JPS62209865A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62209865A
JPS62209865A JP5287286A JP5287286A JPS62209865A JP S62209865 A JPS62209865 A JP S62209865A JP 5287286 A JP5287286 A JP 5287286A JP 5287286 A JP5287286 A JP 5287286A JP S62209865 A JPS62209865 A JP S62209865A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
etching
semiconductor
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5287286A
Other languages
Japanese (ja)
Inventor
Hideo Toyoshima
豊島 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5287286A priority Critical patent/JPS62209865A/en
Publication of JPS62209865A publication Critical patent/JPS62209865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form an etching stop layer which does not almost affect an adverse influence to the characteristics of a semiconductor device by dividing a semiconductor layer having small first etching velocity into at least two or more layers. CONSTITUTION:A semiconductor layer 14 is grown on a high resistance substrate 15, and a high purity semiconductor layer 11 having a small evaporation rate is then grown. Here, the layer 11 which becomes a thermal etching stop layer is divided, for example, into 3 layers, and high purity semiconductor layers 13 having a larger evaporation rate than that of the layer 11 are grown therebetween. Then, a high purity semiconductor layer 12 having a large evaporation rate is grown. Since the layer 11 having a small evaporation rate is thus used, an etching depth can be automatically decided to form a field effect transistor which has small short channel effect and small source resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of manufacturing a semiconductor device.

(従来の技術) 従来、半導体装置の製造過程において半導体基板の一部
をエツチングし、そこへ埋込み成長等の再成長が行なわ
れている。しかし再成長部分のエツチングに際し、例え
ばウェットエッチを用いるとエツチングの深さを精度良
く制御することができなかった。またエツチング後、再
成長を行う際に再成長界面に高抵抗層が生じる問題があ
った。これらのことを解決する一例としては、1985
年春季の第32回応用物理学関係連合講演会予稿集13
1ページに掲載の史上等により示されている。第2図(
a)〜(b)は発表されたレーザダイオードの製造方法
を示す素子断面図である。即ちまず1回目のMBE成長
で第2図(a)に示す様にN型GaAs基板41上にN
型AIGaAs(AI組成x=0.6)42、無添加A
lGaAs活性層(x=0.15)43、P型AIGa
As(x=0.6)44、パッシベーション膜としてN
型GaAs45、N型AIGaAs(x= 0.15)
46、N型GaAs47を順次成長させる。
(Prior Art) Conventionally, in the process of manufacturing a semiconductor device, a part of a semiconductor substrate is etched, and regrowth such as buried growth is performed there. However, when etching the regrown portion, for example, if wet etching is used, the etching depth cannot be precisely controlled. Further, there is a problem in that a high resistance layer is formed at the regrowth interface when regrowth is performed after etching. An example of solving these problems is the 1985
Proceedings of the 32nd Spring Conference on Applied Physics 13
It is indicated by the history etc. published on the first page. Figure 2 (
A) to (B) are device cross-sectional views showing a method for manufacturing a laser diode that has been announced. That is, in the first MBE growth, N is grown on the N-type GaAs substrate 41 as shown in FIG. 2(a).
Type AIGaAs (AI composition x = 0.6) 42, additive-free A
lGaAs active layer (x=0.15) 43, P-type AIGa
As(x=0.6)44, N as passivation film
Type GaAs45, N type AIGaAs (x = 0.15)
46. Sequentially grow N-type GaAs 47.

