JPS62226669A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS62226669A
JPS62226669A JP7015786A JP7015786A JPS62226669A JP S62226669 A JPS62226669 A JP S62226669A JP 7015786 A JP7015786 A JP 7015786A JP 7015786 A JP7015786 A JP 7015786A JP S62226669 A JPS62226669 A JP S62226669A
Authority
JP
Japan
Prior art keywords
layer
ohmic
gate
metal
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7015786A
Other languages
Japanese (ja)
Inventor
Yasuyuki Suzuki
康之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7015786A priority Critical patent/JPS62226669A/en
Publication of JPS62226669A publication Critical patent/JPS62226669A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce source resistance largely, and to obtain an FET having high performance by applying a stopper layer and an ohmic metallic layer to dug-in source-drain electrode sections, conducting alloying, diffusing the ohmic metal in the transverse direction and alloying the ohmic metal. CONSTITUTION:A wafer in which semiconductor layers 5, 3 are laminated continuously on a high resistance substrata 6 is used, and a gate l in gate length of d2 is formed. A mask 2 in length d1 is shaped onto the gate, source-drain regions are etched, employing the mask as a mask, and sections up to the semiconductor layer 5 are exposed. A metal, which has no ohmic property with the layer 5 and is not alloyed, is applied and employed as a stopper layer 8, and a metal 7 having ohmic properties with the layer 5 is applied. The mask 2 is removed, and the ohmic metal is alloyed through alloying and ohmic properties with the layer 5 are given. A dopant functioning as an impurity to the layer 5 in the metal 7 is diffused in the transverse direction (the gate direction) on the alloying, and shaped, intruding transversely only by diffusion length of d3. Accordingly, an effective interval between a source and the gate is shortened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電界効果トランジスタの製造方法特に寄生抵
抗が小さく、微細寸法の高性能電界効果トランジスタの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a field effect transistor, and particularly to a method for manufacturing a high performance field effect transistor with small parasitic resistance and small dimensions.

(従来の技術) 従来の電界効果トランジスタの製造方法として、GaA
sとAlGaAsのへテロ界面の2次元電子ガスを用い
た、短電極同構造の場合を例にとって説明する。
(Prior art) As a conventional method for manufacturing field effect transistors, GaA
An example of a short electrode with the same structure using a two-dimensional electron gas at the heterointerface of S and AlGaAs will be explained.

この電界効果トランジスタの構造は、第2図の断面構造
図に示すように、高抵抗のGaAs基板6上に、第1の
半導体層5として高純度のGaAs層、第2の半導体層
3としてn型にドープされたAlo、3Gao7AS層
を用いて、第1の半導体のGaAsと第2の半導体のA
lGaAsとの電子親和力差により、GaAs側に2次
元電子ガス4が形成される。そして、ソース及びドレイ
ン電極は、AuGe/Niを成分とする金属を第2の半
導体表面から被着し、420°C〜450°Cの温度で
アロイすることにより、深さ方向に第2の半導体層3及
びドナー不純物密度の小さい第1の半導体層5まで直接
合金化して、2次元電子層まで達するように形成される
The structure of this field effect transistor is, as shown in the cross-sectional structural diagram of FIG. A type-doped Alo, 3Gao7AS layer is used to combine GaAs in the first semiconductor and A in the second semiconductor.
A two-dimensional electron gas 4 is formed on the GaAs side due to the difference in electron affinity with lGaAs. Then, the source and drain electrodes are formed by depositing a metal containing AuGe/Ni from the surface of the second semiconductor and alloying it at a temperature of 420°C to 450°C. The layer 3 and the first semiconductor layer 5 having a low donor impurity density are directly alloyed to form a two-dimensional electron layer.

(発明が解決しようとする問題点) 以上のように製造された電界効果トランジスタにおいて
、高性能な特性を得るための重要な要素として、ソース
抵抗を小さくすることがあげられる。その1つとして、
ソース・ゲート間、ゲート・ドレイン間を短くすること
があるが、従来の製造方法ではソース・ゲート間隔を0
.5pm程度にするのが限界であり、これ以上近すけよ
うとすると、アロイの際にソース・ドレイン金属とゲー
ト金属が反応して、接触してしまう。また、ソース抵抗
を下げるためオーミック金属の量を多くすると、合金層
が深くなりドレインコンダクタンスが増大する欠点があ
る。
(Problems to be Solved by the Invention) In the field effect transistor manufactured as described above, an important element for obtaining high performance characteristics is to reduce the source resistance. One of them is
The distance between the source and gate and the distance between the gate and drain may be shortened, but in conventional manufacturing methods, the distance between the source and gate is reduced to 0.
.. The limit is about 5 pm, and if you try to get it closer than that, the source/drain metal and gate metal will react during alloying and come into contact. Furthermore, if the amount of ohmic metal is increased in order to lower the source resistance, the alloy layer becomes deeper and the drain conductance increases.

