも該被覆体の表面に第2のゲート絶縁膜を形成
した後、該被覆体上に第2の導電体膜よりなる第2のゲ
ート電極を形成する工程と、該第2のゲート電極に整合
して該被覆体をパターニングし該第2のゲート電極の下
部にフローティングな第3のゲート電極を形成する工程
と、ドレイン、ソース領域形成用の第2の反対導電型不
純物を、該第1の素子形成領域に該第2及び第3のゲー
ト電極をマスクにして選択的に導入すると同時に、該第
2素子形成領域に該サイドウォール状絶縁膜を含む第1
のゲート電極をマスクにして選択的に導入する工程とを
含むことを特徴とする半導体装置の製造方法。
(2) After forming a first gate insulating film on the first and second element formation regions of one conductivity type formed by defining and exposing the semiconductor substrate by an insulating film, the first gate insulating film is 1
a covering body selectively covering the entire surface of the element forming region;
a step of simultaneously forming a first gate electrode that selectively covers and traverses the element formation region; and a step of selectively forming an offset region in the second element formation region using the first gate electrode as a mask. forming an insulating film on the entire surface of the substrate, etching the entire surface of the insulating film by an anisotropic dry etching means, and etching the covering body and the first gate; a step of selectively leaving the insulating film in the form of a sidewall on the side surface of the electrode; and after forming a second gate insulating film on at least the surface of the covering, forming a second conductive film on the covering. forming a second gate electrode, and patterning the coating in alignment with the second gate electrode to form a floating third gate electrode under the second gate electrode. , a second opposite conductivity type impurity for forming drain and source regions is selectively introduced into the first element forming region using the second and third gate electrodes as masks, and at the same time, forming the second element. a first region including the sidewall-like insulating film;
A method for manufacturing a semiconductor device, comprising the step of selectively introducing the gate electrode using the gate electrode as a mask.
JP63087614A 1988-04-08 1988-04-08 Semiconductor device and manufacture of the same Pending JPH01259566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087614A JPH01259566A (en) 1988-04-08 1988-04-08 Semiconductor device and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087614A JPH01259566A (en) 1988-04-08 1988-04-08 Semiconductor device and manufacture of the same

Publications (1)

Publication Number Publication Date
JPH01259566A true JPH01259566A (en) 1989-10-17

Family

ID=13919856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087614A Pending JPH01259566A (en) 1988-04-08 1988-04-08 Semiconductor device and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH01259566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449634A (en) * 1992-10-27 1995-09-12 Nec Corporation Method of fabricating non-volatile semiconductor memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143478A (en) * 1984-08-08 1986-03-03 Hitachi Ltd Manufacture of semiconductor device
JPS62169470A (en) * 1986-01-22 1987-07-25 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143478A (en) * 1984-08-08 1986-03-03 Hitachi Ltd Manufacture of semiconductor device
JPS62169470A (en) * 1986-01-22 1987-07-25 Hitachi Ltd Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449634A (en) * 1992-10-27 1995-09-12 Nec Corporation Method of fabricating non-volatile semiconductor memory device

Similar Documents

Publication Publication Date Title
KR930011232A (en) Nonvolatile semiconductor memory device and manufacturing method thereof
EP1548831A1 (en) Semiconductor storage device and its manufacturing method
US5814543A (en) Method of manufacturing a semicondutor integrated circuit device having nonvolatile memory cells
GB2026768A (en) Process for the production of an integrated multilayer insulation storage cell
US5911105A (en) Flash memory manufacturing method
JP2655124B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH0817948A (en) Semiconductor device and its manufacture
JP3049100B2 (en) Semiconductor device and manufacturing method thereof
JPH1092961A (en) Fresh memory device and its manufacture
JP2870086B2 (en) Manufacturing method of MOS nonvolatile semiconductor memory device
JPH01259566A (en) Semiconductor device and manufacture of the same
JP3461107B2 (en) Manufacturing method of semiconductor integrated circuit
JP7007013B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JPH03190230A (en) Semiconductor device and manufacture thereof
JP3389003B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP3139275B2 (en) Semiconductor memory device and method of manufacturing the same
JP2582931B2 (en) Method for manufacturing semiconductor device
JPH02262376A (en) Non-volatile semiconductor memory and manufacture thereof
JP4040138B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JP2729622B2 (en) Method for manufacturing semiconductor memory device
JPH0223671A (en) Non-volatile semiconductor memory device and manufacture thereof
JPH02209767A (en) Manufacture of semiconductor device
JP3630484B2 (en) Method for manufacturing nonvolatile memory
JPS6329969A (en) Manufacture of floating gate type non-volatile semiconductor storage device
JP3212689B2 (en) Semiconductor device and manufacturing method thereof