JPH0118616B2 - - Google Patents

Info

Publication number
JPH0118616B2
JPH0118616B2 JP58156316A JP15631683A JPH0118616B2 JP H0118616 B2 JPH0118616 B2 JP H0118616B2 JP 58156316 A JP58156316 A JP 58156316A JP 15631683 A JP15631683 A JP 15631683A JP H0118616 B2 JPH0118616 B2 JP H0118616B2
Authority
JP
Japan
Prior art keywords
circuit
signal
bit
phase
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58156316A
Other languages
Japanese (ja)
Other versions
JPS6048648A (en
Inventor
Hideaki Matsue
Yoichi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58156316A priority Critical patent/JPS6048648A/en
Publication of JPS6048648A publication Critical patent/JPS6048648A/en
Publication of JPH0118616B2 publication Critical patent/JPH0118616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3818Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は多値直交振幅変調方式においてA/D
変換器、デイジタル信号処理回路を用いた搬送波
再生回路の構成法に関するものである。 (背景技術) 多値直交振幅変調方式において同期検波用の搬
送波を再生する回路としてA/D変換器により多
値信号を識別し、その識別結果を用いてデイジタ
ル処理回路(例えばROM、論理回路等)により
搬送波位相の制御信号を得る搬送波再生回路が考
案されている。(例えば特願昭58−21604)この搬
送波再生回路は搬送波位相の同期引き込み特性を
改善するため同相軸および直交軸からの距離が等
しい信号点だけを制御情報としていたため、位相
同期時において、復調信号の符号間干渉の少ない
定常時には位相同期回路のループゲインの低下し
再生搬送波ジツタが増加するという欠点があつ
た。 (発明の目的) 本発明はこれらの欠点を解決するため、同期引
き込み時および同期時において復調信号の符号間
干渉量が大の場合、擬似引き込み現象の防止およ
びループゲインの低下を防ぐため、同相軸および
直交軸からの距離が等しい点だけを選択し、位相
制御情報とする。一方同期時において復調信号の
符号間干渉が小の場合(定常時)、すべての点を
制御情報とすることにより定常時におけるループ
ゲインの向上および再生搬送波のC/Nの向上が
可能なように、A/D変換器出力の識別結果によ
り上位(n+1)ビツト目と上位(n+2)ビツ
ト目の排他的論理和の結果により自動的に制御情
報を切り替えることを可能にした搬送波再生回路
を提供することにある。 (発明の構成及び作用) 以下、本発明を図面に基づいて説明する。 本発明の構成を第1図に示す。同図において、
1は入力端子、2と2′は直交位相検波器、3と
3′は高調波除去用低域通過フイルタ、4と4′は
直流増幅器、5と5′は(n+2)ビツトのA/
D変換器、16はループフイルタ(LPF)、17
は電圧制御発振器(VCO)、18はπ/2移相
器、22はVCO制御回路である。動作原理につ
いて説明すると、入力端子1を介して22n値の直
交振幅変調波を入力し、直交位相検波器2,2′
を通して得られた同相および直交成分の22n値の
ベースバンド信号に対し高調波除去用低域通過フ
イルタ3,3′を通し所定のレベルになるように
直流増幅器4,4′を通し、そのゲインとオフセ
ツトを調整する。その信号を(n+2)ビツトの
A/D変換器5,5′を通すことにより、上位n
ビツトがそのまま識別結果となる。その上位nビ
ツト、上位(n+1)ビツト目及び上位(n+
2)ビツト目をVCO制御回路22を通すことに
よりVCO制御信号を取り出す。その信号をルー
プフイルタ16を通して平滑化し、VCO17を
制御することにより搬送波を再生する。 具体的には、VCO制御回路は(n+2)ビツ
トのA/D変換器22の出力に基づいて、搬送波
位相誤差信号(信号1とする)と、搬送波再生ル
ープの状態を検出する信号(信号2とする)と、
同相軸および直交軸からの距離が等しい信号だけ
を選択する信号(信号3とする)とを検出し、信
号2と3の論理和をとりこの結果とタイミング信
号の論理積をとつた信号により信号1をサンプル
ホールドし、電圧制御発振器22を制御する。 次に、16QAM信号(n=2)を例にとり、本
発明の実施例を第2図〜第4図に基づいて説明す
る。第2図は16QAM信号を用いた場合の構成図
である。同図において、6,7,9,10は排他
的論理和(EX−OR)、8,12は排他的反転論
理和(EX−NOR)、11,14は2入力AND、
13は2入力OR、15はD形フリツプフロツ
プ、19はタイミング信号入力端子、21は同相
軸および直交軸からの距離の等しい信号点のみを
選択する回路である。尚、その他の構成について
は、第1図と同様である。 同図において、直交位相検波器2,2′を通し
て得られた同相および直交成分の4値のベースバ
ンド信号に対し高調波除去用低域通過フイルタ
3,3′を通し第3図のレベルダイヤとなる様、
直流増幅器4,4′のゲインおよびオフセツトを
調整する。すなわち4ビツトのデイジタル信号に
変換する場合、最上位ビツトの識別レベル
(Path1の識別と呼ぶ)をA/D変換器入力電圧
を2等分するように設定する。上位2ビツト目の
識別(Path2の識別と呼ぶ)は入力電圧を4等分
する様にレベル設定することにより上位2ビツト
がそのまま4値信号の識別結果となる。上位3ビ
ツト目の識別(Path3の識別と呼ぶ)は入力電圧
を8等分する様に設定し、信号点の定常状態から
の偏移方向を検出し、上位4ビツト目の識別
(Path4の識別と呼ぶ)は入力電圧を15等分する
ように設定し信号点の定常状態からの偏移量を検
出する。次に、第4図に示すように同相分および
直交分のPath1の値(S11A,S12)により信号点
の象限を判定し、Path3の値(S31,S32)により
符号間干渉の方向を判定することにより搬送波位
相誤差θの方向を一意的に決定できる。例えば第
1象限ではS11=S12=1であり、S31=1の場合
θ=1となる。尚、Sijにおいてiはパスの番号
を示し(本実施例の場合i=1〜4)、jは同相
分(j=1)又は直交分(j=2)を示す。θ=
1となるすべての象限について、符号間干渉の方
向との関係を真理値表で示すと第1表のようにな
る。
(Technical field) The present invention relates to A/D in a multilevel quadrature amplitude modulation system.