次に第2図(b)に示す様に基板を外部に取り出し、N
型GaAs45が0.1pm−0,2pm程度残るよう
にストライブ溝をエツチング形成する。次に再度基板を
MBE装置に導入し基板加熱を行なう。半導体はその半
導体に特有のある温度以上になると表面が分解し、蒸発
する。したがってこの蒸発を制御することにより半導体
の熱エツチングを行なうことができる。この例では第2
図(C)に示す様に、N型GaAs45とP型AlGa
As44の熱エツチング速度が大きく違うことを利用し
て、パッシベーション膜のN型GaAs45のみを選択
的にエツチングした後、続けて第2図(d)に示す様に
P型AIGaAs(x = 0.6)48.P+型Ga
As49を再成長させる。この例ではN型GaAs45
を熱エツチングする事により清浄なP型AlGaAs4
4界而を出し、再成長界面における高抵抗層の発生を除
去すると共に、同時にP型AlGaAs44をN型Ga
As45のエツチング停止層として用いている。以上述
べた方法におてはP型AlGaAs44を熱エツチング
の停止層として用いているが、同時に同層はレーザダイ
オードの閉じ込め層としての機能を持っている。
Next, as shown in Fig. 2(b), take out the board and N
A stripe groove is formed by etching so that about 0.1 pm to 0.2 pm of the type GaAs 45 remains. Next, the substrate is introduced into the MBE apparatus again and the substrate is heated. The surface of a semiconductor decomposes and evaporates when the temperature exceeds a certain temperature specific to the semiconductor. Therefore, thermal etching of a semiconductor can be performed by controlling this evaporation. In this example, the second
As shown in figure (C), N-type GaAs45 and P-type AlGa
Taking advantage of the large difference in thermal etching speed of As44, after selectively etching only the N-type GaAs45 of the passivation film, as shown in FIG. 2(d), P-type AIGaAs (x = 0.6) was etched. )48. P+ type Ga
Re-grow As49. In this example, N-type GaAs45
Clean P-type AlGaAs4 by thermally etching
At the same time, the formation of a high resistance layer at the regrowth interface is removed, and at the same time, the P-type AlGaAs is
It is used as an etching stop layer for As45. In the method described above, P-type AlGaAs 44 is used as a stop layer for thermal etching, but at the same time, this layer also functions as a confinement layer for the laser diode.

(発明が解決しようとする問題点) しかしながら、一般の半導体装置の製造過程に上記熱エ
ツチング法、さらにそれに引き続く再成長法を用いると
、エツチング停止のための層が存在することにより逆に
半導体装置の特性が劣化する場合がある。例えばエツチ
ング停止層を電子デバイスにおける能動層中に形成した
場合、それがある厚みを持って存在するため、むしろ走
行電子の障壁あるいは散乱因子となり得る。したがって
単にエツチング停止層としてのみ機能し、作製される半
導体装置の特性には、はとんど悪影響を与えないエツチ
ング停止層の形成方法が必要とされる。
(Problems to be Solved by the Invention) However, when the above-mentioned thermal etching method and subsequent regrowth method are used in the manufacturing process of general semiconductor devices, the presence of a layer for stopping etching causes the semiconductor device to deteriorate. characteristics may deteriorate. For example, when an etching stop layer is formed in an active layer of an electronic device, since it exists with a certain thickness, it can act as a barrier or a scattering factor for traveling electrons. Therefore, there is a need for a method for forming an etching stop layer that functions solely as an etching stop layer and does not adversely affect the characteristics of the semiconductor device being fabricated.

本発明の目的は上記の欠点を除去し、一般の半導体装置
にも容易に用いることのできるエツチング停止層の形成
法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming an etching stop layer that eliminates the above-mentioned drawbacks and can be easily used in general semiconductor devices.

(問題点を解決するための手段) 半導体基板上にエツチング速度の小さい第1の半導体層
を形成し、次に該第1の半導体層よりエツチング速度の
大きい半導体層を順次形成し、後に該第2の半導体層の
みをエツチングし、次に該第1の半導体層上に第3の半
導体層を形成する半導体装置の製造方法において、該第
1のエツチング速度の小さい半導体層を少なくとも2層
以上に分割し、分割された該半導体層間には該第1の半
導体層よりエツチング速度の大きい半導体層を含むこと
を特徴とする。
(Means for Solving the Problems) A first semiconductor layer having a low etching rate is formed on a semiconductor substrate, then semiconductor layers having a higher etching rate than the first semiconductor layer are successively formed, and later the first semiconductor layer is formed at a higher etching rate than the first semiconductor layer. In the method for manufacturing a semiconductor device in which only a second semiconductor layer is etched and a third semiconductor layer is then formed on the first semiconductor layer, the first semiconductor layer having a low etching rate is formed into at least two layers. The method is characterized in that it is divided, and a semiconductor layer having a higher etching rate than the first semiconductor layer is included between the divided semiconductor layers.

