JPH03211839A - Compound semiconductor device and method of manufacturing the same - Google Patents

Compound semiconductor device and method of manufacturing the same

Info

Publication number
JPH03211839A
JPH03211839A JP2066749A JP6674990A JPH03211839A JP H03211839 A JPH03211839 A JP H03211839A JP 2066749 A JP2066749 A JP 2066749A JP 6674990 A JP6674990 A JP 6674990A JP H03211839 A JPH03211839 A JP H03211839A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
source
cap
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2066749A
Other languages
Japanese (ja)
Inventor
Chun-Woo Nam
南 春祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH03211839A publication Critical patent/JPH03211839A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Abstract

PURPOSE: To make it possible to manufacture a compound semiconductor element of a new structure wherein cap layers are provided in such a way that they are brought into contact directly with a two-dimensional electronic layer and the source resistance of an HEMT is decreased. CONSTITUTION: Source and drain electrodes 21 and 23 are each formed on the upper part of each N<-> GaAs cap layer 19 and a control electrode, that is, a gate electrode 25, which Schottky contacts with an N<-> AlGaAs source layer 17, is formed on the exposed surface of this source layer 17. In a high electron mobility transistor (MEMT) of this structure, when a voltage is applied to the electrode 25, a donor in the layer 17 is ionized to generate two-dimensional electrons and these generated two-dimensional electrons move at high speed without scattering due to impurities through a channel, which is formed in the surface of an N<-> GaAs buffer layer 13 by a voltage difference between the electrodes 21 and 23. Thereby, a source resistance of the HEMT is decreased and the enhancement of the transfer conductance of the HEMT is contrived.

Description

【発明の詳細な説明】 本発明は、化合物半導体装置及びその製造方法に係るも
ので、特に異種接合構造で構成されて高電子移動特性を
もつ化合物半導体装置及びその製造方法に係るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound semiconductor device and a method for manufacturing the same, and particularly to a compound semiconductor device having a heterojunction structure and having high electron transfer characteristics, and a method for manufacturing the same.

最近、情報通信社会に急速に発展していくにつれ、超高
速のコンビコータ、超高周波及び光通信に対する必要性
が一層増加している。しかし、既存の81を利用した素
子としては、このような必要性を満足させるのに限界が
あるので、物質特性が優秀な化合物半導体に関する研究
が活発に行われている。前記化合物半導体の中でGaA
sは高電子移動度()ligh Electron M
obility) 、高電子速度、半絶縁性及び特性を
もっているので、Slに比べて高速動作、高周波、低雑
音及び低消費電力等の特性をもつ。
In recent years, as the information and communication society has rapidly developed, the need for ultra-high speed combi coaters, ultra-high frequencies, and optical communications is increasing. However, existing devices using 81 have limitations in meeting these needs, and therefore, research into compound semiconductors with excellent material properties is being actively conducted. Among the compound semiconductors, GaA
s is high electron mobility ()light Electron M
Since it has properties such as high electron velocity, semi-insulating property, and properties, it has properties such as high-speed operation, high frequency, low noise, and low power consumption compared to Sl.

したがって、GaAsの優秀な物質特性を利用して低雑
音モノリシックマイクロ波IC及び超高速低消費電力デ
ィジタルICを製作しようとする研究が活発に進行され
ている。
Therefore, research is actively underway to fabricate low-noise monolithic microwave ICs and ultra-high-speed, low-power digital ICs by utilizing the excellent material properties of GaAs.

前記素子の中で高電子移動トランジスタ(HighEl
ectron Mobility Transisto
r; 以下F(EMTという)は変調された電子を利用
して電界効果によって動作するもので、低雑音、高周波
及び高速特性をもつ。即ち、前記HEMTはN−GaA
s層、MGaAs層及びN″AI G a A s層を
薄膜で連続成長させた構造をもっており、前記N” M
GaAsソース層で生成された電流ソースである電子は
イオン化されたドナーまたは不純物と共に存在するもの
ではなく、前記N−GaAsバッファ層とAi G a
 A sスペーサ層との間に高濃度に形成されて電界効
果によって動作される。前記N″AI G a A s
ソース層のドーピング物質は一般的にSiを使用する。
Among the elements, a high electron mobility transistor (HighEl
ectron Mobility Transistor
r; F (hereinafter referred to as EMT) operates by electric field effect using modulated electrons, and has low noise, high frequency, and high speed characteristics. That is, the HEMT is N-GaA
It has a structure in which a thin film of an s layer, an MGaAs layer, and a N″AI GaAs layer are continuously grown, and the N″M
The current source electrons generated in the GaAs source layer are not present together with ionized donors or impurities, and the N-GaAs buffer layer and the Ai Ga
It is formed at a high concentration between the As spacer layer and operated by the electric field effect. Said N″AI Ga As
Si is generally used as a doping material for the source layer.