This invention relates to a method of configuring a carrier recovery circuit using a converter and a digital signal processing circuit. (Background Art) In a multi-value quadrature amplitude modulation method, an A/D converter is used as a circuit to reproduce a carrier wave for synchronous detection, and a multi-value signal is identified by an A/D converter, and the identification result is used to generate a digital processing circuit (such as a ROM, a logic circuit, etc.). ) has been devised to obtain a carrier wave phase control signal. (For example, Japanese Patent Application No. 58-21604) In order to improve the synchronization pull-in characteristic of the carrier phase, this carrier regeneration circuit used only signal points with equal distances from the in-phase axis and the orthogonal axis as control information, so during phase synchronization, the demodulation When the signal is stationary with little intersymbol interference, the loop gain of the phase synchronization circuit decreases and reproduced carrier wave jitter increases. (Objective of the Invention) In order to solve these drawbacks, the present invention is designed to solve the following problems: When the amount of intersymbol interference of the demodulated signal is large at the time of synchronization pull-in and synchronization, the in-phase Only points having the same distance from the axis and the orthogonal axis are selected and used as phase control information. On the other hand, when the intersymbol interference of the demodulated signal is small during synchronization (in steady state), by using all points as control information, it is possible to improve the loop gain and the C/N of the recovered carrier wave in steady state. To provide a carrier wave regeneration circuit that can automatically switch control information based on the result of exclusive OR of the upper (n+1)th bit and the upper (n+2)th bit based on the identification result of the output of an A/D converter. There is a particular thing. (Structure and operation of the invention) The present invention will be explained below based on the drawings. The configuration of the present invention is shown in FIG. In the same figure,
1 is an input terminal, 2 and 2' are quadrature phase detectors, 3 and 3' are low-pass filters for removing harmonics, 4 and 4' are DC amplifiers, and 5 and 5' are (n+2) bit A/
D converter, 16 is a loop filter (LPF), 17
is a voltage controlled oscillator (VCO), 18 is a π/2 phase shifter, and 22 is a VCO control circuit. To explain the operating principle, a quadrature amplitude modulated wave of 2 2n values is input through input terminal 1, and quadrature phase detectors 2 and 2'
The 22n value baseband signal of the in-phase and quadrature components obtained through the filter is passed through harmonic removal low-pass filters 3, 3', and then passed through DC amplifiers 4, 4' to a predetermined level, and its gain is adjusted. and adjust the offset. By passing the signal through the (n+2) bit A/D converters 5, 5', the upper n
The bits directly serve as the identification results. The upper n bits, the upper (n+1)th bit, and the upper (n+
