JPH01183825A - Formation of single crystal silicon film - Google Patents

Formation of single crystal silicon film

Info

Publication number
JPH01183825A
JPH01183825A JP885288A JP885288A JPH01183825A JP H01183825 A JPH01183825 A JP H01183825A JP 885288 A JP885288 A JP 885288A JP 885288 A JP885288 A JP 885288A JP H01183825 A JPH01183825 A JP H01183825A
Authority
JP
Japan
Prior art keywords
single crystal
film
silicon film
crystal silicon
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP885288A
Other languages
Japanese (ja)
Inventor
Kunio Takeuchi
邦生 竹内
Hideji Nagasawa
長沢 秀治
Norihiro Ikeda
典弘 池田
Makoto Akizuki
誠 秋月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP885288A priority Critical patent/JPH01183825A/en
Publication of JPH01183825A publication Critical patent/JPH01183825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve Hall mobility, i.e., crystallizability, by annealing and treating a single crystal Si film grown by applying Si molecular beams in a hydrogen atmosphere at a temperature within a specific range. CONSTITUTION:The upper section of a single crystal substrate 1 is irradiated with silicon molecular beams and a single crystal silicon film 3 is formed, and the single crystal silicon film 3 is annealed and treated at a temperature of 700-900 deg.C in a hydrogen atmosphere. The Hall mobility of the single crystal Si film 3 shaped by applying Si molecular beams is improved through the annealing treatment, and crystailizability is enhanced. Accordingly, the single crystal Si film 3 having excellent crystallizability can be formed, inhibiting the generation of autodoping in which impurity concentration in the single crystal Si film 1 and the insulating layer changes.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は単結晶シリコン膜の形成方法に関し、特に絶縁
層上に単結晶シリコン膜を形成してSO1構造とするも
のに関する。
DETAILED DESCRIPTION OF THE INVENTION A) Field of Industrial Application The present invention relates to a method for forming a single crystal silicon film, and more particularly to a method for forming a single crystal silicon film on an insulating layer to form an SO1 structure.

口)従来の技術 絶縁@あるいは絶縁基板上に単結晶シリコン(S i 
)[を形成したものをS OI (Sil 1con 
onInsulJor)あるいはS OS (Sili
con on 5apphire)構造と称し、半導体
集積回路において高集積化や高速化が図れるものとして
知られている。
) Conventional technology: Insulating @ or monocrystalline silicon (Si) on an insulating substrate
) [ is formed as S OI (Sil 1con
onInsulJor) or S OS (Sili
This structure is known as a con-on-5-apphire structure, and is known as a structure that enables higher integration and higher speed in semiconductor integrated circuits.

S OI構造をつくる上で重要な単結晶Si膜の形成方
法としてCVD法、ビームアニール去、MBE法等が知
られており、このうちMBE法は低温度での成長が可能
なうえに、不純物プロファイルの制御が精度良く行なえ
るものである(例えば、Applied Physic
s Letters 36(91、I May  19
80第741頁乃至第745頁rGrowth of 
$1hin 5ilicon films on 5a
phhire and spinelg by mol
ecular beam epitaxyJ参照)。
CVD, beam annealing, MBE, and other methods are known as methods for forming single-crystal Si films, which are important in creating SOI structures. Profile control can be performed with high precision (for example, Applied Physics
s Letters 36 (91, I May 19
80 pages 741 to 745 rGrowth of
$1hin 5ilicon films on 5a
phire and spinelg by mol
ecular beam epitaxyJ).

ハ)発明が解決しようとする課題 絶縁膜上に形成する単結晶Si膜の膜質は、その単結晶
Si膜に形成する半導体累子の特性忙大きな影響を及ぼ
すので、単結晶Si基板と同程度の結晶性を有する様な
膜質の改善が望まれている。
C) Problems to be Solved by the Invention The film quality of the single crystal Si film formed on the insulating film has a great influence on the characteristics of the semiconductor layer formed on the single crystal Si film, so it is about the same as that of the single crystal Si substrate. It is desired to improve the film quality so that it has crystallinity.

単結晶Si膜の結晶性を向上する方法として、高温(1
000℃以上)でのアニール処理がある。
As a method to improve the crystallinity of single-crystal Si films, high temperature (1
There is an annealing treatment at a temperature of 000°C or higher).