HEMTの低雑音及び高周波特性はトランスコンダクタ
ンスg、が大きい程向上する。ところが、前S己トラン
スコンダクタンスはソース抵抗が減少させられることに
より増加するため、ソース抵抗を減少させるのが大切で
ある。
The low noise and high frequency characteristics of the HEMT improve as the transconductance g increases. However, since the front S self transconductance increases as the source resistance is reduced, it is important to reduce the source resistance.

第1図は一般的なHEMTの構造を示す垂直断面図で、
この構造を説明する。
Figure 1 is a vertical cross-sectional view showing the structure of a typical HEMT.
This structure will be explained.

半絶縁性GaAs基板1の全表面にN−GaAsバッフ
ァ層2 、A’GaAsスペーサ層3及びN” A17
GaAs 7−ス層4が積層されている。前とN″Ai
i! G a A sソース層4の露出表面の所定部分
にゲート電極8が形成されており、前記所定部分を除外
したN″Aj7 G a A Sソース層4の上部にN
″GaAsGaAsキャップ層5−ス及びドレイン電極
6,7が形成されている。前記ソース及びドレイン電極
6,7は前記N″GaAsGaAsキャップ層接触をな
しており、N″GaAsGaAsソース層4子を発生さ
せる。
An N-GaAs buffer layer 2, an A'GaAs spacer layer 3 and an N''A17 are formed on the entire surface of the semi-insulating GaAs substrate 1.
A GaAs 7-layer 4 is laminated thereon. Before and N″Ai
i! A gate electrode 8 is formed on a predetermined portion of the exposed surface of the Ga As source layer 4, and a gate electrode 8 is formed on the upper part of the Ga As source layer 4 excluding the predetermined portion.
A "GaAsGaAs cap layer 5-" and a drain electrode 6, 7 are formed.The source and drain electrodes 6, 7 are in contact with the N"GaAsGaAs cap layer to generate four N"GaAsGaAs source layers. .

また、前記Ai?GaASスペーサ層3はN′″AlG
aAs7−スN4で発生された二次元電子の移動度を増
加させる役割をし、N−GaAsバッファ層2は二次元
電子が界面電位井戸(Potential Well)
に制限されて走行される活性層に使用される。しかし、
第1図に図示した一般的なHEMTはN″A1G a 
A sソース層4 、AffGaAsスペーサ層3とN
−GaAsバッファ層2との間の障壁抵抗と、前記M、
G a A sスペーサ層3及びN″AI G a A
 sソース層4のバルク抵抗からなるソース抵抗によっ
て低雑音と高周波特性が悪くなる問題点があった。
Also, the above Ai? GaAS spacer layer 3 is N′″AlG
The N-GaAs buffer layer 2 serves to increase the mobility of the two-dimensional electrons generated in the aAs7-S N4, and the N-GaAs buffer layer 2 allows the two-dimensional electrons to form an interfacial potential well.
Used in active layers that are restricted to run. but,
The general HEMT shown in Figure 1 is N″A1G a
As source layer 4, AffGaAs spacer layer 3 and N
- the barrier resistance between the GaAs buffer layer 2 and the M,
G a As spacer layer 3 and N″AI G a A
There is a problem in that the source resistance consisting of the bulk resistance of the s source layer 4 deteriorates low noise and high frequency characteristics.

前記のような問題点、即ちソース抵抗を減少させるため
にイオンを注入したHEMTが知られている。
HEMTs in which ions are implanted to reduce the problem described above, ie, source resistance, are known.

第2図は従来のイオン注入によるHEMTの構造を示す
垂直断面図である。第2図の構造は第1図の構造にイオ
ン注入領域9をもっと形成したもので同一の参照番号は
同一の構成及び同一の部分を示す。
FIG. 2 is a vertical cross-sectional view showing the structure of a HEMT using conventional ion implantation. The structure of FIG. 2 is the structure of FIG. 1 with more ion implantation regions 9 formed, and the same reference numerals indicate the same structures and parts.

前記HEMTの構造方法を簡単に説明する。The construction method of the HEMT will be briefly explained.

半絶縁特性GaAs基板1の表面上に分子線エピタキシ
ー (Molecular Beam Bpitaxy
; 以下MBEという)法または金属有機化学蒸着(M
etal OrganicChemical Vapo
r Deposition;以下MOCVOという)法
によってN−GaAsバッファ層2 、A1.GaAs
スペーサ層3、N′″AI G a A sソース層4
及びN” GaAsキャップ層5を順次的に形成する。
Molecular beam epitaxy is performed on the surface of the semi-insulating GaAs substrate 1.
; hereinafter referred to as MBE) method or metal-organic chemical vapor deposition (MBE) method;
etal Organic Chemical Vapo
r Deposition (hereinafter referred to as MOCVO) method, the N-GaAs buffer layer 2, A1. GaAs
Spacer layer 3, N'''AI Ga As source layer 4
and N'' GaAs cap layer 5 are sequentially formed.

