JPH01201627A - 導波路型光スイツチ - Google Patents

導波路型光スイツチ

Info

Publication number
JPH01201627A
JPH01201627A JP2685488A JP2685488A JPH01201627A JP H01201627 A JPH01201627 A JP H01201627A JP 2685488 A JP2685488 A JP 2685488A JP 2685488 A JP2685488 A JP 2685488A JP H01201627 A JPH01201627 A JP H01201627A
Authority
JP
Japan
Prior art keywords
optical
waveguide
control light
glass
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2685488A
Other languages
English (en)
Inventor
Makoto Shimizu
誠 清水
Yoshinori Hibino
善典 日比野
Fumiaki Hanawa
文明 塙
Masaharu Horiguchi
堀口 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2685488A priority Critical patent/JPH01201627A/ja
Publication of JPH01201627A publication Critical patent/JPH01201627A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • G02F1/3517All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using an interferometer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3136Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、光通信や光情報処理に必須の導波路型光スイ
ッチに関するものである。
〔従来の技術および発明が解決しようとする課題〕導波
路型光スイッチの代表的構成例としては、以下の5つが
ある。
■ 電気光学効果の利用 LiNbO3等の無機光学結晶を使用し、方向性結合器
で結合度を電気的に制御することでスイッチング作用を
させるもの。
■ 熱光学効果を利用 屈折率の温度変化を利用し、方向性結合器やマツハツエ
ンダ−干渉計等の導波路の一部分を加熱することでスイ
ッチング作用をさせるもの。
■ 音響光学効果を利用 表面弾性波の伝播による屈折率変化 (SAW波による動的グレーティング)を利用して光を
偏向させスイッチング作用をさせるもの。
■ 半導体のキャリア誘起屈折率変化を利用半導体導波
路の一部に電気的・光学的方法によりキVリアを誘起し
、それによる屈折率変化によりスイッチング作用をさせ
るもの ■ 非線形光学効果を利用 光力−効果等により導波路の一部の屈折率を変えスイッ
チング作用をさせるもの。
これらの中で、■の方法についてはもっとも一般的な方
法であるが埋め込み型導波路の作製が難しい。■につい
ては、導波路内にSAW波のエネルギーを集中させるこ
とが困難であり実用的でない。
■については、単一モード光導波路のスイッチに適用す
るためには誘起したキャリアの拡散を防止することが必
要であり、量子井戸構造の様な複雑な構造にけざるを1
9ない。
■の方法では、スイッチング速度は材料の非線形応答速
度に依存しており、Gllz以上の動作も期待できる。
しかしながらこれまでは、比較的大きな非線形光学効果
を持ちかつ速い非線形応答速度を持つ材料が少なかった
ために検討が遅れていた。
特にガラス材料については、導波路への適用は比較的進
んでいるものの、非線形光学効果が余りにも低いために
導波路型光スイッチへの応答については殆ど考慮されて
いない。
ここでは、本発明と構造的に最も近い■の方法について
説明する。第6図は、スイッチの構造を示す図である。
入射ボート16より入射した光は、光方向性結合器18
により分波され2光束干渉乙120に等しい光パワーで
入る。2光束干渉計20では、2本の導波路の伝播定数
は等しく光路長も等しいため合波用光方向性結合器19
に入射する2つの光の位相は等しく、その結果として合
波後に出射ポー1−17では入射光と同一の光が出射す
る。この状態で薄膜加熱ヒータ21に加熱すると熱光学
効果によりガラス導波路の屈折率が変化し、結果として
合波用方向性結合器19に入射する2つの光の位相はず
れる。加熱温度を調節し位相差が180度になるように
すれば、出射ボート17での出射光は零になり、光スィ
ッチとして動作できることにイする。この方法の問題点
は、ガラスの熱光学効果を使用するために動作速度が原
理的に遅いこと(m5ec程度)である。
本発明の目的は、動作速度が速い導波路型光スイッチを
提供することにある。
〔課題を解決するための手段〕
本発明の導波路型光スイッチでは、信号光を制御光によ
り制御する導波路型光スイッチの構成に於て、使用され
る光導波路が全て単一モード光導波路であって、かつ1
組の光方向性結合器よりなる一個の2光束干渉計を主要
