JPH01292814A - Hetero epitaxial growth - Google Patents

Hetero epitaxial growth

Info

Publication number
JPH01292814A
JPH01292814A JP12350588A JP12350588A JPH01292814A JP H01292814 A JPH01292814 A JP H01292814A JP 12350588 A JP12350588 A JP 12350588A JP 12350588 A JP12350588 A JP 12350588A JP H01292814 A JPH01292814 A JP H01292814A
Authority
JP
Japan
Prior art keywords
single crystal
gaas layer
layer
semiconductor layer
crystal semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12350588A
Other languages
Japanese (ja)
Other versions
JP2727564B2 (en
Inventor
Koji Tamamura
好司 玉村
Katsuhiro Akimoto
秋本 克洋
Yoshifumi Mori
森 芳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63123505A priority Critical patent/JP2727564B2/en
Publication of JPH01292814A publication Critical patent/JPH01292814A/en
Application granted granted Critical
Publication of JP2727564B2 publication Critical patent/JP2727564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a high quality single crystal semiconductor layer with a low crystal defect density by a method wherein, after ions of required atoms are implanted into a single crystal semiconductor layer, the single crystal semiconductor layer into which the ions are implanted is recrystallized by a heat treatment. CONSTITUTION:An amorphous GaAs layer 2 is built up on an Si substrate 1 by solid growth and single-crystallized to form a single crystal GaAs layer 3 and a single crystal GaAs layer 4 is built up on it and then ions are implanted into the single crystal GaAs layer 4. As a result, B is introduced into the single crystal GaAs layer 4 with a concentration profile of a Gauss distribution and a crystal lattice is distorted in the region into which B is introduced. The single crystal GaAs layer 4 is made to grow by solid epitaxy and recrystallized. At that time, the number of through-dislocations in the single crystal GaAs layer 4 is reduced. After that, GaAs is further built up on the single crystal GaAs layer 4 to obtain a single crystal GaAs layer 5 having a required thickness. With this constitution, the density of crystal defects such as dislocation in the single crystal GaAs layer 5 can be lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヘテロエピタキシャル成長方法に関し、例え
ば、シリコン(St )基板上へのガリウムヒ素(Ga
As )のへテロエピタキシャル成長に適用して最適な
ものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of heteroepitaxial growth, for example, the growth of gallium arsenide (Ga) on a silicon (St 2 ) substrate.
It is most suitable for application to the heteroepitaxial growth of As).

〔発明の概要〕[Summary of the invention]

本発明のへテロエピタキシャル成長方法は、シリコン基
板上にシリコンと異なる種類の単結晶半導体層を形成し
、上記単結晶半導体層に所定の原子をイオン注入した後
に熱処理を行うことにより上記原子がイオン注入された
上記単結晶半導体層を再結晶化し、上記再結晶化された
上記単結晶半導体層上に上記単結晶半導体層をさらに形
成するようにすることによって、転位等の結晶欠陥密度
が低い良質の単結晶半導体層をシリコン基板上にヘテロ
エピタキシャル成長させることができるようにしたもの
である。
In the heteroepitaxial growth method of the present invention, a single crystal semiconductor layer of a type different from silicon is formed on a silicon substrate, predetermined atoms are ion-implanted into the single crystal semiconductor layer, and then heat treatment is performed so that the atoms are ion-implanted. By recrystallizing the single-crystal semiconductor layer and further forming the single-crystal semiconductor layer on the recrystallized single-crystal semiconductor layer, a high-quality crystalline semiconductor layer with a low density of crystal defects such as dislocations can be obtained. This allows a single crystal semiconductor layer to be grown heteroepitaxially on a silicon substrate.