その後、ゲート領域を除外し81等の不純物をバッファ
層2の一部分の深さまでイオンを注入し、焼なまし工程
を経てイオン注入領域9を形成する。その後、前記N″
GaAsキャップ層50表面上にソース及びドレイン電
極6.7を形成する。前記工程後、前記イオン注入領域
9が形成されなかった所定部分のN゛GaAsGaAs
キャップ層5を経て除去してN゛AI G a A s
ソース層4を露出させゲート電極8を形成する。
After that, excluding the gate region, ions of impurities such as 81 are implanted to a depth of a part of the buffer layer 2, and an ion implantation region 9 is formed through an annealing process. Then, the N″
Source and drain electrodes 6.7 are formed on the surface of the GaAs cap layer 50. After the above step, the predetermined portions of N゛GaAsGaAs where the ion implantation region 9 was not formed are
After removing through the cap layer 5,
Source layer 4 is exposed and gate electrode 8 is formed.

上記のように形成されたH E M T IiN″Ga
Asキャップ層とこのキャップ層の下部のN″AlG 
a A sソース層、AI G a A sスペーサ層
及びN−GaAsバ”/77層の一部分に形成されたイ
オン注入領域によってソース抵抗が減少させられる。し
かし、イオン注入領域を形成するときの焼なまし工程に
よってN゛AI G a A sソース層のイオン化さ
れたドナーがIdl G a A sスペーサ層とN−
GaAsバッファ層との間に高濃度に形成された二次元
電子層に拡散されて電子移動度を減少させるので、低雑
音及び高周波特性が悪くなる問題点があった。
H E M T IiN″Ga formed as above
As cap layer and N″AlG below this cap layer
The source resistance is reduced by the ion implant regions formed in the a As source layer, the AI Ga As spacer layer, and a portion of the N-GaAs layer. The annealing process brings the ionized donors of the NAI Ga As source layer into contact with the Idl Ga As spacer layer and the N-
Since electron mobility is reduced by being diffused into the two-dimensional electron layer formed at high concentration between the GaAs buffer layer and the GaAs buffer layer, there is a problem that low noise and high frequency characteristics are deteriorated.

したがって、本発明の第1の目的は上記のような従来技
術の問題点を解決するためにキャップ層を二次元電子層
と直接接触させるようにすることによりソース抵抗を減
少させ得る新たな構造の化合物半導体素子を提供するこ
とにある。
Therefore, a first object of the present invention is to develop a new structure that can reduce the source resistance by bringing the cap layer into direct contact with the two-dimensional electronic layer, in order to solve the problems of the prior art as described above. An object of the present invention is to provide a compound semiconductor device.

また、本発明の第2の目的は上記のような化合物半導体
装置の製造方法を提供することにある。
Further, a second object of the present invention is to provide a method for manufacturing a compound semiconductor device as described above.

上記第1の目的を達成するために本発明は半絶縁性化合
物半導体基板; 前記基板上に、この基板と同種の化合物半導体で形成さ
れた第1伝導型のバッファ層;前記バッファ層上に相互
に一定の間隔を置いて分離されてこのバッファ層と同種
の化合物半導体で形成された第1伝導型の第1及び第2
キャップ層; 前記第1及び第2キャップ層の各々にキャップ層とオー
ム接触を形成する第1及び第2電流電極;前記第1及び
第2キャップ層との間の前記バッファ層上にこのバッフ
ァ層とは異なる化合物半導体で形成されたスペーサ層; 前記スペーサ層上にこのスペーサ層と同種の化合物半導
体で形成された第1伝導型のソース層;そして、 前記ソース層上にこのソース層とショットキー接触を形
成する割引電極を具備してなることを特徴とする。
In order to achieve the above first object, the present invention provides a semi-insulating compound semiconductor substrate; a buffer layer of a first conductivity type formed of a compound semiconductor of the same type as that of the substrate; A first conduction type first and a second conduction type semiconductor layer are formed of a compound semiconductor of the same type as the buffer layer and are separated at a constant interval from each other.
a cap layer; first and second current electrodes forming ohmic contact with the cap layer on each of the first and second cap layers; a buffer layer on the buffer layer between the first and second cap layers; a spacer layer formed of a compound semiconductor different from the spacer layer; a first conductivity type source layer formed of a compound semiconductor of the same type as the spacer layer on the spacer layer; It is characterized in that it comprises a discount electrode forming a contact.