しかし、単結晶Si映の下層の絶縁層がサファイヤ基板
であったり、スピネル(MgO,・At203)膜であ
ったりすると、絶縁層から上層の単結晶Si膜へとAL
のオートドーピングが起こり、単結晶Si膜および絶縁
層の不純物濃度が変化するという問題があった。
However, if the lower insulating layer of the single crystal Si film is a sapphire substrate or a spinel (MgO, At203) film, the AL will pass from the insulating layer to the upper single crystal Si film.
There was a problem in that auto-doping occurred and the impurity concentration of the single crystal Si film and the insulating layer changed.

本発明は上述の点に餉意して為されたもので、オートド
ーピングの発生を抑えつつ、結晶性の良い単結晶Si膜
を形成するものである。
The present invention has been made with the above points in mind, and is intended to form a single crystal Si film with good crystallinity while suppressing the occurrence of autodoping.

二)課題を解決する之めの手段 本発明は、単結晶基板上にSi分子線を照射して形成し
た単結晶Si膜を水素雰囲気中で、700℃乃至900
℃の温度でアニール処理を行う単結晶Si膜の形成示去
である。
2) Means for Solving the Problems The present invention provides a single-crystal Si film formed by irradiating a Si molecular beam onto a single-crystal substrate at a temperature of 700°C to 900°C in a hydrogen atmosphere.
This is a diagram showing the formation of a single crystal Si film which is annealed at a temperature of .degree.

ホ)作 用 上述のアニール処理により、Si分子線を照射して形成
された単結晶5ifliのホール移動度が向上する。即
ち結晶性が向上する。
E) Effect The above-described annealing treatment improves the hole mobility of the single crystal 5ifli formed by irradiating Si molecular beams. That is, crystallinity is improved.

へ)実施例 第1図A乃至Cは本発明−実施例に係る工程説明図であ
る。
f) Embodiment FIGS. 1A to 1C are process explanatory diagrams according to an embodiment of the present invention.

(1)は(100)而を主面とする単結晶Si基板(第
1図A)である。図示しないCVD装置で、該基&(1
)上にAt−HCL−MgC12−CO2−H2糸の気
相エピタキシャル法で成長温度を920℃とし、絶縁膜
としての単結晶スピネル(MgO・At20 S )[
[!ii!+21を成長させる(第1図B)。該スピネ
ル膜(2)の厚さは200℃mとする。次に図示しない
MBE装置にこの基板を設置し、スピネル膜(2)上に
単結晶Si膜(3)ヲエビタキシャル成長させる(集1
図C)。このとき、成長温度(基板り度)は800℃と
し、成長速度が1OA/S程度となるようにSi分子線
をスピネル膜(2)上に照射して、単結晶Si膜(2)
を1μm成長させる。
(1) is a single-crystal Si substrate (FIG. 1A) having a (100) plane as a main surface. The group &(1
) was grown using a vapor phase epitaxial method using At-HCL-MgC12-CO2-H2 yarn at a growth temperature of 920°C, and a single crystal spinel (MgO.At20S) [
[! ii! +21 (Figure 1B). The thickness of the spinel film (2) is 200°C. Next, this substrate is installed in an MBE apparatus (not shown), and a single crystal Si film (3) is grown epitaxially on the spinel film (2) (see Section 1).
Figure C). At this time, the growth temperature (substrate degree) was set to 800°C, and a Si molecular beam was irradiated onto the spinel film (2) so that the growth rate was about 1OA/S.
is grown to 1 μm.

セしてSi膜(2)が形成された基板を水素雰囲気中で
800℃の温度で10分間アニール処理する。
The substrate on which the Si film (2) has been formed is annealed at a temperature of 800° C. for 10 minutes in a hydrogen atmosphere.

このアニール処理により単結晶Si膜(3)の結晶性が
向上される。
This annealing treatment improves the crystallinity of the single crystal Si film (3).