2) Take out the VCO control signal by passing the bit through the VCO control circuit 22. The signal is smoothed through a loop filter 16, and the carrier wave is regenerated by controlling the VCO 17. Specifically, the VCO control circuit generates a carrier phase error signal (signal 1) and a signal (signal 2) for detecting the state of the carrier regeneration loop based on the output of the (n+2)-bit A/D converter 22. ) and
A signal that selects only signals having the same distance from the in-phase axis and the orthogonal axis (signal 3) is detected, the logical sum of signals 2 and 3 is performed, and the logical product of this result and the timing signal is used to generate a signal. 1 is sampled and held, and the voltage controlled oscillator 22 is controlled. Next, an embodiment of the present invention will be described based on FIGS. 2 to 4, taking a 16QAM signal (n=2) as an example. FIG. 2 is a configuration diagram when a 16QAM signal is used. In the figure, 6, 7, 9, 10 are exclusive OR (EX-OR), 8, 12 are exclusive inverse OR (EX-NOR), 11, 14 are 2-input AND,
13 is a two-input OR, 15 is a D-type flip-flop, 19 is a timing signal input terminal, and 21 is a circuit that selects only signal points that are the same distance from the in-phase axis and the orthogonal axis. Note that the other configurations are the same as in FIG. 1. In the figure, the four-value baseband signal of in-phase and quadrature components obtained through quadrature phase detectors 2 and 2' is passed through low-pass filters 3 and 3' for harmonic removal to form the level diagram shown in Figure 3. Naru-sama,
Adjust the gain and offset of DC amplifiers 4, 4'. That is, when converting to a 4-bit digital signal, the discrimination level of the most significant bit (referred to as Path1 discrimination) is set so as to divide the A/D converter input voltage into two equal parts. Identification of the upper 2nd bit (referred to as Path 2 identification) is performed by setting the level so as to divide the input voltage into 4 equal parts, so that the upper 2 bits directly become the identification result of the 4-value signal. The identification of the upper 3rd bit (referred to as Path 3 identification) is performed by setting the input voltage to be divided into 8 equal parts, detecting the deviation direction of the signal point from the steady state, and then identifying the upper 4th bit (referred to as Path 3 identification). ) is set to divide the input voltage into 15 equal parts, and detects the amount of deviation of the signal point from the steady state. Next, as shown in Figure 4, the quadrant of the signal point is determined based on the in-phase and quadrature components Path1 values (S 11 A, S 12 ), and the intersymbol interference is determined using the Path 3 values (S 31 , S 32 ). By determining the direction of the carrier phase error θ, the direction of the carrier phase error θ can be uniquely determined. For example, in the first quadrant, S 11 =S 12 =1, and when S 31 =1, θ=1. Note that in S ij , i indicates a path number (i=1 to 4 in this embodiment), and j indicates an in-phase component (j=1) or an orthogonal component (j=2). θ=
Table 1 shows the relationship between the direction of intersymbol interference and the direction of intersymbol interference for all quadrants where the value is 1 in a truth table.