また、上記第2の目的を達成するた袷に本発明は相異な
る種類の化合物半導体層の界面でこれらの物質の親和力
差によって界面ポテンシャル井戸に二次元電子層を形成
する化合物半導体素子の製造方法において、 半絶縁性の化合物半導体基板上に同種の化合物半導体で
あるバッファ層を結晶成長させる工程;前記バッファ層
上にこのバッファ層と異なる化合物半導体であるスペー
ス層及び第1伝導型のソース層を順次的に結晶成長させ
る工程;前記スペース層及びソース層、そして前記バッ
ファ層の一部の深さまでメサ構造を形成するために蝕刻
する工程; 前記メサ構造及び露出されたバッファ層上にこのバッフ
ァ層と同種の化合物半導体である第1伝導型のキャップ
層を結晶成長させる工程;前記メサ構造の左、右側の前
記キャップ層上に各々第1及び第2電流電極を形成する
工程;前記メサ構造の上面を露出させるための開校を形
成するために前記キャップ層を蝕刻する工程;そして、 前記開口内に露出されたソース層上に前記キャップ層と
隔離されるように制御電極を形成する工程からなること
を特徴とする。
In addition, in order to achieve the above-mentioned second object, the present invention provides a method for manufacturing a compound semiconductor device in which a two-dimensional electron layer is formed in an interfacial potential well at the interface between different types of compound semiconductor layers due to the affinity difference between these materials. A step of crystal-growing a buffer layer made of the same type of compound semiconductor on a semi-insulating compound semiconductor substrate; a space layer and a first conductivity type source layer made of a compound semiconductor different from the buffer layer on the buffer layer; Sequential crystal growth; etching to form a mesa structure to a partial depth of the space layer and source layer and the buffer layer; depositing the buffer layer on the mesa structure and the exposed buffer layer; A step of crystal-growing a cap layer of a first conductivity type which is a compound semiconductor of the same type as that of the mesa structure; a step of forming first and second current electrodes on the cap layer on the left and right sides of the mesa structure; etching the cap layer to form an opening for exposing the top surface; and forming a control electrode on the source layer exposed in the opening so as to be isolated from the cap layer. It is characterized by

以下、添付図面を参照して本発明の望ましい1実施例を
詳細に説明する。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第3図は本発明によるH E M Tの垂直断面図であ
る。
FIG. 3 is a vertical cross-sectional view of a HEMT according to the present invention.

第3図において、半絶縁性GaAs基板11上にNGa
Asバッファ層13が結晶成長により形成される。
In FIG. 3, NGa is deposited on a semi-insulating GaAs substrate 11.
As buffer layer 13 is formed by crystal growth.

前記N−GaAsバッファ層13は所定部分が突出させ
られたメサ(MeSa) 構造に形成される。前記NG
aAsバッファ層13の突出部分の表面上にM G a
 A sスペーサ層15とN−AlGaAsソース層1
7が結晶成長により形成される。前記メサ構造の左右側
のバッファ層13上にはN−GaAsキャップ層19が
形成される。
The N-GaAs buffer layer 13 is formed in a mesa (MeSa) structure with a predetermined portion protruding. Said NG
M G a on the surface of the protruding portion of the aAs buffer layer 13
As spacer layer 15 and N-AlGaAs source layer 1
7 is formed by crystal growth. N-GaAs cap layers 19 are formed on the buffer layers 13 on the left and right sides of the mesa structure.

また、前記N−GaAsキ+ツブ層19は前記AlG 
a A sスペーサ層15の側面と接触させられる。前
記各N−GaAsキャップ層19の上部にはこのキャッ
プ層とオーム接触をなす第1及び第2電流極性、即ちソ
ース及びドレイン電極21.23が形成され、N−Al
GaAsソース層17の露出させられた表面上にはこの
ソース層とショットキー接触をなす制御電極、即ちゲー
ト電極25が形成される。
Further, the N-GaAs groove layer 19 is formed of the AlG
It is brought into contact with the side surface of the a As spacer layer 15 . First and second current polarity, ie, source and drain electrodes 21.23 are formed on top of each N-GaAs cap layer 19 and are in ohmic contact with the N-GaAs cap layer 19.
A control or gate electrode 25 is formed on the exposed surface of GaAs source layer 17 and makes Schottky contact with the source layer.