構成要素とし、該2光束干渉計1の2系統の導波路のう
ら少なくとも一方或いは両方の導波路の一部分の材料と
して半導体微結晶を添加したガラスを使用し、その半導
体微結晶添加ガラス部分に光軸及び焦点が一致して前記
制御光を照射させる集光系を光導波路の外側に持つこと
を特徴としている。
また、光回路を構成づる導波路が制御光に対して充分透
明な基板上に形成され、制御光を通して照射する構成に
するのが好ましい。
さらに、光回路を構成する導波路が形成されている基板
上に制御光を集光させる光学系が形成されていることが
より好ましい。
〔作用〕
集光系により導波路の一部分であって半導体微結晶添加
ガラス部分に、制御光を外部から照射すると、その照射
された側の導波路の伝播定数が変わる。これに伴ない、
2光束干渉計の2系統の導波路を通って光方向性結合器
に入rJJする2つの信号光の位相がずれる。この位相
のずれ給を18゜degに設定することでスイッチング
が行える。
また、光回路を構成する導波路を透明な基板上に形成し
、該基板を通して制御光を照射するようにすれば、制御
光の導波路への外部照射が容易に行なえる。
ざらに、上記基板上に制御光を集光させる光学系を形成
しておけば、制御光を導波路へ照射する場合、光学系に
向けて照射ずればよ(、制御光照射が一層容易となる。
〔実施例〕
剃±χ差j 第1図は本発明の第1実施例の光スイッチの構成を承り
図、第2図は実施例に示した光スイッチの動作例を示す
図、第3図は、本実施例の導波路の作製方法の概略を示
した図、第5図は、本実施例の光スイッチの特性を測定
するのに使用した測定系を示す図である。
第1図中符号1は信号光入射ポート、2は第1出射ポー
1〜.3は第2出射ボーi〜であり、信号光入射ボート
1と第1出射ボート2とは導波路を介して直接に、また
それらのボート1,2と第2出射ポート3とは2光束干
渉計7を介して接続されている。2光束干渉計7は1組
の光方向性結合器4.5とそれらをつなぐ2つの導波路
から成っている。上記光回路を構成する導波路は全て単
一モード光導波路とされている。
2光束干渉計7の2系統の導波路の一部分6には、半導
体微結晶を添加したガラスが使用されている。この部分
6に制御光(非線形光学効果を生じさせるためのポンプ
光)を照射すると、非線形光学効果(光力−効果)によ
り導波路の伝播定数は変化する。第5図に示すように導
波路が形成される基板10の下側には半導体微結晶添加
ガラス部分6に光軸及び焦点が一致り゛る集光系29が
設けられている。この集光系29によって集められる光
は、制御光に対して充分透明な(制御光を支障ない範囲
内で透過させられる8)基板10を通して上記ガラス部
分6に照射される。なd3、その入射角は導波路のNA
により大きな角度になるように設定されており、入射さ
れたIYIIIl13II)ヒがセフ波光になることは
ない。
ここで、上記導波路型光スイッチの作製方法について簡
単に説明する。導波膜の作製は、石英基板上に火炎堆積
法により行った。ここで、火炎堆積法とは酸水素火炎内
に塩化物等の原料(5LC1a、GOCj 4 、PC
CI 3、BCj3等)を供給し、*炎内で熱加水分解
反応により生成したガラス微粒子を適当な温度に加熱保
持した基板上に堆積(多孔質膜として堆積)、ぞの後ヘ
リウム等の雰囲気中で加熱・透明ガラス化処理し導波膜
を形成するものである。
作製順序を第3図に従い説明する。まず第1工程として
、石英基板10に下部クラツド膜11となる多孔質膜を
堆積する。膜の組成は、5LO2−Ge02   B2
03   P20 sの組成であり屈折率は純粋石英ガ
ラスに比較して0.25%低くしである。次に、コア用
ガラス膜12となる多孔質膜を堆積した。膜の組成は、
SLO2GeO2−8203−P20sの組成であり下
部クラッド用ガラス膜に比べGeO2成分を多(し屈折
率を純粋石英ガラスと同一にしである。2種類の多孔質
膜を堆積後、ヘリウムガス中で1390℃で加熱処理し
仝休をガラス化した。
第2工程として、反応性エツチングにより半導体微結晶
添加ガラスを堆積したい部分のコア用ガラス膜12のみ
を取り除いた。取り除いた部分にコア用ガラス膜12と
同一の組成でSLの微結晶(結品粒径約200A)を含
むガラス膜13をfft積し、同様にガラス化した。ガ
ラス化後、後に示すような第1図の光回路パターンをフ
ォト・リソにより形成した。最後に、上部クラッド部分
14を堆積した。膜の組成は、SLO2−Ge02−8
2o3−p2o5の組成であり屈折率は純粋石英ガラス
に比較して0.25%低くしである。
上記のようにして作製されたスイッチにおいて、コアク
ラッド間の比屈折率差は0.25%であり、1.06μ
mで単一モード光導波路となっている。
コア形状は、−辺12.3μmの正方形である。
(分波用)光方向性結合器4と(合波用)光方向性結合
器5は3dBカツプラの特性を有し、2本のコア(同一
形状)がコア間隔3.1μmで3.27mの長さで平行
に位置している。了導体微結品添加ガラス導波路6の部
分の断面形状は他の道路部と同一であり、長さは10#
である。
作製した光回路の特性の測定装置の概略図及び測定結果
を第5図及び第2図に示ず。第5図に示す様に信号光及
び制til+光・源としては波長1.064μmのNd
:YAGレーザ22を使用し、特に制御光としではYA
G光をハーフミラ−23により分離したのら音響光学型