〔従来の技術〕[Conventional technology]

ヘテロエピタキシャル成長は、格子定数の異なる基板を
用いてエピタキシャル層を成長させる技術である。Si
基板上へのGaAs層のへテロエピタキシャル成長はそ
の代表的な例である。しかしながら、GaAsの格子定
数は5.6534人であるのに対してSiの格子定数は
5.43086人であり、それらの差は約4%と大きい
。このため、Si基板上にGaAsを直接成長させると
、このGaAsは島状に成長し、層状のものは得られな
い。しかも、この島状のGaAs中には、St基板との
界面付近に転位等の結晶欠陥が10′2個/d程度も存
在している。
Heteroepitaxial growth is a technique for growing epitaxial layers using substrates with different lattice constants. Si
The heteroepitaxial growth of a GaAs layer on a substrate is a typical example. However, the lattice constant of GaAs is 5.6534, while the lattice constant of Si is 5.43086, and the difference between them is as large as about 4%. For this reason, if GaAs is grown directly on a Si substrate, the GaAs will grow in the form of islands, and a layered structure will not be obtained. Furthermore, in this island-shaped GaAs, there are about 10'2/d of crystal defects such as dislocations near the interface with the St substrate.

従って、Si基板上に単結晶GaAs層を直接成長させ
ることは困難であると言ってよい。
Therefore, it can be said that it is difficult to grow a single crystal GaAs layer directly on a Si substrate.

応用物理、第55巻、第11号(1986)第1069
頁から第1073真においては、上述の問題を解決する
ことを目的とする二段階成長法について論じられている
。この二段階成長法によれば、まずSi基板上に非晶質
または多結晶の薄いGaAs層を成長させた後、これを
熱処理(アニール)することにより固相成長させて単結
晶化し、この単結晶化されたGaAs層の上に能動層と
なる単結晶GaAs層を成長させる。
Applied Physics, Volume 55, No. 11 (1986) No. 1069
From page 1073, a two-step growth method is discussed that aims to solve the above-mentioned problems. According to this two-step growth method, a thin amorphous or polycrystalline GaAs layer is first grown on a Si substrate, and then it is heat-treated (annealed) to grow in a solid phase and become a single crystal. A single-crystal GaAs layer that will become an active layer is grown on the crystallized GaAs layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述の二段階成長法により成長されたG
aAs層中に存在する転位等の結晶欠陥密度は10”個
/ cnll程度と高く、その品質は不十分である。
However, G
The density of crystal defects such as dislocations existing in the aAs layer is as high as about 10''/cnll, and its quality is insufficient.

従って本発明の目的は、転位等の結晶欠陥密度が低い良
質の単結晶半導体層をシリコン基板上にヘテロエピタキ
シャル成長させることができるヘテロエピタキシャル成
長方法を提供することにある。
Therefore, an object of the present invention is to provide a heteroepitaxial growth method that can heteroepitaxially grow a high-quality single crystal semiconductor layer having a low density of crystal defects such as dislocations on a silicon substrate.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、本発明のへテロエピタキシャ
ル成長方法は、シリコン基板(1)上にシリコンと異な
る種類の単結晶半導体層(4)を形成し、単結晶半導体
層(4)に所定の原子をイオン注入した後に熱処理を行
うことにより原子がイオン注入された単結晶半導体層(
4)を再結晶化し、再結晶化された単結晶半導体層(4
)上に単結晶半導体層(5)をさらに形成するようにし
ている。
In order to solve the above problems, the heteroepitaxial growth method of the present invention forms a single crystal semiconductor layer (4) of a type different from silicon on a silicon substrate (1), and forms a single crystal semiconductor layer (4) with predetermined atoms in the single crystal semiconductor layer (4). A single crystal semiconductor layer into which atoms are ion-implanted (
4) to form a recrystallized single crystal semiconductor layer (4).
) on which a single crystal semiconductor layer (5) is further formed.