上述の構造のHEMTはゲート電極25に電圧を印加す
るとN−AlGaAsソース層17のドナーがイオン化
されて二次元電子が発生させられ、この発生した二次元
電子は前記AI G a A sスペーサ層15とN−
GaAsバッファ層13の界面に高濃度の二次元電子層
が形成されるので、ソース電極21とドレイン電極23
との間の電圧差によってN−GaAsバッファ層130
表面に形成されるチャンネルを通じて二次元電子が不純
物による散乱なしに高速に移動させられる。また、N−
A3GaAsソース層17及びM G a A sスペ
ーサ層15をゲート領域にのみ局限させるのでソース及
びドレイン電極21.23の下部にはN″GaAsキャ
ップ層19のみ層成9れて、このキャップ層19と二次
元電子層が直接接触させられる。したがって、従来技術
(第1図及び第2図参照) のN″AI G a A 
sソース層、AI G a A sスペーサ層とN−G
aAsバ”/77層との間の伝導帯の不連続による障壁
抵抗と、このN−AffGaAs7−ス層とAi’Ga
Asスペーサ層の自体抵抗が消えるようになるのでソー
ス抵抗が減少させられる。したがって、HEMTの伝達
コンダクタンスが向上させられ、閾電圧を低くすること
ができる。
In the HEMT having the above-described structure, when a voltage is applied to the gate electrode 25, the donors in the N-AlGaAs source layer 17 are ionized and two-dimensional electrons are generated, and the generated two-dimensional electrons are transferred to the AI GaAs spacer layer 15. and N-
Since a highly concentrated two-dimensional electron layer is formed at the interface of the GaAs buffer layer 13, the source electrode 21 and the drain electrode 23
N-GaAs buffer layer 130 due to the voltage difference between
Two-dimensional electrons can be moved at high speed through channels formed on the surface without being scattered by impurities. Also, N-
Since the A3GaAs source layer 17 and the MGaAs spacer layer 15 are confined only to the gate region, only the N''GaAs cap layer 19 is formed under the source and drain electrodes 21.23, and this cap layer 19 and The two-dimensional electronic layer is brought into direct contact. Therefore, the N″AI Ga A of the prior art (see FIGS. 1 and 2)
s source layer, AI Ga As spacer layer and N-G
The barrier resistance due to discontinuity in the conduction band between the N-AffGaAs layer and the Ai'GaAs layer and the
Since the resistance of the As spacer layer itself disappears, the source resistance is reduced. Therefore, the transfer conductance of the HEMT can be improved and the threshold voltage can be lowered.

第4八〜C図は前述の第3図の製造工程を示す断面図で
ある。
48-C are cross-sectional views showing the manufacturing process of FIG. 3 described above.

第4A図を参照すると、半絶縁性GaAs基板11上に
不純物濃度がlXl0I4/ctl以下であり、厚さが
Q、5〜2μmであるN−GaAs層と、厚さ30〜1
00人であるMI G a A s層と、不純物濃度I
 XIO” 〜3 XIO”/cdであり、厚さ3QO
〜500 AのN” A’GaAs層をMBEまたはM
OCVD法によって順次的に形成する。このとき、前記
不純物はS!を利用する。その後、所定部分にメサパタ
ーンを形成するために通常の写真方法によってN” M
GaAs層とAI G a A s層を順次的に蝕刻し
てN” A1GaAsソース層17とAlGa^Sスペ
ーサ層15を形成する。このとき、蝕刻は乾式または湿
式の方法で並行して前記N−GaAs層も所定の厚さに
蝕刻されてN−GaAsバッファ層13を形成する。 
N−GaAsバ”/77層13はAI G a A s
スペーサ層15の下部に突出されるように形成してソー
ス−ドレイン電流通路を容易に形成し得るようにする。
Referring to FIG. 4A, an N-GaAs layer with an impurity concentration of 1Xl0I4/ctl or less and a thickness of Q, 5 to 2 μm is formed on a semi-insulating GaAs substrate 11, and an N-GaAs layer with a thickness of 30 to 1 μm is formed on a semi-insulating GaAs substrate 11.
00 MI Ga As layer and impurity concentration I
XIO" ~ 3 XIO"/cd, thickness 3QO
~500 A'N''A'GaAs layer by MBE or M
The layers are formed sequentially by OCVD. At this time, the impurity is S! Take advantage of. After that, to form a mesa pattern in a predetermined area, N''M
The GaAs layer and the AIGaAs layer are sequentially etched to form the N'' AlGaAs source layer 17 and the AlGa^S spacer layer 15. At this time, the etching is performed in parallel using a dry or wet method. The GaAs layer is also etched to a predetermined thickness to form an N-GaAs buffer layer 13.
N-GaAs/77 layer 13 is made of AI GaAs
It is formed to protrude from the bottom of the spacer layer 15 so that a source-drain current path can be easily formed.