アニール処理tしない単結晶Si膜のホール移動度を1
とした場合に、温度を変えて水素雰囲気中でのアニール
処理をした単結晶Si膜のホール移1lFIKの値を第
2図に示す。第2図かられかる様に、水素雰囲気中でア
ニール処理しない単結晶Si膜に較べ、800℃の温度
で水素#Fi598.中でのアニール処理をした単結晶
Si膜は、ホール移動度が約1.4倍に向上されている
(ホール移動度は。
The hole mobility of a single crystal Si film without annealing treatment is 1
FIG. 2 shows the value of the hole transfer 1lFIK of a single crystal Si film annealed in a hydrogen atmosphere at different temperatures. As can be seen from FIG. 2, compared to a single crystal Si film that is not annealed in a hydrogen atmosphere, hydrogen #Fi598. The hole mobility of the single-crystal Si film that has been annealed inside is improved by about 1.4 times (Hole mobility is .

アニール処理なしの場合66 a4/ vsee、 8
00℃での水素雰囲気中のアニール処理をした場合91
、1 ai/ v seCであった)。これは熱による
結晶再配置と、水菓雰凹気によりSi換表面の酸素濃度
、即ち酸索樹起欠陥の低減がされるためと考えられる。
Without annealing treatment 66 a4/vsee, 8
When annealing in a hydrogen atmosphere at 00°C, 91
, 1 ai/v seC). This is thought to be due to the crystal rearrangement caused by heat and the reduction of the oxygen concentration on the Si-exchanged surface, that is, the reduction of acid-induced dendrite defects due to the condensation atmosphere.

特に分子線の照射は超高真空中で行われるが、基板を加
熱するために、基板保持共等から不純物ガス(特に酸素
)が発生したり、下層の絶縁膜から酸素が供給されて成
長させるSi膜中の酸素濃度が晶くなる場合がある。こ
の酸素が水素雰囲気中でのアニールによって排除される
と、結晶性が同上するので、ホール移動度が上がる。
In particular, molecular beam irradiation is performed in an ultra-high vacuum, but in order to heat the substrate, impurity gas (particularly oxygen) is generated from the substrate holder, etc., and oxygen is supplied from the underlying insulating film to cause growth. The oxygen concentration in the Si film may become crystallized. When this oxygen is removed by annealing in a hydrogen atmosphere, the crystallinity improves, thereby increasing the hole mobility.

ホール移動度は、第2図かられかる様に、アニール処理
の湿度がおよそ700℃乃至900℃の範囲においてア
ニール処理なしに較べ大幅に向上される。
As can be seen from FIG. 2, the hole mobility is significantly improved when the humidity of the annealing treatment is in the range of about 700° C. to 900° C. compared to the case without the annealing treatment.

また、アニールの温度が950℃以上になると、下層の
スピネル膜(2)からhtのオートドーピングが起こり
、不純物濃度が変化する(ホール移動度の悪化原因とも
思われる)が、900℃以内の温度でのアニール処理な
ので、オートドーピングの発生も抑えられる。
Furthermore, when the annealing temperature exceeds 950°C, autodoping of ht occurs from the underlying spinel film (2), changing the impurity concentration (which is also thought to be the cause of deterioration of hole mobility); Since the annealing treatment is performed at , the occurrence of autodoping can also be suppressed.

尚、本夫施例では、Si分子線照射により形成した単結
晶Si[の下層は単結晶スピネル膜であるが、単結晶で
あれば、サファイヤ基板やスピネル基板であってもかま
わない。
In this embodiment, the lower layer of single crystal Si formed by Si molecular beam irradiation is a single crystal spinel film, but as long as it is a single crystal, it may be a sapphire substrate or a spinel substrate.

ト)発明の効果 本発明は、以上の説明から明らかな如く、Si分子線を
照射して成長させた単結晶Si膜を700℃乃至900
℃の温度で水素雰囲気中でアニール処理することで、ホ
ール移動度を向上でき、即ち単結晶Si膜の結晶性を向
上することができる。   □従って、501構造上の
素子として、特性の艮い素子を形成することが可能とな
る。
g) Effects of the Invention As is clear from the above description, the present invention provides a method for growing a single crystal Si film grown by irradiating Si molecular beams at 700°C to 900°C.
By annealing in a hydrogen atmosphere at a temperature of .degree. C., the hole mobility can be improved, that is, the crystallinity of the single crystal Si film can be improved. □Therefore, it is possible to form an element with different characteristics as an element on the 501 structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A乃至Cは本発明−実施例の工程説明図、第2図
はアニール温度とホール移動度の関係を示す図である。 (1)・・・単結晶Si基板、(2)・・・単結晶スピ
ネル膜、(3)・・・単結晶Si@。
FIGS. 1A to 1C are process explanatory diagrams of an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between annealing temperature and hole mobility. (1)...Single crystal Si substrate, (2)...Single crystal spinel film, (3)...Single crystal Si@.