(作用) 以下、実施例を示した第1図(a)〜(0の素子断面図
を参照しつつ、本発明特有の作用、効果について記述す
る。説明の都合上特定の材料、半導体装置を用いること
にするが、本発明の原理に照合すれば、他の材料、半導
体装置に対しても適用できることは明らかである。
(Function) Hereinafter, the functions and effects peculiar to the present invention will be described with reference to the device cross-sectional views shown in FIGS. However, it is clear that the principles of the present invention can be applied to other materials and semiconductor devices.

本実施例は電界効果トランジスタの製造方法に関する。This embodiment relates to a method of manufacturing a field effect transistor.

まず第1図(a)に示す様に、高抵抗基板15上に高純
度の半導体層14を成長し、次に蒸発速度の小さい高純
度半導体層11を成長する。この半導体層11は続けて
成長する高純度半導体層12よりも蒸発速度が充分小さ
いことが必須条件である。ここで熱エツチングの停止層
となる半導体層11をただ1層にして用いる場合が従来
例で示した方法であるが、本発明はこれを少なくとも2
層以上に分割することを特徴とする。第1図に示す実施
例においては、半導体層11を例えば3層に分割してい
る。また分割された半導体層11の間には、半導体層1
1より蒸発速度の大きい高純度半導体層13を成長して
いる。半導体層11の膜厚は、分割した3層の合計の膜
厚においては、半導体層12の熱エツチングの停止層と
して機能するが、各分割層は充分薄く、それらの存在は
電子の移動度を低下させない様に選ぶ。次に蒸発速度の
大きな高純度半導体層12を成長する。
First, as shown in FIG. 1(a), a high-purity semiconductor layer 14 is grown on a high-resistance substrate 15, and then a high-purity semiconductor layer 11 with a low evaporation rate is grown. It is essential that the evaporation rate of this semiconductor layer 11 is sufficiently lower than that of the high-purity semiconductor layer 12 that is subsequently grown. Here, the method shown in the conventional example uses only one semiconductor layer 11, which serves as a stop layer for thermal etching, but in the present invention, at least two layers are used.
It is characterized by being divided into more than one layer. In the embodiment shown in FIG. 1, the semiconductor layer 11 is divided into, for example, three layers. Moreover, between the divided semiconductor layers 11, the semiconductor layer 1
A high-purity semiconductor layer 13 having a higher evaporation rate than 1 is grown. The thickness of the semiconductor layer 11, which is the total thickness of the three divided layers, functions as a stop layer for thermal etching of the semiconductor layer 12, but each divided layer is sufficiently thin, and their presence reduces the mobility of electrons. Select so that it does not deteriorate. Next, a high purity semiconductor layer 12 having a high evaporation rate is grown.