第4B図を参照すると、前記露出されたN−GaAsバ
ッファ層13とN″/Ij7GaAsソース層17上に
前述のMBEまたはMOCVD方法によって表面が平塩
化されうる約3μm程度の厚さのN″GaAs層を形成
する。その次に前記N″GaAs層の表面上にリフトオ
フ(Lift 0ff)法によって前記N” AI!G
aAs7−ス層17の上部を層外7た残りの部分にソー
ス及びドレイン電極21.23を形成する。ソース及び
ドレイン電極21.23はオーミック(Ohmic) 
 金属、例えばAuGe/Ni/^Uで形成する。継続
して前記N″MGaAsMGaAsソース層N″GaA
sキャップ層19を写真工程によって除去して開口24
を形成する。
Referring to FIG. 4B, on the exposed N-GaAs buffer layer 13 and the N''/Ij7GaAs source layer 17, a N''GaAs layer with a thickness of approximately 3 μm is formed, the surface of which may be planarized by the aforementioned MBE or MOCVD method. form a layer. Then, the N''AI! layer is deposited on the surface of the N''GaAs layer by a lift-off method. G
Source and drain electrodes 21 and 23 are formed on the remaining portions of the aAs 7-layer 17 with the upper portion removed. The source and drain electrodes 21 and 23 are ohmic.
It is made of metal, for example AuGe/Ni/^U. Continuing with the N″MGaAsMGaAs source layer N″GaA
The opening 24 is formed by removing the s cap layer 19 by a photo process.
form.

その次に露出されたN″AI G a A sソース層
17上にゲート電極25を形成すると第4C図のような
構造になる。このとき、前記ゲート電極25はショット
キー金属、例えばTi/Pt/Auで形成される。
Next, a gate electrode 25 is formed on the exposed N''AI Ga As source layer 17, resulting in a structure as shown in FIG. 4C. At this time, the gate electrode 25 is made of Schottky metal, for example, Ti/Pt. /Au.

上述のようにN′″/Ij7 G a A sソース層
及びAlGaASスペーサ層をゲート領域にのみ形成さ
せ、ソース及びドレイン領域にはN″GaAsGaAs
キャップ層aAsバッファ層に形成させてキャップ層が
バッファ層の表面に形成される二次元電子層と直接接触
させられるようにすることにより、ソース抵抗を減少さ
せうるので低雑音及び高周波特性を向上させる利点があ
る。
As described above, the N'''/Ij7GaAs source layer and AlGaAs spacer layer are formed only in the gate region, and the N''GaAsGaAs spacer layer is formed in the source and drain regions.
By forming the cap layer on the aAs buffer layer so that the cap layer is in direct contact with the two-dimensional electronic layer formed on the surface of the buffer layer, the source resistance can be reduced, thereby improving low noise and high frequency characteristics. There are advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の一般的なガリウム砒素高電子移動トラン
ジスタの断面図、第2図は従来のイオン注入によるガリ
ウム砒素高電子移動トランジスタの断面図、第3図は本
発明によるガリウム砒素高電子移動トランジスタの断面
図、第4A−C図は第3図のガリウム砒素高電子移動ト
ランジスタの製造過程を示す工程順序図である。 11;半絶縁性GaAs基板 13 : N−GaAsバ”/77層 15 : AlGaAsスヘ−サH 17:N″″#GaAs 7− ス層 19:N″GaAsキャップ層 21.23:ソース及びドレイン電極 24:開口 25:ゲート電極
Figure 1 is a cross-sectional view of a conventional general gallium arsenide high electron mobility transistor, Figure 2 is a cross-sectional view of a conventional gallium arsenide high electron mobility transistor by ion implantation, and Figure 3 is a gallium arsenide high electron mobility transistor according to the present invention. A cross-sectional view of the transistor, FIGS. 4A-4C, is a process sequence diagram showing the manufacturing process of the gallium arsenide high electron mobility transistor of FIG. 3. 11; Semi-insulating GaAs substrate 13: N-GaAs bar''/77 layer 15: AlGaAs spacer H 17: N''#GaAs 7-layer 19: N'' GaAs cap layer 21. 23: Source and drain electrodes 24: Opening 25: Gate electrode

Claims (1)

