JPH0583320A - Carrier synchronization circuit - Google Patents

Carrier synchronization circuit

Info

Publication number
JPH0583320A
JPH0583320A JP3240720A JP24072091A JPH0583320A JP H0583320 A JPH0583320 A JP H0583320A JP 3240720 A JP3240720 A JP 3240720A JP 24072091 A JP24072091 A JP 24072091A JP H0583320 A JPH0583320 A JP H0583320A
Authority
JP
Japan
Prior art keywords
signal
circuit
carrier
error
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3240720A
Other languages
Japanese (ja)
Inventor
Hideki Matsuura
秀樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP3240720A priority Critical patent/JPH0583320A/en
Publication of JPH0583320A publication Critical patent/JPH0583320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To reduce the synchronization pull-in time regardless of provision of a wide synchronization pull-in range. CONSTITUTION:A phase error signal (g) of a voltage controlled oscillator 15 generating a carrier is obtained by applying logic control to output data e1, f1 and error signals e3, f3 obtained by applying demodulation and recovering a 16-value orthogonal amplitude modulation wave (a). A logic circuit 7 outputs a negative logic signal point detection signal (k) only when an input signal (a) is at a specific signal point. Furthermore, the voltage controlled oscillator 15 outputs a negative logic carrier synchronization detection signal l. Only the phase error signal (g) at a specific signal point at carrier asynchronization is fed back to the voltage controlled oscillator 15 by applying retiming to the signal (g) at a flip-flop 13 receiving a signal obtained through logic operation of the signals k, l and a recovered clock (h) as clock inputs. An error rate discrimination circuit 18 monitors an error rate in the carrier synchronization process and changes signal points detected by the logic circuit 7 to all signal points when the error rate reaches a prescribed value or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多値直交振幅変調方式
に用いられるディジタル化した搬送波同期回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digitized carrier synchronizing circuit used in a multilevel quadrature amplitude modulation system.

【0002】[0002]

【従来の技術】図2に、従来のディジタル化した搬送波
同期回路を用いた16値直交振幅復調回路の一例をブロ
ック図にて示す。
2. Description of the Related Art FIG. 2 is a block diagram showing an example of a 16-value quadrature amplitude demodulation circuit using a conventional digitized carrier synchronizing circuit.

【0003】この復調回路は変調波aを入力とし、電圧
制御発振器15及びπ/2移相器17でつくった互いに
π/2ラジアン位相差のある搬送波(キャリア)で入力
信号aを乗算器1,2にて同期検波して復調ベースバン
ド信号b1,b2を得る。これらベースバンド信号b
1,b2はA/D変換器3,4へ入力され、ディジタル
信号c1〜c4,d1〜d4を得る。これらディジタル
信号c1〜c4,d1〜d4は、トランスバーサル等化
器5,6に入力され、等化された後ディジタル信号e1
〜e4,f1〜f4を得る。e1,e2,e3,e4は
それぞれ同相成分(Pch)の第1ビット(MSB),
第2ビット,第3ビット,第4ビットを、f1,f2,
f3,f4は直交成分(Qch)の第1ビット(MS
B),第2ビット,第3ビット,第4ビットを表し、e
1,e2は4値のベースバンド信号b1の識別結果、f
1,f2は4値のベースバンド信号b2の識別結果とな
り、それぞれ出力される。e3は同相成分(Pch)の
振幅誤差信号を、f3は直交成分(Qch)の振幅誤差
信号を表す。
This demodulation circuit receives the modulated wave a as an input, and multiplies the input signal a by a carrier wave having a π / 2 radian phase difference, which is formed by the voltage controlled oscillator 15 and the π / 2 phase shifter 17. , 2 for synchronous detection to obtain demodulated baseband signals b1 and b2. These baseband signals b
1, 1 and 2 are input to A / D converters 3 and 4, and digital signals c1 to c4 and d1 to d4 are obtained. These digital signals c1 to c4 and d1 to d4 are input to the transversal equalizers 5 and 6 and equalized, and then the digital signal e1.
~ E4, f1 to f4 are obtained. e1, e2, e3, and e4 are the first bit (MSB) of the in-phase component (Pch),
The second bit, the third bit, and the fourth bit are set to f1, f2,
f3 and f4 are the first bit (MS) of the orthogonal component (Qch)
B), second bit, third bit, fourth bit, e
1, e2 are identification results of the four-valued baseband signal b1, f
1 and f2 are identification results of the four-valued baseband signal b2 and are output respectively. e3 represents an in-phase component (Pch) amplitude error signal, and f3 represents a quadrature component (Qch) amplitude error signal.