さらに半導体層12より電子親和力の小さい高純度半導
体層21、続けて半導体層12より電子親和力の小さい
N中型半導体層22を成長する。次に第1図(b)に示
す様にゲート部にエツチングマスク16を形成する。さ
らに第1図(e)に示す様にエツチングマスク16を用
いソース、ドレイン形成部を開口するが、まずウェット
エッチ等を用い半導体層21及び22を除去し、半導体
層12の途中でエツチングを停止する。次に基板を加熱
し、半導体層12の熱エツチングを行なうが、半導体層
12が熱エツチングで除去された後、先に述べた様に半
導体層11の膜厚を設計したため、第1図(d)になっ
た状態でエツチングが自動的に停止する。引き続きソー
ス、ドレイン開口部にN生型半導体117を再成長し、
次にエツチングマスク16及びその上の堆積物を除去す
る(第1図(e))。次に第1図(0に示す様に再成長
部17上にソース電極19、およびドレイン電極20を
形成しまたN中型半導体層22上にゲート電極18を形
成する。
Furthermore, a high purity semiconductor layer 21 having a lower electron affinity than the semiconductor layer 12 is grown, followed by an N medium semiconductor layer 22 having a lower electron affinity than the semiconductor layer 12. Next, as shown in FIG. 1(b), an etching mask 16 is formed on the gate portion. Further, as shown in FIG. 1(e), the source and drain forming portions are opened using the etching mask 16. First, the semiconductor layers 21 and 22 are removed using wet etching, etc., and the etching is stopped halfway through the semiconductor layer 12. do. Next, the substrate is heated and the semiconductor layer 12 is thermally etched. After the semiconductor layer 12 is removed by thermal etching, the thickness of the semiconductor layer 11 is designed as described above, so the semiconductor layer 12 is thermally etched. ), etching will automatically stop. Subsequently, N-type semiconductor 117 is regrown in the source and drain openings,
Next, the etching mask 16 and the deposits thereon are removed (FIG. 1(e)). Next, as shown in FIG. 1 (0), a source electrode 19 and a drain electrode 20 are formed on the regrown portion 17, and a gate electrode 18 is formed on the N medium semiconductor layer 22.

本実施例においては、熱エツチングを行なうため、通常
再成長界面に生じる高抵抗層を除去でき、また蒸発速度
の小さな半導体層11を用いるため第1図(d)に示す
様にエツチング深さを自動的に決定することが可能であ
る。したがってショートチャンネル効果が小さく、また
ソース抵抗の小さな電界効果トランジスタが形成できる
。また第1図(Oに示す様に電子のチャンネルとなるゲ
ート18下には半導体層11が残るが、この層は分割さ
れており、しかも各分割層は充分薄く形成されているた
め、それぞれの厚みは電子の波導関数の広がりに較べ充
分小さく、したがって電子に対する障壁、散乱因子とし
てはほとんど寄与しない。したがってその存在は、半導
体装置の特性に影響を与えない。
In this example, since thermal etching is performed, the high resistance layer that normally occurs at the regrowth interface can be removed, and since the semiconductor layer 11 with a low evaporation rate is used, the etching depth is reduced as shown in FIG. 1(d). It is possible to determine automatically. Therefore, a field effect transistor with small short channel effect and low source resistance can be formed. In addition, as shown in Figure 1 (O), the semiconductor layer 11 remains below the gate 18 which becomes the electron channel, but this layer is divided and each divided layer is formed sufficiently thin, so that each The thickness is sufficiently small compared to the spread of the wave derivative of electrons, so it hardly contributes as a barrier or scattering factor for electrons.Therefore, its presence does not affect the characteristics of the semiconductor device.