(問題点を解決するための手段) 本発明は、電界効果トランジスタの製造方法において、
ソース、ドレイン電極部を掘り込んで、その部分にスト
ッパー層、オーミックメタル層を被着して、アロイを行
って、横方向にオーミックメタルを拡散させ合金化させ
ることを特徴とする電界効果トランジスタの製造方法で
ある。
(Means for Solving the Problems) The present invention provides a method for manufacturing a field effect transistor, which includes:
A field effect transistor characterized in that the source and drain electrode parts are dug, a stopper layer and an ohmic metal layer are deposited on the parts, and an alloy is formed by diffusing the ohmic metal laterally to form an alloy. This is the manufacturing method.

(作用) 以下第1図(a)〜(d)の断面溝造を参照しつつ、本
発明の構成及び効果について記述する。
(Function) The structure and effects of the present invention will be described below with reference to the cross-sectional groove structures shown in FIGS. 1(a) to 1(d).

まず第1図(a)に示すように高抵抗基板q上に第1の
半導体層5、第2の半導体層3を例えばMBE法にて連
続して積層したウェハーを用い、ゲート長d2のゲート
2を形成する。次に、第1図(b)に示すように、長さ
doのマスク1をゲート上に形成して、これをマスクに
ソース、ドレイン領域をエツチングを行い、第1の半導
体層5まで露出させる。次に第1図(e)に示すように
、第1の半導体層5とオーミック性がなく、合金化しな
い金属を薄く被着(ストッパー層)8した後に、第1の
半導体層5とオーミック性がある金属7を被着する。次
にマスク1を除去した後、アロイを行ってオーミック金
属を合金化して、第1の半導体層5とオーミック性をと
る。この時、アロイの際に横方向(ゲート方向)にオー
ミック金属7中の第1の半導体層5に対して不純物とし
て働くドーパントが拡散し、この拡散長をd3とすると
、合金層は第1図(d)に示すように厚さd3だけ横に
入り込んで形成される。したがって、実効的なソース・
ゲート間隔は(d、−d2)12−d3と短くなる。そ
のためソース抵抗が低減される。また、オーミック金属
7の下に第1の半導体層5に対して不純物として働かな
いストッパー層8があり、アロイを行っても第1の半導
体層5と反応しないため、アロイの際にオーミック金属
7の量を多くしても、深さ方向のドーパントの拡散が抑
えられ、ドレインコンダクタンスが小さくできる。
First, as shown in FIG. 1(a), a wafer in which a first semiconductor layer 5 and a second semiconductor layer 3 are successively stacked on a high-resistance substrate q by, for example, the MBE method is used, and a gate with a gate length d2 is formed. form 2. Next, as shown in FIG. 1(b), a mask 1 having a length of do is formed on the gate, and using this as a mask, the source and drain regions are etched to expose the first semiconductor layer 5. . Next, as shown in FIG. 1(e), after depositing a thin layer (stopper layer) 8 of a metal that has no ohmic properties and does not form an alloy with the first semiconductor layer 5, A certain metal 7 is deposited. Next, after removing the mask 1, alloying is performed to form an alloy of ohmic metals to obtain ohmic properties with the first semiconductor layer 5. At this time, during alloying, the dopant acting as an impurity diffuses into the first semiconductor layer 5 in the ohmic metal 7 in the lateral direction (gate direction), and if this diffusion length is d3, the alloy layer is As shown in (d), it is formed by extending laterally by a thickness d3. Therefore, the effective source
The gate interval is shortened to (d, -d2)12-d3. Therefore, source resistance is reduced. Further, there is a stopper layer 8 under the ohmic metal 7 that does not act as an impurity for the first semiconductor layer 5, and does not react with the first semiconductor layer 5 even if alloying is performed. Even if the amount of is increased, the diffusion of the dopant in the depth direction is suppressed, and the drain conductance can be reduced.

(実施例) 以下本発明の実施例について詳細に説明する。(Example) Examples of the present invention will be described in detail below.