【0004】ディジタル化した搬送波同期回路は、同相
成分(Pch)の第1ビットe1と直交成分(Qch)
の誤差信号f3、直交成分(Qch)の第1ビットf1
と同相成分(Pch)の誤差信号e3をそれぞれ排他的
論理和回路8,9により排他的論理和演算し、減算器1
0によってそれぞれの差をとることによって位相制御信
号gを得る。位相制御信号gはさらにクロック入力ma
によってフリップフロップ13でリタイミングされた信
号iとなり、その後低域ろ波器14で雑音成分を除去さ
れた位相制御信号jとなって電圧制御発振器15を制御
する。さらに、ディジタル信号e1〜e4,f1〜f4
をロジック回路7aへ入力して所望の信号点のみ検出し
た負論理の信号kaを得る。lは負論理の搬送波同期検
出信号であり、論理積回路11によって搬送波非同期時
には信号点検出信号kbが再生クロックhの入力されて
いる論理和回路12に入力される。そして、位相制御信
号gをリタイミングしているフリップフロップ13のク
ロック入力maとして、搬送波非同期時に所望の信号点
を検出したときに再生クロックhが出力される。すなわ
ち、搬送波非同期時には所望の信号点から得た位相制御
情報のみを電圧制御発振器15へ帰還させ、所望の信号
点以外から得た位相制御情報は直前の有効な情報に置換
される。また、搬送波同期時には全ての信号点から得た
位相制御情報が電圧制御発振器15に入力される。
In the digitized carrier wave synchronizing circuit, the first bit e1 of the in-phase component (Pch) and the quadrature component (Qch) are used.
Error signal f3, the first bit f1 of the quadrature component (Qch)
And the in-phase component (Pch) error signal e3 are subjected to exclusive OR operation by the exclusive OR circuits 8 and 9, respectively, and the subtracter 1
The phase control signal g is obtained by taking the respective differences by 0. The phase control signal g is further input to the clock input ma.
It becomes the signal i re-timed by the flip-flop 13 and then becomes the phase control signal j from which the noise component is removed by the low pass filter 14 to control the voltage controlled oscillator 15. Furthermore, digital signals e1 to e4 and f1 to f4
Is input to the logic circuit 7a to obtain a negative logic signal ka by detecting only a desired signal point. l is a negative logic carrier wave synchronization detection signal, and the signal point detection signal kb is input to the logical sum circuit 12 to which the reproduction clock h is input by the AND circuit 11 when the carrier wave is not synchronized. Then, as the clock input ma of the flip-flop 13 that is retiming the phase control signal g, the reproduction clock h is output when a desired signal point is detected when the carrier wave is asynchronous. That is, when the carrier wave is asynchronous, only the phase control information obtained from the desired signal point is fed back to the voltage controlled oscillator 15, and the phase control information obtained from other than the desired signal point is replaced with the immediately preceding valid information. Further, the phase control information obtained from all the signal points is input to the voltage controlled oscillator 15 when the carrier wave is synchronized.