【特許請求の範囲】 1、半絶縁性化合物半導体基板; 前記基板上に、この基板と同種の化合物半導体で形成さ
れた第1伝導型のバッファ層; 前記バッファ層上に相互に一定の間隔を置いて分離され
てこのバッファ層と同種の化合物半導体で形成された第
1伝導型の第1及び第2キャップ層; 前記第1及び第2キャップ層の各々にキャップ層とオー
ム接触を形成する第1及び第2電流電極; 前記第1及び第2キャップ層との間の前記バッファ層上
にこのバッファ層とは異なる化合物半導体で形成された
スペーサ層; 前記スペーサ層上にこのスペーサ層と同種の化合物半導
体で形成された第1伝導型のソース層;そして、 前記ソース層上にこのソース層とショットキー接触を形
成する制御電極を具備してなることを特徴とする化合物
半導体素子。 2、前記基板はGaAs化合物半導体であり、スペーサ
層はAlGaAs化合物半導体であることを特徴とする
請求項1に記載の化合物半導体素子。 3、前記第1伝導型はN型であることを特徴とする請求
項2に記載の化合物半導体素子。 4、前記スペーサ層及びソース層は前記バッファ層上に
メサ構造で形成されたことを特徴とする請求項1に記載
の化合物半導体素子。 5、前記第1及び第2キャップ層は前記メサ構造の傾斜
側面を被うように形成されたことを特徴とする請求項4
に記載の化合物半導体素子。 6、相互に異なる種類の化合物半導体層の界面において
これらの物質の親和力差によって界面ポテンシャル井戸
に二次元電子層を形成する化合物半導体素子の製造方法
において、 半絶縁性の化合物半導体基板上に同種の化合物半導体で
あるバッファ層を結晶成長させる工程; 前記バッファ層上にこのバッファ層と異なる化合物半導
体であるスペース層及び第1伝導型のソース層を順次的
に結晶成長させる工程;前記スペース層及びソース層、
そして前記バッファ層の一部の深さまでメサ構造を形成
するために蝕刻する工程; 前記メサ構造及び露出されたバッファ層上にこのバッフ
ァ層と同種の化合物半導体である第1伝導型のキャップ
層を結晶成長させる工程;前記メサ構造の左、右側の前
記キャップ層上に各々第1及び第2電流電極を形成する
工程;前記メサ構造の上面を露出させるための開校を形
成するために前記キャップ層を蝕刻する工程;そして、 前記開口内に露出されたソース層上に前記キャップ層と
隔離されるように制御電極を形成する工程からなること
を特徴とする化合物半導体素子の製造方法。 7、前記基板はGaAs化合物半導体であり、前記スペ
ース層はAlGaAs化合物半導体であることを特徴と
する請求項6に記載の化合物半導体素子の製造方法。 8、前記第1伝導型はN型であることを特徴とする請求
項7に記載の化合物半導体素子の製造方法。 9、前記メサ構造を形成するための蝕刻工程を乾式また
は湿式の蝕刻工程にすることを特徴とする請求項6に記
載の化合物半導体素子の製造方法。
[Claims] 1. A semi-insulating compound semiconductor substrate; A buffer layer of a first conductivity type formed of the same type of compound semiconductor as the substrate on the substrate; first and second cap layers of a first conductivity type formed of the same type of compound semiconductor as the buffer layer; a first cap layer forming ohmic contact with the cap layer in each of the first and second cap layers; first and second current electrodes; a spacer layer formed of a compound semiconductor different from the buffer layer on the buffer layer between the first and second cap layers; a spacer layer formed of a compound semiconductor of the same type as this spacer layer on the spacer layer; A compound semiconductor device comprising: a first conductivity type source layer made of a compound semiconductor; and a control electrode formed on the source layer to form a Schottky contact with the source layer. 2. The compound semiconductor device according to claim 1, wherein the substrate is a GaAs compound semiconductor, and the spacer layer is an AlGaAs compound semiconductor. 3. The compound semiconductor device according to claim 2, wherein the first conductivity type is an N type. 4. The compound semiconductor device according to claim 1, wherein the spacer layer and the source layer are formed in a mesa structure on the buffer layer. 5. The first and second cap layers are formed to cover the inclined side surfaces of the mesa structure.
The compound semiconductor device described in . 6. In a method for manufacturing a compound semiconductor device in which a two-dimensional electron layer is formed in an interfacial potential well due to the difference in the affinity of these substances at the interface between compound semiconductor layers of different types, A step of crystal-growing a buffer layer made of a compound semiconductor; A step of sequentially growing a space layer and a source layer of a first conductivity type on the buffer layer, which are made of a compound semiconductor different from the buffer layer; The space layer and the source layer,
and etching to form a mesa structure to a partial depth of the buffer layer; forming a cap layer of a first conductivity type, which is a compound semiconductor of the same type as the buffer layer, on the mesa structure and the exposed buffer layer; growing a crystal; forming first and second current electrodes on the cap layer on the left and right sides of the mesa structure; forming an opening on the cap layer to expose the top surface of the mesa structure; and forming a control electrode on the source layer exposed in the opening so as to be isolated from the cap layer. 7. The method of manufacturing a compound semiconductor device according to claim 6, wherein the substrate is a GaAs compound semiconductor, and the space layer is an AlGaAs compound semiconductor. 8. The method for manufacturing a compound semiconductor device according to claim 7, wherein the first conductivity type is N type. 9. The method of manufacturing a compound semiconductor device according to claim 6, wherein the etching process for forming the mesa structure is a dry etching process or a wet etching process.
JP2066749A 1989-12-31 1990-03-15 Compound semiconductor device and method of manufacturing the same Pending JPH03211839A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20733 1989-12-31
KR1019890020733A KR910013568A (en) 1989-12-31 1989-12-31 Compound Semiconductor Device and Manufacturing Method Thereof

