JPH01202872A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01202872A
JPH01202872A JP2802188A JP2802188A JPH01202872A JP H01202872 A JPH01202872 A JP H01202872A JP 2802188 A JP2802188 A JP 2802188A JP 2802188 A JP2802188 A JP 2802188A JP H01202872 A JPH01202872 A JP H01202872A
Authority
JP
Japan
Prior art keywords
layer
beams
gaas
gaas layer
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2802188A
Other languages
Japanese (ja)
Other versions
JP2508173B2 (en
Inventor
Keiichi Ohata
惠一 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63028021A priority Critical patent/JP2508173B2/en
Publication of JPH01202872A publication Critical patent/JPH01202872A/en
Application granted granted Critical
Publication of JP2508173B2 publication Critical patent/JP2508173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To manufacture a semiconductor device, which has small source resistance and low noises is operated at high speed, by forming an n<+>-GaAs layer onto the side face of a step and working the n<+>-GaAs layer as an n<+> contact layer. CONSTITUTION:A step is implanted with Ga beams from the oblique direction in an As atmosphere, an undoped GaAs layer 2 coating the step is deposited, Ga beams and Si beams are applied similarly while Al beams are applied, and an n<+>-GaAs layer 4 is deposited onto the side face of the step and an n<+>- AlGaAs layer 3 onto a flat surface. Al beams are interrupted, the step is implanted with Ga beams and Si beams from the oblique direction in the As atmosphere, and an n<+>-GaAs layer 5 as a cap layer is deposited. The n<+>-GaAs layer 5 on a flat surface is etched selectively to expose the n<+>-AlGaAs layer 3, and a gate electrode 11 is formed onto the exposed layer 3. Consequently, the n<+>-GaAs layer 4 is grown on the side face of the step, and the layer 4 functions as an n<+> contact layer. Accordingly, the interface is improved, contact resistance is lowered, and a source resistance is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法、特に化合物半導体を
用いた超高周波超高速の半導体装置の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing an ultrahigh frequency and ultrahigh speed semiconductor device using a compound semiconductor.

〔従来の技術〕[Conventional technology]

fi’−”AI!GaASとアンドープGaAsのへテ
ロ接合で成る選択ドープ構造は、電子不純物の少いGa
As中を走行するため、高移動度、高速度になり低雑音
デバイス、高速デバイスに利用されている。
fi'-"AI! The selectively doped structure consisting of a heterojunction of GaAS and undoped GaAs has GaAs with few electronic impurities.
Because it travels through As, it has high mobility and high speed, and is used in low-noise and high-speed devices.

第2図は従来の電界効果トラジスタの一例の断面図であ
る。
FIG. 2 is a cross-sectional view of an example of a conventional field effect transistor.

半絶縁性GaAs基板1上にアンドープGaAs層2.
n” −AeGaAs層3が設けられ、ゲート電極11
及びソース、ドレインオーム性電極12.13が設けら
れている。電子は層2と3のへテロ接合界面のGaAs
層2の側をソースからトレインに向かって走行し、ゲー
ト電極11で変調を受けてトランジスタ動作をなす。さ
て、このトラジスタにおいて、低雑音、高速性を向上さ
せるためには、ソース抵抗を低減することが極めて重要
である。
An undoped GaAs layer 2 on a semi-insulating GaAs substrate 1.
n”-AeGaAs layer 3 is provided, and the gate electrode 11
And source and drain ohmic electrodes 12 and 13 are provided. The electrons are in GaAs at the heterojunction interface between layers 2 and 3.
It runs along the layer 2 side from the source toward the train, and is modulated by the gate electrode 11 to perform a transistor operation. Now, in order to improve low noise and high speed in this transistor, it is extremely important to reduce the source resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、ソースおよびドレイン電極12.13は、Au−
Ge等をn” −AI!GaAs層上に蒸着し、熱処理
して、n”−AI!GaAs層3、およびアンドープG
aAs層2と合金化させて形成していた。しかしながら
、この方法では、アンドープGaAs層2に直接電極を
取ることになるため、接触抵抗が十分に小さくないこと
および合金層と結晶層との界面が凹凸の激しい面になる
ことの欠点があった。これを改良するものとしてソース
およびドレイン電極12.1’3の部分の結晶層をエツ
チングした後、選択的にn” −GaAsを再成長する
方法があるが、再成長界面の品質が良くない恐れがある
Conventionally, the source and drain electrodes 12.13 are made of Au-
Ge, etc. are deposited on the n''-AI!GaAs layer and heat treated to form the n''-AI! GaAs layer 3 and undoped G
It was formed by alloying with the aAs layer 2. However, in this method, since the electrode is directly connected to the undoped GaAs layer 2, the contact resistance is not small enough and the interface between the alloy layer and the crystal layer becomes a highly uneven surface. . One way to improve this is to selectively re-grow n''-GaAs after etching the crystal layer in the source and drain electrodes 12.1'3, but there is a risk that the quality of the re-grown interface will be poor. There is.