Claims (2)

【特許請求の範囲】[Claims] (1)単結晶基板上にシリコン分子線を照射して単結晶
シリコン膜を形成し、該単結晶シリコン膜を水素雰囲気
中で、700℃乃至900℃の温度でアニール処理を行
うことを特徴とする単結晶シリコン膜の形成方法。
(1) A single crystal substrate is irradiated with a silicon molecular beam to form a single crystal silicon film, and the single crystal silicon film is annealed at a temperature of 700°C to 900°C in a hydrogen atmosphere. A method for forming a single crystal silicon film.
(2)前記単結晶基板は絶縁物であることを特徴とする
請求項1記載の単結晶シリコン膜の形成方法。
(2) The method for forming a single crystal silicon film according to claim 1, wherein the single crystal substrate is an insulator.
JP885288A 1988-01-19 1988-01-19 Formation of single crystal silicon film Pending JPH01183825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP885288A JPH01183825A (en) 1988-01-19 1988-01-19 Formation of single crystal silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP885288A JPH01183825A (en) 1988-01-19 1988-01-19 Formation of single crystal silicon film

Publications (1)

Publication Number Publication Date
JPH01183825A true JPH01183825A (en) 1989-07-21

Family

ID=11704265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP885288A Pending JPH01183825A (en) 1988-01-19 1988-01-19 Formation of single crystal silicon film

Country Status (1)

Country Link
JP (1) JPH01183825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121117A (en) * 1992-01-30 2000-09-19 Canon Kabushiki Kaisha Process for producing semiconductor substrate by heat treating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828855A (en) * 1981-07-27 1983-02-19 Nec Corp Heat treatment method for semiconductor substrate
JPS59211216A (en) * 1983-03-03 1984-11-30 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method of producing semiconductor device
JPS62123098A (en) * 1985-11-22 1987-06-04 Toshiba Ceramics Co Ltd Silicon single crystal
JPS62279644A (en) * 1986-05-28 1987-12-04 Sony Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828855A (en) * 1981-07-27 1983-02-19 Nec Corp Heat treatment method for semiconductor substrate
JPS59211216A (en) * 1983-03-03 1984-11-30 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method of producing semiconductor device
JPS62123098A (en) * 1985-11-22 1987-06-04 Toshiba Ceramics Co Ltd Silicon single crystal
JPS62279644A (en) * 1986-05-28 1987-12-04 Sony Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121117A (en) * 1992-01-30 2000-09-19 Canon Kabushiki Kaisha Process for producing semiconductor substrate by heat treating

Similar Documents

Publication Publication Date Title
JPS58130517A (en) Manufacture of single crystal thin film
JPH076950A (en) Manufacture of structural parts for electron, lightning and optical constituent
JPH01183825A (en) Formation of single crystal silicon film
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JPH01134912A (en) Manufacture of semiconductor thin film
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS6164119A (en) Manufacture of semiconductor device
JPS5945996A (en) Vapor growth of semiconductor
JPH0645249A (en) Growth method of gaas layer
Rosner et al. Microstructure of thin layers of MBE-grown GaAs on Si substrates
JP2747823B2 (en) Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate
JPS5982744A (en) Manufacture of sos substrate
JP2592984B2 (en) Manufacturing method of silicon thin film
JP3150719B2 (en) Thin film semiconductor substrate and method of manufacturing the same
JPS61205693A (en) Crystal growth
JPH04335519A (en) Manufacture of semiconductor crystal
JP2737152B2 (en) SOI forming method
JPH01122115A (en) Forming method for semiconductor hetero structure
JPS5860697A (en) Forming method of silicon single crystal film
JPH01261300A (en) Heteroepitaxial growth of al2o3 single crystal film on si substrate by reduce pressure vapor growth
JPS63278217A (en) Manufacture of semiconductor substrate
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPH01315129A (en) Formation of soi structure
JPS59181609A (en) Manufacture of semiconductor device
JPH01292814A (en) Hetero epitaxial growth