第1図(a)に示すように、半絶縁性GaAs基板上に
MBE法にて、第1の半導体層として、キャリア密度約
I X 10110l4、厚さ0.8pmのP−−Ga
As層を成長し、さらに第2の半導体層として、ドナー
密度2X1018cm ’、厚さ100人のn −AI
。、3Ga、7As層、厚さ20OAでAIとGaのモ
ル比が0.3〜0へと変化しているn −AlxGa、
−xAs層及び厚さ200人のn −GaAs層を順次
成長させたウェハーを用い厚さaoooAのゲート長0
.5pmのAIのゲート2を形成する。次に、第1図(
b)に示すように、長さ1.5pmのマスク1をゲート
上部に形成し、これをマスクに、ソース、ドレイン電極
部を深さ700人エツチングを行う。その後、ストッパ
ー層として20人のW、オーミック金属層として200
0人のAuGe、600人のNiを順次蒸着し、マスク
1をリフトオフして、ソース・ドレイン電極開口部にだ
けオーミック金属が存在するようにする。第1図(e)
その後、450°C2分のアロイを行い、オーミック金
属を合金化し、ソース・ドレイン電極を形成してFET
を製作した。この時、0.111m程度Geがゲート方
向(横方向)に拡散し、合金化されるため、実効的なソ
ース・ゲート間は、0.511mから0.Qmと狭くな
っている。またオーミック電極の深さ方向には、ストッ
パー層としてGaAsとオーミック性がないWがあるた
めGeの拡散が抑えられる。その結果、ソース抵抗が大
幅に低減でき、実効的なゲート長も短くなり、相互コン
ダクタンスが向上した。また、ストッパー層によりドレ
インコンダクタンスが低減し、ゲート長が短くなっても
短チヤネル効果が小さくなり、微細寸法の高性能な電界
効果トランジスタが製作できた。ここでは1例として、
ストッパーとしてW、オーミック金属としてAuGe/
Niを用いたが、GaAsとショツトキー性がありアロ
イを行っても反応しない金属をストッパーに用い、また
他のオーミック金属を用いても可能である。
As shown in FIG. 1(a), a P--Ga layer with a carrier density of about I x 10110 l4 and a thickness of 0.8 pm was formed by MBE on a semi-insulating GaAs substrate as a first semiconductor layer.
As a second semiconductor layer, an As layer is grown and a donor density of 2X1018 cm' and a thickness of 100 n-AI is grown.
. , 3Ga, 7As layer, thickness 20OA, n-AlxGa with the molar ratio of AI and Ga changing from 0.3 to 0,
Using a wafer in which a -xAs layer and a 200-thick n-GaAs layer were sequentially grown, a gate length of 0 with a thickness of aoooA was used.
.. Form gate 2 of 5 pm AI. Next, Figure 1 (
As shown in b), a mask 1 with a length of 1.5 pm is formed above the gate, and using this as a mask, the source and drain electrode portions are etched to a depth of 700 mm. After that, 20 W as a stopper layer and 200 W as an ohmic metal layer.
0 AuGe and 600 Ni are sequentially deposited, and the mask 1 is lifted off so that the ohmic metal is present only in the openings of the source and drain electrodes. Figure 1(e)
After that, alloying is performed at 450°C for 2 minutes to alloy the ohmic metal, form source/drain electrodes, and FET.
was produced. At this time, about 0.111 m of Ge is diffused in the gate direction (lateral direction) and alloyed, so the effective distance between the source and gate is 0.511 m to 0.1 m. It is narrow as Qm. In addition, in the depth direction of the ohmic electrode, there is a stopper layer of W, which does not have ohmic properties with GaAs, so that the diffusion of Ge is suppressed. As a result, the source resistance was significantly reduced, the effective gate length was also shortened, and mutual conductance was improved. Furthermore, the stopper layer reduces the drain conductance, and even if the gate length is shortened, the short channel effect is reduced, making it possible to fabricate a high-performance field-effect transistor with fine dimensions. Here, as an example,
W as a stopper, AuGe as an ohmic metal
Although Ni is used, a metal that has Schottky properties with GaAs and does not react even when alloyed is used for the stopper, or other ohmic metals may also be used.