【0005】[0005]

【発明が解決しようとする課題】上述した従来のディジ
タル化した搬送波同期回路を用いた直交振幅復調回路
は、同期引き込み範囲を拡大するために非同期時にはあ
る特定の信号点からの位相制御情報のみを用いているた
め、同期が外れたときに引き込みに時間がかかるという
欠点がある。
The quadrature amplitude demodulation circuit using the above-described conventional digitized carrier wave synchronizing circuit only outputs the phase control information from a certain specific signal point at the time of non-synchronization in order to expand the synchronization pull-in range. Since it is used, there is a drawback that it takes time to pull in when synchronization is lost.

【0006】[0006]

【課題を解決するための手段】本発明の搬送波同期回路
は、多値直交振幅変調方式に用いられるディジタル化し
た搬送波同期回路であって、あらかじめ定めた信号点の
みを検出する論理回路と、搬送波位相誤差が大きくなっ
たことを検出する検出回路と、この検出回路の検出結果
に基づき前記搬送波位相誤差が大きくなったときには前
記あらかじめ定めた信号点の位相情報のみを用いる搬送
波位相制御回路と、誤り率を監視しながら誤り率があら
かじめ定めた値以下になったとき前記論理回路が検出す
る信号点を全ての信号点に切り替えるための誤り率判定
回路とを備えている。
A carrier synchronizing circuit of the present invention is a digitized carrier synchronizing circuit used in a multi-valued quadrature amplitude modulation system, which comprises a logic circuit for detecting only predetermined signal points and a carrier. A detection circuit that detects that the phase error has increased, a carrier phase control circuit that uses only the phase information of the predetermined signal point when the carrier phase error increases based on the detection result of this detection circuit, and an error An error rate determination circuit for switching the signal points detected by the logic circuit to all the signal points when the error rate falls below a predetermined value while monitoring the rate.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0008】図1は、本発明のディジタル化した搬送波
同期回路の一実施例を用いた16値直交振幅復調回路を
示すブロック図である。
FIG. 1 is a block diagram showing a 16-value quadrature amplitude demodulation circuit using an embodiment of a digitized carrier synchronizing circuit of the present invention.

【0009】この復調回路は変調波aを入力とし、電圧
制御発振器15とπ/2移相器17とでつくった互いに
π/2ラジアン位相差のある搬送波(キャリア)で入力
信号aを乗算器1,2にて同期検波して復調ベースバン
ド信号b1,b2を得る。これらベースバンド信号b
1,b2はA/D変換器3,4へ入力され、ディジタル
信号c1〜c4,d1〜d4を得る。これらディジタル
信号c1〜c4,d1〜d4はトランスバーサル等化器
5,6に入力され、等化された後ディジタル信号e1〜
e4,f1〜f4を得る。e1,e2,e3,e4はそ
れぞれ同相成分(Pch)の第1ビット(MSB),第
2ビット,第3ビット,第4ビットを、f1,f2,f
3,f4は直交成分(Qch)の第1ビット(MS
B),第2ビット,第3ビット,第4ビットを表し、e
1,e2は4値のベースバンド信号b1の識別結果、f
1,f2は4値のベースバンド信号b2の識別結果とな
り、それぞれ出力される。e3は同相成分(Pch)の
振幅誤差信号を、f3は直交成分(Qch)の振幅誤差
信号を表す。
This demodulation circuit receives the modulated wave a as an input, and multiplies the input signal a by a carrier wave which is formed by the voltage controlled oscillator 15 and the π / 2 phase shifter 17 and has a π / 2 radian phase difference. Synchronous detection is performed at 1 and 2 to obtain demodulated baseband signals b1 and b2. These baseband signals b
1, 1 and 2 are input to A / D converters 3 and 4, and digital signals c1 to c4 and d1 to d4 are obtained. These digital signals c1 to c4 and d1 to d4 are input to the transversal equalizers 5 and 6, and after being equalized, the digital signals e1 to e1.
e4 and f1 to f4 are obtained. e1, e2, e3, and e4 are the first bit (MSB), second bit, third bit, and fourth bit of the in-phase component (Pch), respectively, f1, f2, and f.
3 and f4 are the first bit (MS) of the quadrature component (Qch)
B), second bit, third bit, fourth bit, e
1, e2 are identification results of the four-valued baseband signal b1, f
1 and f2 are identification results of the four-valued baseband signal b2 and are output respectively. e3 represents an in-phase component (Pch) amplitude error signal, and f3 represents a quadrature component (Qch) amplitude error signal.