(実施例) 本発明の電界効果トランジスタの製造法における実施例
をさらに詳細に説明する。成長はモレキュラービームエ
ピタキシー(Molecular旦eam4itaxy
;以下MBE)装置を用い行なった。まず第1図(a)
に示す様に半絶縁性GaAs基板15上に無添加GaA
s14を成長速度毎時1pm、成長温度650°Cで8
000人成長した。次の蒸発速度の小さい半導体層11
としては無添加AlAsを毎時0.211で成長し用い
、半導体層13としては無添加GaAsを用いた。まず
AlAsを12人、次にGaAsを50人、次にAlA
sを12A、次にAlAsを6人成長し、図中の半導体
層11および13を形成した。本実施例ではエツチング
停止層として機能するAlAsは基板側から12人(2
原子層厚に相当)を2居、および6人(1原子層厚に相
当)を1層、計3層に分割して用いており合計30人(
5原子層厚に相当)で熱エツチングの停止層として機能
し得る。次に無添加GaAs12を600人、次にAI
□、3Ga□、7As21を20人、次にSiを2X1
018am−3添加したAIo、3Ga□。
(Example) An example of the method for manufacturing a field effect transistor of the present invention will be described in further detail. The growth is done by molecular beam epitaxy (Molecular beam epitaxy).
;hereinafter referred to as MBE). First, Figure 1 (a)
As shown in FIG.
s14 at a growth rate of 1 pm/hour and a growth temperature of 650°C.
We have grown by 000 people. Next semiconductor layer 11 with low evaporation rate
For the semiconductor layer 13, undoped AlAs was grown at a rate of 0.211 per hour, and for the semiconductor layer 13, undoped GaAs was used. First 12 people with AlAs, then 50 people with GaAs, then AlA
Then, six AlAs layers were grown to form semiconductor layers 11 and 13 in the figure. In this example, AlAs, which functions as an etching stop layer, was etched by 12 (2
It is divided into 3 layers, 2 layers (equivalent to atomic layer thickness) and 1 layer of 6 people (equivalent to 1 atomic layer thickness), for a total of 30 people (
(corresponding to a thickness of 5 atomic layers) can function as a stop layer for thermal etching. Next, add-free GaAs12 was applied to 600 people, then AI
□, 3Ga□, 7As21 for 20 people, then Si for 2X1
018am-3 added AIo, 3Ga□.

7As22を460人成長した。次に第1図(b)に示
すエツチングマスクとして5i0216を2000人形
成し、第1図(C)に示す様にこれをマスクにAlGa
As層をリン酸素エツチング選択的に除去する。この際
GaAs層12まで100A程度オーバーエツチングし
ている。次に基板を再びMBE装置に入れ、第1図(d
)に示す様にヒ素を約2X10−5torr圧で基板に
照射しながら基板温度720’Cで10分間熱エツチン
グを行なった。この時のGaAsの熱エツチング速度は
毎分約150人程度である。次にN+コンタクト層とし
てSiを5 X 1018cm−3添加したGaAs層
を基板温度600°Cで1500人再成長した後、第1
図(e)に示した様に基板を成長室から取り出し、5i
0216上の堆積分および5i02を取り除く。さらに
第1図(Oに示す様にソース、ドレインのオーミック、
電極19.20を形成し、またゲート電極18を形成し
た。
7As22 has grown by 460 people. Next, 2000 pieces of 5i0216 were formed as an etching mask as shown in FIG. 1(b), and as shown in FIG.
The As layer is selectively removed by phosphorus-oxygen etching. At this time, the GaAs layer 12 is over-etched by about 100A. Next, put the substrate into the MBE apparatus again and
), thermal etching was performed for 10 minutes at a substrate temperature of 720'C while irradiating the substrate with arsenic at a pressure of about 2.times.10@-5 torr. The thermal etching rate of GaAs at this time is about 150 etchings per minute. Next, a GaAs layer doped with 5 x 1018 cm-3 of Si as an N+ contact layer was regrown for 1500 times at a substrate temperature of 600°C.
As shown in figure (e), the substrate was taken out from the growth chamber and 5i
Remove the deposits on 0216 and 5i02. Furthermore, as shown in Figure 1 (O), the source and drain ohmic
Electrodes 19, 20 were formed, and gate electrode 18 was also formed.