(発明の効果) 以上詳述したように、この発明の方法によれば、ソース
・ドレイン電極部を掘り込んで、その部分にストッパー
層、オーミック金属層を被着して、アロイを行い、ゲー
ト方向にオーミック金属を拡散させ合金化させることに
より、ソース・ゲート間、ゲートドレイン間を短くでき
るので、ソース抵抗が大幅に低減できる。また、ストッ
パー層により合金層の深さ方向が制御でき、ドレインコ
ンダクタンスが低減できる高性能な電界トランジスタが
実現できる。
(Effects of the Invention) As detailed above, according to the method of the present invention, the source/drain electrode portions are dug, a stopper layer and an ohmic metal layer are deposited on the portions, and alloying is performed. By diffusing and alloying the ohmic metal in the direction, the distance between the source and gate and between the gate and drain can be shortened, so the source resistance can be significantly reduced. Further, the depth direction of the alloy layer can be controlled by the stopper layer, and a high-performance field transistor with reduced drain conductance can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は、この発明に係る製造方法を説
明するためのt、W造及び工程を素子断面で示したもの
である。第2図は従来の短電極同構造FETの断面構造
図である。 ここで 1、マスク  2.ゲート3.第2の半導体層4.2次
元電子ガス 5.第1の半導体層6、高抵抗基板  7
.オーミック金属8ストツパ一層  9.オーミック金
属の合金層。 7〈 代理人りυ1士 内 原   薯1 亭  1  図
FIGS. 1(a) to 1(d) are cross-sectional views of the device, showing the T, W construction and steps for explaining the manufacturing method according to the present invention. FIG. 2 is a cross-sectional structural diagram of a conventional short electrode FET with the same structure. Here 1. Mask 2. Gate 3. Second semiconductor layer 4. Two-dimensional electron gas 5. First semiconductor layer 6, high resistance substrate 7
.. One layer of ohmic metal 8 stoppers 9. Alloy layer of ohmic metal. 7〈 Agent 1

Claims (1)

【特許請求の範囲】[Claims] 電界効果トランジスタの製造方法において、ソース・ド
レイン電極部を掘り込んで、その部分に、ストッパー層
、オーミックメタル層を被着して、アロイを行って横方
向より合金化させることを特徴とする電界効果トランジ
スタの製造方法。
A method for manufacturing a field effect transistor, characterized in that a source/drain electrode part is dug, a stopper layer and an ohmic metal layer are deposited on the part, and alloying is performed in the lateral direction to form an alloy. Method of manufacturing effect transistors.
JP7015786A 1986-03-27 1986-03-27 Manufacture of field-effect transistor Pending JPS62226669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7015786A JPS62226669A (en) 1986-03-27 1986-03-27 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7015786A JPS62226669A (en) 1986-03-27 1986-03-27 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPS62226669A true JPS62226669A (en) 1987-10-05

Family

ID=13423450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7015786A Pending JPS62226669A (en) 1986-03-27 1986-03-27 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPS62226669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186271A (en) * 1994-12-28 1996-07-16 Nec Corp Manufacturing method for tunnel transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186271A (en) * 1994-12-28 1996-07-16 Nec Corp Manufacturing method for tunnel transistor

Similar Documents

Publication Publication Date Title
US6274893B1 (en) Compound semiconductor device and method of manufacturing the same
US5381027A (en) Semiconductor device having a heterojunction and a two dimensional gas as an active layer
JPS62226669A (en) Manufacture of field-effect transistor
JP3633587B2 (en) Manufacturing method of semiconductor device
JPS63161677A (en) Field effect transistor
JP2652647B2 (en) Heterojunction field effect transistor
JPS60251671A (en) Field-effect type transistor and manufacture thereof
JPH03211839A (en) Compound semiconductor device and method of manufacturing the same
JPS61241972A (en) Compound semiconductor device
JPS61248479A (en) Compound semiconductor device
JPH03231424A (en) Manufacture of compound semiconductor device
JP2514948B2 (en) Method for manufacturing semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH04245444A (en) Field-effect transistor and its manufacture
JPS61102069A (en) Field-effect transistor
JPH05198601A (en) Field-effect transistor and its production
JPS63304665A (en) Semiconductor device
JPS62298182A (en) Semiconductor device
JPH01264270A (en) Semiconductor device
JPH03108325A (en) Manufacture of ohmic electrode
JPS6390172A (en) Field effect transistor and manufacture thereof
JPS6394688A (en) Manufacture of field-effect transistor
JPS61236168A (en) Manufacture of schottky-barrier-gate-type field effect transistor
JPH02191344A (en) Manufacture of field-effect transistor
JPH0323641A (en) Manufacture of field-effect transistor