変調器28により強度変調(100%変調)したパルス
光(ピーク強度的2W)を用いた。変調器28から出力
される制御用のパルス光はミラー24によって曲げられ
、コリメータ25によりビーム径を拡大した後に、ミラ
ー24及びシリンドカルレンズ26により半導体微結晶
添加ガラス導波路部分6にビーム形状を合致させた状態
で照tAされる。すなわら、ミラー24、シリンドカル
レンズ26等は前記ガラス部分6に制御光を集める集光
系29を構成覆る。なお、制御光はほぼ基板10に対し
て垂直に照射した。信号光は、ハーフミラ−23で透過
させたYAG光を対物レンズ27を介して光導波路に入
射させた。
第2図より制御光8により信号光9o 、9+が変調し
ていることが判る。これは、第1図中の半導体微結晶添
加ガラス導波路6に入射した制御光により半導体微結晶
添加ガラス導波路6部分の屈折率が光力−効果により変
化したために、(合波用)光方向性結合器5に入射する
2つの信号光の位相が180dcqずれた結累生じたも
のである。長さが1 cmのオ導体微結晶添加ガラス尋
波路6部分で必要とされる位相差を得るためには、屈折
率として10−6程度変化すれば良く、比較的低パワー
で動作できることが予想される。第′2図の実験結果は
、予想どうりの特性を示しており、本素子構造の有効性
を確認した。
肛2災流1 第4図は、本発明の実施例の光スイッチの基板を含むそ
の構成を示した図である。次に、第4図の光回路につい
ては、第1実施例と全く同一である。基板10の夫面に
は、CVD法により球レンズ(光学系)15が作り込ん
である。球レンズ15は、その焦点が基板表面の光導波
路の非線形導波路部分に一致している。球レンズ15の
形成方法は、まず基板表面に機械研磨により半球上のく
ぼみを形成し、次の反応ガスとして5jHa とNH’
3とNoの混合気体原料をN2を作動ガスとして、プラ
ズマCVD法により3N、膜を形成した。
作製した光回路の特性の測定結果について次に述べる。
信号光としては、ハロゲンランプからの白色光を分光し
て得られた波長1.066μmのjlj色光を使用し、
スイッチング用の制御光としては波長1.064μmの
Nd:YAGレーザ光を音響光学型変調器により強度変
調(100%変調)した光(ピーク強度的3W)を使用
した。その結果、制御光の強度により信号光が変調でき
ることが明らかとなった。さらに、ピーク光強度約2W
の制御光を照射した際に、光方向性結合器に入射する2
光束の位相差がπになり、光スィッチとしての動作を確
認した。この結果は、本素子の構造が光導波路型光スイ
ッチとして十分機能覆ることを示している。
以上実施例においては、SL微結晶添加ガラスを非線形
媒質として使用したものについて述べたが、Cd5eS
CdS 1CdTe、 GaAs、 GaSb、 In
P 、 Ga1nAsP等の幅広い化合物半導体微結晶
を添加したガラスを使用して作製した素子についても、
同様の構成により光スイツチング素子が実現できること
は言うまでもない。
さらに、2光束干渉討を構成するさいに2系統の導波路
部分の伝播損失分を考慮して、分波側の光方向性結合器
の分岐比を設計することも素子特性向上に有効であるこ
とは言うまでもない。
〔発明の効果〕
以上示したように、本発明によれば非線形光学効果を利
用したスイッチングを行い得るため、非常に高速のスイ
ッチングが実現できる。さらに、従来の石英ガラスに比
較して3桁以上の大きな非線形光学定数を持つ半導体微
結晶添加ガラスを使用することが低光パワーでの光スイ
ッチングが期待できる。また、制御光を導波路に対して
ほぼ垂直に照射することにより、該制御光が導波路中を
伝播することがなく、その結果として制御光と信号光の
波長を同一にすることも可能となる。このことは、制御
光を導波路内に導波させる場合と違い、出射ポート部分
に制御光と信号光を分離するだめのフィルタが不要とな
る利点もある。
また、光回路を構成する導波路を透明な基板上に形成し
、該基板を通して制御光を照射するように覆れば、制御
光の導波路への外部照射が容易に行える。
さらに、上記基板上に制御光を集光させる光学系を形成
しておけば、制御光を導波路へ照射する場合、光学系に
向けて照射すればよく、面倒な光学的調整も不要となり
、制御光照射が一層容易となる。
【図面の簡単な説明】
第1図は本発明の第1実施例の光スイッチに用いた光回
路の構成を示す図。 第2図は第1実施例に示した光スィッチの動作例を示す
図。 第3図は本実施例の導波路の作製方法の概略を示した図
。 第4図は本発明の第2実施例の光スィッチの構成を示し
た図。 第5図は第1実旅例で示した光スィッチの特性を測定す
るために使用した測定系の概略図。 第6図は従来技術で述べた熱光学効果を使用した光スィ
ッチの構成を承り図。 1・・・信丹光入射ボート、2・・・第1出射光ボート
、3・・・第2出射光ポート、4・・・(分波用)光方
向性結合器、5・・・(分波用)光方向性結合器、6・
・・半導体微結晶添加ガラス導波路、7・・・2光束干
渉計、10・・・基板、11・・・下部クラッド用ガラ
ス膜、12・・・コア用ガラス股、13・・・半導体微
結晶添加ガラス膜、14・・・上部クラッド用ガラス膜
、15・・・球レンズ(光学系)、22・・・YへGレ
ーザ、23・・・ハーフミラ−124・・・ミラー、2
5・・・コリメータ、26・・・シリンドカルレンズ、
27・・・対物レンズ、28・・・音響光学型変調器、
29・・・集光系。