本発明の目的は、電極形成部分における合金層と結晶層
との界面の品質を損なうことなく、ソース抵抗の小さい
半導体装置の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device with low source resistance without impairing the quality of the interface between the alloy layer and the crystal layer in the electrode forming portion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、高抵抗基板にステッ
プを形成する工程と、化合物半導体を構成する第1の元
素の雰囲気中で第2の元素の分子ビームを前記基板の主
面に対して斜め方向から照射して前記ステップ及び主面
を覆う第1の半導体層を形成する工程と、前記第2の元
素の分子ビームとドーパントの分子ビームとを前記基板
の主面に対して斜め方向から照射すると共に、前記第1
の半導体層より電子親和力の小さい第3の半導体層の一
成分となる第3の元素の分子ビームを前記ステップの側
面につかない方向から照射して前記ステップの側面には
ドープされた第2の半導体層を形成し前記主面の平坦面
には第3の半導体層を形成する工程とを含んで構成され
る。
The method for manufacturing a semiconductor device of the present invention includes the steps of forming a step on a high-resistance substrate, and applying a molecular beam of a second element to the main surface of the substrate in an atmosphere of a first element constituting a compound semiconductor. forming a first semiconductor layer covering the step and the main surface by irradiating from an oblique direction; and irradiating the second element molecular beam and the dopant molecular beam from an oblique direction with respect to the main surface of the substrate. while irradiating the first
A molecular beam of a third element, which is a component of a third semiconductor layer having a lower electron affinity than that of the semiconductor layer, is irradiated from a direction that does not touch the side surface of the step, so that the side surface of the step is doped with a second semiconductor layer. and forming a third semiconductor layer on the flat main surface.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(e)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図である。
FIGS. 1A to 1E are cross-sectional views of a semiconductor chip shown in order of steps for explaining an embodiment of the present invention.

第1図(a)に示すように、半絶縁性GaAs基板1に
ステップを形成する。
As shown in FIG. 1(a), steps are formed on a semi-insulating GaAs substrate 1. As shown in FIG.

次に、第1図(b)に示すように、分子線エビタクシ−
法を用い、As雰囲気中でGaビームをステップに対し
て斜め方向から照射し、ステップを覆うアンドープGa
As層2を堆積する。
Next, as shown in Fig. 1(b), molecular beam shrimp taxi
Using the method, a Ga beam is irradiated obliquely to the step in an As atmosphere to form an undoped Ga beam covering the step.
Deposit As layer 2.

次に、第1図(C)に示すように、同じく分子線エビタ
クシ−法を用い、As雰囲気中で、Gaビームとドーパ
ントとなるSiビームとをステップに対して斜め方向か
ら照射して、同時にAeビームをステップの側面につか
ない方向より照射して、ステップの側面にはn” −G
aAS層4を、平坦面にはGaAs層3を堆積する。
Next, as shown in FIG. 1(C), using the same molecular beam epitaxy method, a Ga beam and a Si beam serving as a dopant are irradiated obliquely to the step in an As atmosphere. The Ae beam is irradiated from a direction that does not touch the side of the step, and the side of the step is exposed to n”-G.
An aAS layer 4 is deposited, and a GaAs layer 3 is deposited on the flat surface.

次に、第1図(d)に示すように、AI!ビームを遮断
し、As雰囲気中でGaビームとSiビームをステップ
に対して斜め方向から照射して、キャップ層となるn”
 −GaAs層5を堆積する。
Next, as shown in FIG. 1(d), AI! The beam is blocked, and the step is irradiated with a Ga beam and a Si beam from an oblique direction in an As atmosphere to form an n'' cap layer.
- deposit a GaAs layer 5;

次に、第1図(e)に示すように、平坦面のn”−Ga
As層5を選択エツチングしてn+−Aj’GaAs層
3を露出させて、そこにゲート電極11を形成する。ま
た、n” −GaAs層5の上にソースおよびドレイン
電極12.13を形成して電界効果トランジスタを完成
させ、る。
Next, as shown in FIG. 1(e), the n”-Ga on the flat surface is
The As layer 5 is selectively etched to expose the n+-Aj'GaAs layer 3, and a gate electrode 11 is formed thereon. Further, source and drain electrodes 12 and 13 are formed on the n''-GaAs layer 5 to complete the field effect transistor.

第1図(c)に示したように、ステップ側面にはn”−
GaAs層4が成長し、これがn+32275層として
働くことになる。この層4は、真空に引いた後にAsを
導入したAs雰囲気中で連続エビタクシ−で形成される
ので、界面は良質で低い選択抵抗、ソース抵抗が実現さ
れる。
As shown in Figure 1(c), there is an n”-
A GaAs layer 4 is grown, which will act as an n+32275 layer. Since this layer 4 is formed by continuous epitaxy in an As atmosphere into which As is introduced after being evacuated, the interface is of good quality and low selective resistance and source resistance are realized.