本実施例では二次元電子ガスのチャンネル部にAlAs
が分割されて残るため、従来技術の行にAlAsを分割
せず用いた場合は二次元電子ガスの移動度の劣化が見ら
れるが、この場合は通常得られる二次元電子ガスと同等
の特性が得られた。しかも本発明より再成長界面に生じ
る高抵抗層が除去でき、またN中層の深さを精度良く制
御しN+コンタクト層の再成長が行なえたため、ソース
抵抗、ショートチャンネル効果の小さい良好な特性を持
つ電界効果トランジスタが製造できた。
In this example, AlAs is used in the channel part of the two-dimensional electron gas.
If AlAs is used without being split in the conventional line, the mobility of the two-dimensional electron gas will deteriorate, but in this case, the properties equivalent to those of the normally obtained two-dimensional electron gas will be observed. Obtained. Moreover, with the present invention, the high resistance layer that occurs at the regrowth interface can be removed, and the N+ contact layer can be regrown by precisely controlling the depth of the N intermediate layer, resulting in good characteristics with low source resistance and short channel effects. A field effect transistor has been manufactured.

なお実施例では本発明を実現する材料としてGaAs/
AlAsの組み合わせのみを用い説明したが、本発明の
基本原理は、エツチング速度の異なる少なくとも2種以
上の材料の組み合せに対し適用可能である。例えばGa
Asより熱エツチング速度のさらに大きい材料としても
InAs、InP等があり、多くの材料の組み合わせを
用いることができる。
In the examples, GaAs/
Although the explanation has been made using only a combination of AlAs, the basic principle of the present invention is applicable to a combination of at least two or more materials having different etching rates. For example, Ga
InAs, InP, and the like are materials that have a higher thermal etching rate than As, and many combinations of materials can be used.

(発明の効果) 本発明より、再成長を行なう前の熱エツチングにおいて
、エツチングを自動的に停止し、しかもエツチング停止
層の存在が半導体装置の特性に悪影響を与えない汎用性
あるエツチング停止層を用いた半導体装置の製造方法が
得られた。
(Effects of the Invention) The present invention provides a versatile etching stop layer that automatically stops etching during thermal etching before regrowth, and the presence of the etching stop layer does not adversely affect the characteristics of a semiconductor device. A method for manufacturing the semiconductor device used was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(Oは本発明の実施例を示す素子断面図
、第2図(a)〜(d)は従来例を示す素子断面図であ
る。 図において 11・AlAs、12と13と14・GaAs、15−
・・半絶縁性GaAs基板、16・・・SiO2,17
・N+型GaAs、 18−ゲート電極、19・・・ソ
ース電極、20・・・ドレイン電極、21・・・AlG
aAs、22.、、N型AlGaAs、 41−N型G
aAs基板、42・N型AlGaAs(x=0.6)、
43・AIGaAs(x=0.15)、44・P型AI
GaAs(x=0.6)、45・N型GaAs、46・
N型AlGaAs(x = 0.15)、47・N型G
aAs。 48・P型AIGaAs(x = 0.6)第1 日 オ 1 図
FIGS. 1(a) to (O) are sectional views of elements showing embodiments of the present invention, and FIGS. 2(a) to (d) are sectional views of elements showing conventional examples. In the figures, 11.AlAs, 12. 13 and 14・GaAs, 15−
...Semi-insulating GaAs substrate, 16...SiO2, 17
・N+ type GaAs, 18-gate electrode, 19... source electrode, 20... drain electrode, 21... AlG
aAs, 22. ,, N-type AlGaAs, 41-N-type G
aAs substrate, 42 N-type AlGaAs (x=0.6),
43.AIGaAs (x=0.15), 44.P-type AI
GaAs (x=0.6), 45・N-type GaAs, 46・
N-type AlGaAs (x = 0.15), 47・N-type G
aAs. 48・P-type AIGaAs (x = 0.6) Day 1 Fig.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上にエッチング速度の小さい第1の半導体層
を形成し、次に該第1の半導体層よりエッチング速度の
大きい第2の半導体層を順次形成し、後に該第2の半導
体層のみをエッチングし、次に該第1の半導体層上に第
3の半導体層を形成する半導体装置の製造方法において
、該第1のエッチング速度の小さい半導体層を少なくと
も2層以上に分割し、分割された該半導体層間には該第
1の半導体層よりエッチング速度の大きい半導体層を含
むことを特徴とする半導体装置の製造方法。
Forming a first semiconductor layer with a low etching rate on a semiconductor substrate, then sequentially forming a second semiconductor layer with a higher etching rate than the first semiconductor layer, and later etching only the second semiconductor layer. Then, in the method for manufacturing a semiconductor device in which a third semiconductor layer is formed on the first semiconductor layer, the first semiconductor layer having a low etching rate is divided into at least two layers, and the divided A method for manufacturing a semiconductor device, comprising a semiconductor layer having a higher etching rate than the first semiconductor layer between the semiconductor layers.
JP5287286A 1986-03-10 1986-03-10 Manufacture of semiconductor device Pending JPS62209865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5287286A JPS62209865A (en) 1986-03-10 1986-03-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5287286A JPS62209865A (en) 1986-03-10 1986-03-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62209865A true JPS62209865A (en) 1987-09-16