Claims (3)

    【特許請求の範囲】
  1. (1)信号光を制御光により制御する導波路型光スイッ
    チの構成に於て、使用される光導波路が全て単一モード
    光導波路であつて、かつ1組の光方向性結合器を有する
    一個の2光束干渉計を主要構成要素とし、該2光束干渉
    計の2系統の導波路のうち少なくとも一方或いは両方の
    導波路の一部分の材料として半導体微結晶を添加したガ
    ラスを使用し、その半導体微結晶添加ガラス部分に光軸
    及び焦点が一致して前記制御光を照射させる集光系を光
    導波路の外側に持つことを特徴とする導波路型光スイッ
    チ。
  2. (2)特許請求範囲第1項において、光回路を構成する
    導波路が制御光に対して充分透明な基板上に形成され、
    制御光を基板を通して照射することを特徴とする導波路
    型光スイッチ。
  3. (3)特許請求範囲第2項において、光回路を構成する
    導波路が形成されている基板上に制御光を集光させる光
    学系が形成されていることを特徴とする導波路型光スイ
    ッチ。
JP2685488A 1988-02-08 1988-02-08 導波路型光スイツチ Pending JPH01201627A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2685488A JPH01201627A (ja) 1988-02-08 1988-02-08 導波路型光スイツチ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2685488A JPH01201627A (ja) 1988-02-08 1988-02-08 導波路型光スイツチ