【表】 θは次式で与えられる。 θ=S11・S12・S31+S11123111・S12・S31111231 =S12・S31123112 31 つまりθ=12 31という関係を導くことがで
きる。従つて、直交分の第1Pathの値と同相分の
第3Pathの値の排他的反転論理和(EX−NOR)
をとることにより、搬送波位相誤差信号を得るこ
とができる。一方、同相軸および直交軸からの距
離が等しい信号点だけを選択する回路21の一例
として、同相分および直交分についてそれぞれ
Path1とPath2の排他的論理和9,10の結果に
ついて排他的反転論理和12をとることにより実
現することができる。 また、同相分および直交分について、それぞれ
Path3とPath4の排他的論理和6,7の結果、第
3図に示すように“1”の場合には、符号間干渉
が小の場合であり、定常時であると判断する。逆
に排他的論理和の結果が“0”の場合、符号間干
渉が大であるか、または同期はずれの状態である
と判断することができる。従つて、符号間干渉が
小の場合、選択信号(12の出力)と論理和13を
とることにより選択信号にかかわらず“1”とな
り、タイミング信号そのものがサンプルホールド
回路15を駆動するため、すべての信号点を制御
情報にすることができ定常時での再生搬送波の
C/Nを向上することができる。 一方、符号間干渉が大、または同期はずれの場
合、論理和13の出力は選択信号そのものとなり
タイミング信号と論理和14をとることにより第
4図の識別誤りに対する余裕の多い信号点〜
だけを選択し、制御情報とすることにより搬送波
位相誤差増大に伴う識別誤りによるループゲイン
の低下および擬似引き込みを防止することができ
る。このうにして符号間干渉の大小により制御情
報を自動的に切替え、このようにして得られた制
御信号はループフイルタ16を通り平滑化され、
VCO17を駆動することにより搬送波を再生す
ることができる。 (発明の効果) 以上説明したように、本発明によれば、同相分
および直交分のA/D変換器の識別結果である
Path3とPath4の排他的論理和をとることにより
搬送波再生ループの状態をモニタし、制御情報の
切替信号とすることにより定常時には再生搬送波
のC/N向上、ループゲインの向上を実現し、同
期引き込み時または符号間干渉が大の場合、識別
誤りによるループゲインの低下および擬似引き込
みを防止する搬送波再生回路が少数のデイジタル
論理回路を用いて構成できる利点がある。
[Table] θ is given by the following formula. θ=S 11・S 12・S 31 + S 111231 + 11・S 12・S 31 + 111231 = S 12・S 31 + 1231 = 12 31 , that is, the relationship θ= 12 31 can lead to Therefore, the exclusive inverse OR (EX-NOR) of the value of the first path of the orthogonal component and the value of the third path of the in-phase component
By taking , the carrier phase error signal can be obtained. On the other hand, as an example of the circuit 21 that selects only signal points having the same distance from the in-phase axis and the orthogonal axis, for the in-phase component and the orthogonal component, respectively
This can be realized by taking the exclusive inverted OR 12 of the results of the exclusive ORs 9 and 10 of Path1 and Path2. Also, for the in-phase component and quadrature component, respectively
If the result of the exclusive ORs 6 and 7 of Path3 and Path4 is "1" as shown in FIG. 3, it is determined that the intersymbol interference is small and that it is a steady state. Conversely, if the result of the exclusive OR is "0", it can be determined that the intersymbol interference is large or that the synchronization is out of synchronization. Therefore, when the intersymbol interference is small, by taking the logical sum 13 with the selection signal (output of 12), it becomes "1" regardless of the selection signal, and since the timing signal itself drives the sample and hold circuit 15, all signal points can be used as control information, and the C/N of the reproduced carrier wave in steady state can be improved. On the other hand, when intersymbol interference is large or synchronization is lost, the output of the logical sum 13 becomes the selection signal itself, and by taking the logical sum 14 with the timing signal, the signal point with a large margin against identification errors shown in Fig. 4 ~
By selecting only this and using it as control information, it is possible to prevent a decrease in loop gain and false pull-in due to identification errors due to an increase in carrier phase error. In this way, the control information is automatically switched depending on the magnitude of intersymbol interference, and the control signal obtained in this way is smoothed by passing through the loop filter 16.
The carrier wave can be regenerated by driving the VCO 17. (Effects of the Invention) As explained above, according to the present invention, the identification results of in-phase and quadrature A/D converters are
By taking the exclusive OR of Path3 and Path4, the state of the carrier wave regeneration loop is monitored, and by using it as a control information switching signal, it is possible to improve the C/N of the regenerated carrier wave and the loop gain in steady state, and to achieve synchronization pull-in. When the time or intersymbol interference is large, there is an advantage that a carrier recovery circuit that prevents a decrease in loop gain and false pull-in due to identification errors can be constructed using a small number of digital logic circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロツク図、第2
図は本発明の一実施例を示すブロツク図、第3図
はA/D変換器入力多値信号のレベルダイヤ、及
び第4図は符号間干渉量と搬送波位相誤差の関係
を示す図である。 1……入力端子、2,2′……位相検波器、3,
3′……低域通過フイルタ、4,4′……直流増幅
器、5,5′……A/D変換器、6,7,9,1
0……排他的論理和、11,14……2入力
AND、8,12……排他的反転論理和、13…
…2入力OR、15……D形フリツプフロツプ、
16……ループフイルタ、17……電圧制御発振
器(VCO)、18……π/2移相器、19……タ
イミング信号入力端子、20,20′……A/D
変換タイミング入力端子、21……同相軸および
直交軸からの距離の等しい信号点のみを選択する
回路、22……VCO制御回路。
Figure 1 is a block diagram showing the configuration of the present invention, Figure 2 is a block diagram showing the configuration of the present invention.
FIG. 3 is a block diagram showing an embodiment of the present invention, FIG. 3 is a level diagram of a multilevel signal input to an A/D converter, and FIG. 4 is a diagram showing the relationship between the amount of intersymbol interference and carrier phase error. . 1...Input terminal, 2, 2'...Phase detector, 3,
3'...Low pass filter, 4,4'...DC amplifier, 5,5'...A/D converter, 6,7,9,1
0...exclusive OR, 11,14...2 inputs
AND, 8, 12...exclusive inverted OR, 13...
...2 input OR, 15...D type flip-flop,
16...Loop filter, 17...Voltage controlled oscillator (VCO), 18...π/2 phase shifter, 19...Timing signal input terminal, 20, 20'...A/D
Conversion timing input terminal, 21...Circuit for selecting only signal points having equal distances from the in-phase axis and the orthogonal axis, 22...VCO control circuit.