Publications (1)

Publication Number Publication Date
JPH03211839A true JPH03211839A (en) 1991-09-17

Family

ID=19294785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2066749A Pending JPH03211839A (en) 1989-12-31 1990-03-15 Compound semiconductor device and method of manufacturing the same

Country Status (5)

Country Link
JP (1) JPH03211839A (en)
KR (1) KR910013568A (en)
DE (1) DE4007896A1 (en)
FR (1) FR2656740A1 (en)
GB (1) GB2239557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082217A (en) * 2009-10-02 2011-04-21 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2017163082A (en) * 2016-03-11 2017-09-14 住友電気工業株式会社 High electron mobility transistor, and manufacturing method of high electron mobility transistor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444328A (en) * 1990-06-11 1992-02-14 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US11515410B2 (en) * 2020-10-30 2022-11-29 Raytheon Company Group III-V semiconductor structures having crystalline regrowth layers and methods for forming such structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189268A (en) * 1984-03-08 1985-09-26 Fujitsu Ltd Semiconductor device
JPS62204578A (en) * 1986-03-04 1987-09-09 Nec Corp Manufacture of field-effect transistor
JPS62209865A (en) * 1986-03-10 1987-09-16 Nec Corp Manufacture of semiconductor device
JPS63308965A (en) * 1987-06-11 1988-12-16 Toshiba Corp Heteoro-junction field-effect transistor
JPS63318165A (en) * 1987-06-22 1988-12-27 Hitachi Ltd Heterojunction semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0064370B1 (en) * 1981-04-23 1989-06-28 Fujitsu Limited High electron mobility semiconductor device
NL8500218A (en) * 1985-01-28 1986-08-18 Philips Nv SEMICONDUCTOR DEVICE WITH TWO-DIMENSIONAL CARRIER GAS.
JPS62232170A (en) * 1986-04-02 1987-10-12 Matsushita Electric Ind Co Ltd Manufacture of field effect transistor
JP2541228B2 (en) * 1987-07-31 1996-10-09 ソニー株式会社 High electron mobility transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189268A (en) * 1984-03-08 1985-09-26 Fujitsu Ltd Semiconductor device
JPS62204578A (en) * 1986-03-04 1987-09-09 Nec Corp Manufacture of field-effect transistor
JPS62209865A (en) * 1986-03-10 1987-09-16 Nec Corp Manufacture of semiconductor device
JPS63308965A (en) * 1987-06-11 1988-12-16 Toshiba Corp Heteoro-junction field-effect transistor
JPS63318165A (en) * 1987-06-22 1988-12-27 Hitachi Ltd Heterojunction semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082217A (en) * 2009-10-02 2011-04-21 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2017163082A (en) * 2016-03-11 2017-09-14 住友電気工業株式会社 High electron mobility transistor, and manufacturing method of high electron mobility transistor

Also Published As

Publication number Publication date
DE4007896A1 (en) 1991-07-11
GB9005732D0 (en) 1990-05-09
GB2239557A (en) 1991-07-03
KR910013568A (en) 1991-08-08
FR2656740A1 (en) 1991-07-05

Similar Documents

Publication Publication Date Title
US6797994B1 (en) Double recessed transistor
US4916498A (en) High electron mobility power transistor
JPH06132318A (en) Heterojunction field-effect transistor and its manufacture
US6184547B1 (en) Field effect transistor and method of fabricating the same
JP3376078B2 (en) High electron mobility transistor
JP3377022B2 (en) Method of manufacturing heterojunction field effect transistor
US5336626A (en) Method of manufacturing a MESFET with an epitaxial void
JPH0684957A (en) High electron mobility field effect semiconductor device
JPH03211839A (en) Compound semiconductor device and method of manufacturing the same
US5900641A (en) Field effect semiconductor device having a reduced leakage current
JPH03241840A (en) Semiconductor device and manufacture thereof
JP2000208753A (en) Semiconductor device and its manufacture
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JP2504782B2 (en) Method for manufacturing field effect transistor
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JPS61260679A (en) Field-effect transistor
JPS6068661A (en) Semiconductor device
JP2894801B2 (en) Semiconductor transistor and method of manufacturing the same
JPH05275464A (en) Manufacture of compound semiconductor integrated circuit device
KR0149943B1 (en) Methdo for fabricating hemt
JPH0763094B2 (en) Semiconductor device and manufacturing method thereof
JPH06163602A (en) High-electron-mobility transistor and its manufacture
JPH06302625A (en) Field effect transistor and manufacture thereof
JPH09260643A (en) High-electron mobility transistor
JPH05235053A (en) High-electron mobility transistor