Publications (1)

Publication Number Publication Date
JPH01201627A true JPH01201627A (ja) 1989-08-14

Family

ID=12204862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2685488A Pending JPH01201627A (ja) 1988-02-08 1988-02-08 導波路型光スイツチ

Country Status (1)

Country Link
JP (1) JPH01201627A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632313A1 (en) * 1993-07-02 1995-01-04 Nec Corporation All-optical device
NL1003669C2 (nl) * 1996-07-24 1998-01-28 Nederland Ptt Optisch niet-lineair vertakkingselement met MZ-interferometer.
WO2006103850A1 (ja) * 2005-03-25 2006-10-05 Nippon Sheet Glass Company, Limited 導波路素子及びレーザ発生器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298459A (en) * 1976-02-13 1977-08-18 Nippon Telegr & Teleph Corp <Ntt> Light logic element
JPS5737328A (en) * 1980-08-18 1982-03-01 Mitsubishi Electric Corp Optical directional coupler
JPS6068321A (ja) * 1983-09-26 1985-04-18 Nippon Telegr & Teleph Corp <Ntt> 光スイツチ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298459A (en) * 1976-02-13 1977-08-18 Nippon Telegr & Teleph Corp <Ntt> Light logic element
JPS5737328A (en) * 1980-08-18 1982-03-01 Mitsubishi Electric Corp Optical directional coupler
JPS6068321A (ja) * 1983-09-26 1985-04-18 Nippon Telegr & Teleph Corp <Ntt> 光スイツチ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632313A1 (en) * 1993-07-02 1995-01-04 Nec Corporation All-optical device
NL1003669C2 (nl) * 1996-07-24 1998-01-28 Nederland Ptt Optisch niet-lineair vertakkingselement met MZ-interferometer.
EP0825479A1 (en) * 1996-07-24 1998-02-25 Koninklijke KPN N.V. Optical non-linear branching element with MZ interferometer
US5887092A (en) * 1996-07-24 1999-03-23 Koninklijke Kpn N.V. Optical non-linear branching element with MZ interferometer
WO2006103850A1 (ja) * 2005-03-25 2006-10-05 Nippon Sheet Glass Company, Limited 導波路素子及びレーザ発生器

Similar Documents

Publication Publication Date Title
US4984861A (en) Low-loss proton exchanged waveguides for active integrated optic devices and method of making same
Katzir et al. Chirped gratings in integrated optics
US20100158441A1 (en) System And Method For High Speed Dye Doped Polymer Devices
JPH01201627A (ja) 導波路型光スイツチ
JPH06222229A (ja) 光導波路素子とその製造方法
US6577799B1 (en) Laser direct writing of planar lightwave circuits
US6684013B2 (en) Optical waveguide device to be optically poled, method of manufacturing optical waveguide device to be optically poled, and method of optically poling optical waveguide device
Laybourn et al. Integrated optics: a tutorial review
JPH0293626A (ja) 光論理素子
WO2022071283A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
JP2827640B2 (ja) 光部品の製造方法
JPH05224245A (ja) ハイブリッド光回路およびマトリクス光スイッチ
Hu et al. An integrated two-stage cascaded Mach-Zehnder device in GaAs
JPH01201626A (ja) 導波路型光スイッチ
JP2580088Y2 (ja) 方向性結合器型光制御デバイス
JP3555414B2 (ja) 短波長光源、光波長変換素子および光波長変換素子の検査方法
Ikegami et al. Passive paths for networks
JPS62103604A (ja) 光回路およびその製造方法
JPH0379691B2 (ja)
JPS61134731A (ja) 光制御回路の製造方法
JPH0763936A (ja) プラスチック導波路型光素子の作製方法
JPH11337892A (ja) 光導波路素子およびその製造方法
JPH1020134A (ja) 光導波路及びその製造方法
CN118033899A (zh) 一种结构光芯片及结构光成像系统
CN117950118A (zh) 反射式超构表面空分复用器件及光电子器件