【0010】ディジタル化した搬送波同期回路は、同相
成分(Pch)の第1ビットe1と直交成分(Qch)
の誤差信号f3、直交成分(Qch)の第1ビットf1
と同相成分(Pch)の誤差信号e3をそれぞれ排他的
論理和回路8,9により排他的論理和演算し、減算器1
0によってそれぞれの差をとることによって位相制御信
号gを得る。位相制御信号gはさらにクロック入力mに
よってフリップフロップ13でリタイミングされた信号
iとなり、その後低域ろ波器14で雑音成分を除去され
た位相制御信号jとなって電圧制御発振器15を制御す
る。さらに、ディジタル信号e1〜e4,f1〜f4を
ロジック回路7へ入力して所望の信号点のみ検出した負
論理の信号kを得る。lは負論理の搬送波同期検出信号
であり、論理積回路11によって搬送波非同期時には信
号点検出信号kが再生クロックhの入力されている論理
和回路12に入力される。そして、位相制御信号gをリ
タイミングしているフリップフロップのクロック入力m
として、搬送波非同期時に所望の信号点を検出したとき
に再生クロックhが出力される。すなわち、搬送波非同
期時には所望の信号点から得た位相制御情報のみを電圧
制御発振器へ帰還させ、所望の信号点以外から得た位相
制御情報は直前の有効な情報に置換される。また、搬送
波同期時には全ての信号点から得た位相制御情報が電圧
制御発振器に入力される。
In the digitized carrier wave synchronizing circuit, the first bit e1 of the in-phase component (Pch) and the quadrature component (Qch) are used.
Error signal f3, the first bit f1 of the quadrature component (Qch)
And the in-phase component (Pch) error signal e3 are subjected to exclusive OR operation by the exclusive OR circuits 8 and 9, respectively, and the subtracter 1
The phase control signal g is obtained by taking the respective differences by 0. The phase control signal g becomes a signal i re-timed by the flip-flop 13 by the clock input m, and then becomes a phase control signal j from which the noise component is removed by the low pass filter 14 to control the voltage controlled oscillator 15. .. Further, the digital signals e1 to e4 and f1 to f4 are input to the logic circuit 7 to obtain a negative logic signal k in which only desired signal points are detected. Reference numeral l is a negative logic carrier wave synchronization detection signal, and the signal point detection signal k is input to the logical sum circuit 12 to which the reproduction clock h is input by the AND circuit 11 when the carrier wave is asynchronous. The clock input m of the flip-flop retiming the phase control signal g
As a result, the reproduction clock h is output when a desired signal point is detected when the carrier wave is asynchronous. That is, when the carrier wave is asynchronous, only the phase control information obtained from the desired signal point is fed back to the voltage controlled oscillator, and the phase control information obtained from other than the desired signal point is replaced with the immediately preceding effective information. In addition, the phase control information obtained from all the signal points is input to the voltage controlled oscillator during carrier wave synchronization.

【0011】本発明の特徴は、搬送波同期が外れた後の
同期時間を早くするため、同期過程において位相制御情
報を得るための信号点を切り換えることにある。
A feature of the present invention is that the signal points for obtaining the phase control information are switched in the synchronization process in order to shorten the synchronization time after the carrier synchronization is lost.