上記実施例では、ソース側にのみステップを形成し、n
+32275層を形成した場合について説明したが、ド
レイン側にも形成することも可能である。
In the above embodiment, steps are formed only on the source side, and n
Although the case where the +32275 layer is formed has been described, it is also possible to form it on the drain side.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ステップを形成してス
テップの側面にn” −GaAs層を形成してこれがn
+32275層として作用するようにし、ゲート電極は
n” AffGaAs層に、ソース及びドレイン電極は
n” −GaAS層にそれぞれ形成するようにしたので
、ソース抵抗が小さく、低雑音で高速動作の半導体装置
を製造することができるという効果を有する。
As explained above, the present invention forms a step, forms an n''-GaAs layer on the side surface of the step, and forms an n''-GaAs layer on the side surface of the step.
The gate electrode is formed on the n'' AffGaAs layer, and the source and drain electrodes are formed on the n''-GaAS layer, so that a semiconductor device with low source resistance, low noise, and high speed operation can be obtained. It has the effect that it can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図は従
来の電界効果トランジスタの一例の断面図である。 1・・・半絶縁性GaAs基板、2・・・アンドープG
aAs層、3−n”−AI!GaAs層、4.5・・・
n”−GaAs層、11・・・ゲート電極、12・・・
ソース電極、13・・・ドレイン電極。
FIGS. 1(a) to 1(e) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an example of a conventional field effect transistor. 1... Semi-insulating GaAs substrate, 2... Undoped G
aAs layer, 3-n”-AI!GaAs layer, 4.5...
n''-GaAs layer, 11... gate electrode, 12...
Source electrode, 13... drain electrode.

Claims (1)

【特許請求の範囲】[Claims]  高抵抗基板にステップを形成する工程と、化合物半導
体を構成する第1の元素の雰囲気中で第2の元素の分子
ビームを前記基板の主面に対して斜め方向から照射して
前記ステップ及び主面を覆う第1の半導体層を形成する
工程と、前記第2の元素の分子ビームとドーパントの分
子ビームとを前記基板の主面に対して斜め方向から照射
すると共に、前記第1の半導体層より電子親和力の小さ
い第3の半導体層の一成分となる第3の元素の分子ビー
ムを前記ステップの側面につかない方向から照射して前
記ステップの側面にはドープされた第2の半導体層を形
成し前記主面の平坦面には第3の半導体層を形成する工
程とを含むことを特徴とする半導体装置の製造方法。
forming a step on a high-resistance substrate; and irradiating a molecular beam of a second element from an oblique direction with respect to the main surface of the substrate in an atmosphere of a first element constituting a compound semiconductor to form a step on a high-resistance substrate. a step of forming a first semiconductor layer covering a surface of the substrate; and irradiating a molecular beam of the second element and a molecular beam of a dopant from an oblique direction with respect to the principal surface of the substrate; Forming a doped second semiconductor layer on the side surface of the step by irradiating a molecular beam of a third element, which is a component of a third semiconductor layer having a lower electron affinity, from a direction that does not touch the side surface of the step. and forming a third semiconductor layer on the flat main surface.
JP63028021A 1988-02-08 1988-02-08 Method for manufacturing semiconductor device Expired - Lifetime JP2508173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63028021A JP2508173B2 (en) 1988-02-08 1988-02-08 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028021A JP2508173B2 (en) 1988-02-08 1988-02-08 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01202872A true JPH01202872A (en) 1989-08-15
JP2508173B2 JP2508173B2 (en) 1996-06-19

Family

ID=12237097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028021A Expired - Lifetime JP2508173B2 (en) 1988-02-08 1988-02-08 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2508173B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281475A (en) * 1987-05-14 1988-11-17 Nec Corp Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281475A (en) * 1987-05-14 1988-11-17 Nec Corp Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JP2508173B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JP2536523B2 (en) Method for manufacturing semiconductor device
JP2748797B2 (en) Semiconductor device
JPS6353711B2 (en)
JPH01202872A (en) Manufacture of semiconductor device
JP3084820B2 (en) Compound semiconductor device
JPS6354228B2 (en)
JP2652647B2 (en) Heterojunction field effect transistor
JP3106747B2 (en) Method for manufacturing compound semiconductor FET
JPH03231424A (en) Manufacture of compound semiconductor device
GB2168847A (en) Semiconductor devices
JPS6376380A (en) Semiconductor device
JP2600228B2 (en) Semiconductor device
JPS6390865A (en) Manufacture of field-effect transistor
JP2592161B2 (en) Quantum interference transistor
JPS62204578A (en) Manufacture of field-effect transistor
JPS62226669A (en) Manufacture of field-effect transistor
JPH02165679A (en) Semiconductor device and manufacture thereof
JPH02191345A (en) Manufacture of field-effect transistor
JPS6394688A (en) Manufacture of field-effect transistor
JPH02306668A (en) Semiconductor device with quantum fine wire and manufacture thereof
JPH04273447A (en) Semiconductor device
JPH05218099A (en) Heterojunction field-effect transistor
JPH0323641A (en) Manufacture of field-effect transistor
JPS61248479A (en) Compound semiconductor device
JPH02113539A (en) Manufacture of semiconductor device