Claims (1)

【特許請求の範囲】 1 多値(22n値)直交振幅変調波を入力信号と
する直交位相検波器と、高調波除去用低域通過フ
イルタと、電圧制御発振器と、ループフイルタ
と、位相検波器出力の2n値の多値復調信号を所定
のレベルに設定する直流増幅器と、該多値復調信
号を(n+2)ビツトのデイジタル信号に変換す
るA/D変換器と、A/D変換された上位nビツ
ト、上位(n+1)ビツト目及び上位(n+2)
ビツト目を論理演算処理することにより前記電圧
制御発振器を制御するための制御信号を出力する
VCO制御回路とを具備したことを特徴とする搬
送波発生回路。 2 前記VCO制御回路は、同相分および直交分
の(n+2)ビツトのA/D変換器の出力に対
し、同相分の最上位ビツトと直交分の上位(n+
1)ビツト目の排他的反転論理和あるいは直交分
の最上位ビツトと同相分の上位(n+1)ビツト
目の排他的反転論理和をとる第1の回路と、同相
分および直交分について上位(n+1)ビツト目
と上位(n+2)ビツト目の排他的論理和をとり
それぞれの結果の論理積をとる第2の回路と、同
相軸および直交軸からの距離が等しい信号点のみ
を選択する第3の回路と、前記第2の回路および
第3の回路の出力の論理和をとりその結果とタイ
ミング信号の論理積をとつた信号により前記第1
の回路の出力をサンプルホールドする回路とから
構成されることを特徴とする特許請求の範囲第1
項に記載の搬送波再生回路。
[Claims] 1. A quadrature phase detector that receives a multi-value ( 22n value) orthogonal amplitude modulated wave as an input signal, a low-pass filter for harmonic removal, a voltage controlled oscillator, a loop filter, and a phase detector. a DC amplifier that sets the 2 n -value multi-value demodulated signal output from the device to a predetermined level; an A/D converter that converts the multi-value demodulated signal into an (n+2)-bit digital signal; upper n bits, upper (n+1)th bits, and upper (n+2) bits
A control signal for controlling the voltage controlled oscillator is output by performing logical operation on the bit.
A carrier wave generation circuit characterized by comprising a VCO control circuit. 2 The VCO control circuit controls the most significant bit of the in-phase portion and the most significant bit of the orthogonal portion (n+2) bits of the output of the A/D converter for the in-phase and orthogonal portions.
1) A first circuit that calculates the exclusive inversion OR of the bit-th bit or the most significant bit of the orthogonal component and the exclusive inversion OR of the high-order (n+1) bit of the in-phase component; ) and the upper (n+2)th bit, and a second circuit that performs the AND of the respective results, and a third circuit that selects only the signal points that are the same distance from the in-phase axis and the orthogonal axis. The output of the circuit, the second circuit, and the third circuit are logically summed, and the result is logically ANDed with the timing signal to generate the first signal.
and a circuit for sampling and holding the output of the circuit.
The carrier wave regeneration circuit described in .
JP58156316A 1983-08-29 1983-08-29 Carrier regenerating circuit Granted JPS6048648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156316A JPS6048648A (en) 1983-08-29 1983-08-29 Carrier regenerating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156316A JPS6048648A (en) 1983-08-29 1983-08-29 Carrier regenerating circuit