【0012】図1の実施例において、搬送波同期が外れ
ると、トランスバーサル等化器5,6は制御の発散を防
ぐため一旦リセットされる。この時、ディジタル出力信
号の誤りは大きくなり、ループ利得が低下して同期引き
込み範囲が減少してしまう。そこで、ある信号点におけ
る位相制御信号のみを用いて同期引き込み範囲の低下を
防いでいる。ここまでは図2の従来例におけると同じで
ある。
In the embodiment of FIG. 1, when carrier synchronization is lost, the transversal equalizers 5 and 6 are once reset to prevent divergence of control. At this time, the error of the digital output signal becomes large, the loop gain decreases, and the sync pull-in range decreases. Therefore, only the phase control signal at a certain signal point is used to prevent the reduction of the sync pull-in range. Up to this point, it is the same as in the conventional example of FIG.

【0013】一方、トランスバーサル等化器5,6にお
いては、それらの出力信号の誤差信号を少なくするよう
に動作するため、全ての信号点を制御情報として用いる
方が、早く集束する特徴を持っている。そこで、トラン
スバーサル等化器5,6をリセットする同期が外れた直
後は、同期引き込み範囲の減少を防ぐためある信号点の
みを用いる選択制御方式を用い、誤り率判定回路18に
て誤り率を監視しながら、ある一定値以下の誤り率にな
ったときロジック回路7を制御して信号点検出信号kを
“0”にすることにより、全ての信号点を用いる全点制
御に切り替える。
On the other hand, since the transversal equalizers 5 and 6 operate so as to reduce the error signals of their output signals, the use of all the signal points as the control information has the characteristic of focusing faster. ing. Therefore, immediately after the synchronization for resetting the transversal equalizers 5 and 6 is lost, a selection control method using only a certain signal point is used to prevent the decrease of the synchronization pull-in range, and the error rate determination circuit 18 sets While monitoring, when the error rate is below a certain fixed value, the logic circuit 7 is controlled to set the signal point detection signal k to "0", thereby switching to all-point control using all signal points.

【0014】これにより、ベースバンド信号b1,b2
の識別結果の誤りが大きい同期引き込み初期において同
期引き込み範囲の減少を防ぐと共に、同期引き込み時間
の短縮を計ることが可能となる。
As a result, the baseband signals b1 and b2
It is possible to prevent the reduction of the synchronization pull-in range and to shorten the synchronization pull-in time in the initial stage of the synchronization pull-in in which the error of the identification result is large.

【0015】[0015]

【発明の効果】以上説明したように本発明は、ディジタ
ル化した搬送波同期回路において位相情報を得る信号点
を同期過程において切り替えることによって、必要十分
な同期引き込み範囲を持ち同期引き込み時間の優れた搬
送波同期回路を実現することができる。
As described above, according to the present invention, a carrier point having a necessary and sufficient sync pull-in range and an excellent sync pull-in time is obtained by switching signal points for obtaining phase information in a digitized carrier synchronizing circuit in the synchronizing process. A synchronous circuit can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の搬送波同期回路の一実施例を用いた復
調回路のブロック図である。
FIG. 1 is a block diagram of a demodulation circuit using an embodiment of a carrier synchronization circuit of the present invention.

【図2】従来の復調回路の一例を示すブロック図であ
る。
FIG. 2 is a block diagram showing an example of a conventional demodulation circuit.

【符号の説明】[Explanation of symbols]