Family

ID=12926968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5287286A Pending JPS62209865A (en) 1986-03-10 1986-03-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62209865A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978882A (en) * 1989-04-25 1990-12-18 Canon Kabushiki Kaisha Vibration wave driven motor
JPH0369127A (en) * 1989-08-08 1991-03-25 Nec Corp Manufacture of field-effect transistor
JPH03211839A (en) * 1989-12-31 1991-09-17 Samsung Electron Co Ltd Compound semiconductor device and method of manufacturing the same
JPH0428237A (en) * 1990-05-23 1992-01-30 Sharp Corp Iii-v compound semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978882A (en) * 1989-04-25 1990-12-18 Canon Kabushiki Kaisha Vibration wave driven motor
JPH0369127A (en) * 1989-08-08 1991-03-25 Nec Corp Manufacture of field-effect transistor
JPH03211839A (en) * 1989-12-31 1991-09-17 Samsung Electron Co Ltd Compound semiconductor device and method of manufacturing the same
JPH0428237A (en) * 1990-05-23 1992-01-30 Sharp Corp Iii-v compound semiconductor device

Similar Documents

Publication Publication Date Title
US4639275A (en) Forming disordered layer by controlled diffusion in heterojunction III-V semiconductor
US4594603A (en) Semiconductor device with disordered active region
US6635559B2 (en) Formation of insulating aluminum oxide in semiconductor substrates
US4511408A (en) Semiconductor device fabrication with disordering elements introduced into active region
US5281543A (en) Fabrication method for quantum devices in compound semiconductor layers
JPH11214800A (en) Semiconductor device and manufacture thereof
US5108948A (en) Method of producing a semiconductor device having a disordered superlattice using an epitaxial solid diffusion source
JPH01146390A (en) Semiconductor device
JPH02295136A (en) High-speed semiconductor device
JPS62209865A (en) Manufacture of semiconductor device
EP0231075B1 (en) Semiconductor structures
US5031185A (en) Semiconductor device having a disordered superlattice
JP2691572B2 (en) Method for manufacturing compound semiconductor device
JP3211227B2 (en) Method for stabilizing surface of GaAs layer, method for manufacturing GaAs semiconductor device, and method for forming semiconductor layer
JP2551427B2 (en) Semiconductor device and manufacturing method thereof
JPH03292743A (en) Manufacture of field-effect transistor
JPH04345079A (en) Semiconductor laser equipment and its manufacture
JPS6086889A (en) Manufacture of semiconductor laser
JPS62277736A (en) Heat treatment method for compound semiconductor
JPH0437583B2 (en)
JPH0818034A (en) Semiconductor device and its manufacture
JPH0272636A (en) Semiconductor device
JPS60260184A (en) Semiconductor luminescent device
JPH0138391B2 (en)
JPH0719757B2 (en) Method for manufacturing semiconductor device