Publications (2)

Publication Number Publication Date
JPS6048648A JPS6048648A (en) 1985-03-16
JPH0118616B2 true JPH0118616B2 (en) 1989-04-06

Family

ID=15625132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156316A Granted JPS6048648A (en) 1983-08-29 1983-08-29 Carrier regenerating circuit

Country Status (1)

Country Link
JP (1) JPS6048648A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281746A (en) * 1985-06-07 1986-12-12 Nippon Telegr & Teleph Corp <Ntt> Carrier recovery circuit
JPS63252014A (en) * 1987-04-08 1988-10-19 Kokusai Denshin Denwa Co Ltd <Kdd> Phase locked loop system
JP2553103B2 (en) * 1987-09-19 1996-11-13 富士通株式会社 Carrier wave regeneration circuit

Also Published As

Publication number Publication date
JPS6048648A (en) 1985-03-16

Similar Documents

Publication Publication Date Title
EP0020783A1 (en) Phase correction circuit for a phase modulation system
JPH0379904B2 (en)
JPH0118616B2 (en)
JPH0136745B2 (en)
JPH0428185B2 (en)
JPH0520028Y2 (en)
JPH10155005A (en) Carrier regeneration circuit, frequency error detection method and multi-value orthogonal amplitude demodulator
JP4307746B2 (en) Carrier wave recovery circuit and demodulator
JPH11355372A (en) Frequency recovery circuit and frequency recovery method
JP2927052B2 (en) Carrier signal regeneration circuit
JPH1051505A (en) Method and device for reproducing carrier wave
JPH0326934B2 (en)
JPH0234548B2 (en)
JP2756965B2 (en) Demodulator for high transmission rate modulated signal
JP2748727B2 (en) Carrier synchronization circuit
JPH0420546B2 (en)
JP3332042B2 (en) Carrier phase error detection method and circuit
JP3487221B2 (en) Clock recovery device and clock recovery method
JPS62118660A (en) Carrier recovery circuit
JPS6173459A (en) Delay detecting circuit device of dpsk signal
JPH0230222B2 (en)
JPH0583320A (en) Carrier synchronization circuit
JPH06152669A (en) Clock recovery circuit
JPH0328103B2 (en)
JPH0787147A (en) Demodulator