1,2 乗算器 3,4 A/D変換器 5,6 トランスバーサル等化器 7 ロジック回路 8,9 排他的論理和回路 10 減算器 11 論理積回路 12 論理和回路 13 フリップフロップ 14 低域ろ波器 15 電圧制御発振器 16 クロック信号再生回路 17 π/2移相器 18 誤り率判定回路 1, 2 Multiplier 3, 4 A / D converter 5, 6 Transversal equalizer 7 Logic circuit 8, 9 Exclusive OR circuit 10 Subtractor 11 Logical product circuit 12 Logical sum circuit 13 Flip-flop 14 Low-pass filter Wave device 15 Voltage controlled oscillator 16 Clock signal recovery circuit 17 π / 2 phase shifter 18 Error rate determination circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多値直交振幅変調方式に用いられるディ
ジタル化した搬送波同期回路であって、あらかじめ定め
た信号点のみを検出する論理回路と、搬送波位相誤差が
大きくなったことを検出する検出回路と、この検出回路
の検出結果に基づき前記搬送波位相誤差が大きくなった
ときには前記あらかじめ定めた信号点の位相情報のみを
用いる搬送波位相制御回路と、誤り率を監視しながら誤
り率があらかじめ定めた値以下になったとき前記論理回
路が検出する信号点を全ての信号点に切り替えるための
誤り率判定回路とを備えたことを特徴とする搬送波同期
回路。
1. A digitized carrier synchronizing circuit used in a multi-valued quadrature amplitude modulation system, which is a logic circuit for detecting only predetermined signal points and a detecting circuit for detecting that a carrier phase error has increased. And when the carrier phase error becomes large based on the detection result of the detection circuit, a carrier phase control circuit that uses only the phase information of the predetermined signal point, and the error rate is a predetermined value while monitoring the error rate. A carrier synchronization circuit, comprising: an error rate determination circuit for switching the signal points detected by the logic circuit to all the signal points when:
JP3240720A 1991-09-20 1991-09-20 Carrier synchronization circuit Pending JPH0583320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3240720A JPH0583320A (en) 1991-09-20 1991-09-20 Carrier synchronization circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3240720A JPH0583320A (en) 1991-09-20 1991-09-20 Carrier synchronization circuit

Publications (1)

Publication Number Publication Date
JPH0583320A true JPH0583320A (en) 1993-04-02

Family

ID=17063701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3240720A Pending JPH0583320A (en) 1991-09-20 1991-09-20 Carrier synchronization circuit

Country Status (1)

Country Link
JP (1) JPH0583320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832642A (en) * 1994-07-13 1996-02-02 Nec Corp Carrier synchronizing circuit
US6041085A (en) * 1996-11-22 2000-03-21 Nec Corporation Carrier regenerating circuit, multi-level quadrature amplitude demodulator, and method of detecting frequency deviation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832642A (en) * 1994-07-13 1996-02-02 Nec Corp Carrier synchronizing circuit
US6041085A (en) * 1996-11-22 2000-03-21 Nec Corporation Carrier regenerating circuit, multi-level quadrature amplitude demodulator, and method of detecting frequency deviation

Similar Documents

Publication Publication Date Title
US3984778A (en) Carrier recovery scheme for a SSB-SC signal
JP3728573B2 (en) Demodulator
US5170131A (en) Demodulator for demodulating digital signal modulated by minimum shift keying and method therefor
JPH06252967A (en) Pi/4 qpsk clock reproducer
JPH0583320A (en) Carrier synchronization circuit
JPH06177927A (en) Dqpsk delay detection circuit
JPH09168039A (en) Carrier recovery circuit
JPS58194450A (en) Demodulator
JPH10155005A (en) Carrier regeneration circuit, frequency error detection method and multi-value orthogonal amplitude demodulator
JP2983381B2 (en) Control signal generation circuit for clock recovery
JPH0787147A (en) Demodulator
JP2838962B2 (en) Carrier recovery method
JP3695920B2 (en) Carrier wave reproducing circuit and carrier wave reproducing method
JP3444938B2 (en) Quasi-synchronous detection and demodulation circuit
JP2748727B2 (en) Carrier synchronization circuit
JP2795761B2 (en) MSK signal demodulation circuit
JP3134519B2 (en) Demodulator
JP2927052B2 (en) Carrier signal regeneration circuit
JP4218100B2 (en) Information processing apparatus and method, and recording medium
JP3792477B2 (en) Frame sync detector
JP3230018B2 (en) Clock recovery circuit of demodulator
JPH0211047A (en) Carrier regenerating circuit
JP2000236363A (en) Frame synchronizing signal detector and carrier reproducing device using the same
JPH06291791A (en) Demodulator for phase modulation wave signal
JPH0752856B2 (en) Demodulator