〔作用〕[Effect]

シリコン基板上に単結晶半導体層を一旦形成し、その上
にさらに単結晶半導体層を形成する場合、上層の単結晶
半導体層中の転位等の結晶欠陥密度を低くするためには
、下層の単結晶半導体層中の貫通転位の数を減少させて
おくことが特に重要である。上記した手段によれば、イ
オン注入により単結晶半導体層中に結晶格子が歪んだ領
域を形成することができるので、この結晶格子が歪んだ
領域の下側の貫通転位は熱処理による再結晶化時にこの
歪んだ領域により主として横方向(シリコン基板の表面
と平行な方向)に曲げられ、上方(シリコン基板の表面
と垂直な方向=成長方向)への伝播が妨げられる。その
結果、この再結晶化された単結晶半導体層中の貫通転位
の数は減少する。
When a single crystal semiconductor layer is once formed on a silicon substrate and another single crystal semiconductor layer is formed on top of it, in order to reduce the density of crystal defects such as dislocations in the upper single crystal semiconductor layer, it is necessary to It is particularly important to reduce the number of threading dislocations in the crystalline semiconductor layer. According to the above method, a region with a distorted crystal lattice can be formed in a single crystal semiconductor layer by ion implantation, so that threading dislocations under the region with a distorted crystal lattice can be removed during recrystallization by heat treatment. This distorted region mainly bends in the lateral direction (direction parallel to the surface of the silicon substrate) and prevents propagation upward (direction perpendicular to the surface of the silicon substrate = growth direction). As a result, the number of threading dislocations in this recrystallized single crystal semiconductor layer is reduced.

このため、この貫通転位の数が少ない単結晶半導体層上
にさらに単一結晶半導体層を形成することにより、より
結晶欠陥密度が低い単結晶半導体層を形成することがで
きる。これによって、結晶欠陥密度が低い良質の単結晶
半導体層をシリコン基板上にヘテロエピタキシャル成長
させることができる。
Therefore, by further forming a single crystal semiconductor layer over this single crystal semiconductor layer with a small number of threading dislocations, a single crystal semiconductor layer with a lower crystal defect density can be formed. As a result, a high quality single crystal semiconductor layer with a low crystal defect density can be heteroepitaxially grown on a silicon substrate.

〔実施例〕〔Example〕

以下、本発明の一実施例について図面を参照しながら説
明する。この実施例は、Si基板上へのGaAs層のへ
テロエピタキシャル成長に本発明を適用した実施例であ
る。
An embodiment of the present invention will be described below with reference to the drawings. This example is an example in which the present invention is applied to the heteroepitaxial growth of a GaAs layer on a Si substrate.

第1図Aに示すように、まずあらかじめ表面が清浄化さ
れたSt基板1上に例えば有機金属化学気相成長(MO
CVD)法や分子線エピタキシー(MBE)法により例
えば成長温度410°Cで例えば膜厚200人程度の非
晶質GaAs層2を形成する。
As shown in FIG. 1A, first, for example, metal organic chemical vapor deposition (MO) is applied onto an St substrate 1 whose surface has been cleaned in advance.
An amorphous GaAs layer 2 having a thickness of, for example, about 200 layers is formed at a growth temperature of, for example, 410.degree. C. by a CVD method or a molecular beam epitaxy (MBE) method.

次に、例えば720°Cでアニールを行うことにより上
記非晶1iGaAs層2を固相成長させて単結晶化する
。これによって、第1図Bに示すように、単結晶GaA
s層3が形成される。このようにして二段階成長法によ
り成長されたこの単結晶GaAs層3中の転位等の結晶
欠陥密度は、既に述べたように10”個/ cy& 程
度(!: ’WK イ。
Next, by performing annealing at, for example, 720° C., the amorphous 1iGaAs layer 2 is grown in a solid phase and made into a single crystal. As a result, as shown in FIG. 1B, single-crystal GaA
An s-layer 3 is formed. The density of crystal defects such as dislocations in the single-crystal GaAs layer 3 grown by the two-step growth method in this way is about 10''/cy& (!: 'WK i).

次に第1図Cに示すように、この単結晶GaAs層3の
上にMOCVD法やMBE法により例えば750’C程
度の成長温度で単結晶GaAs層4を上記単結晶GaA
s層3との合計の厚さが例えば1μm程度となるまで成
長させる。この単結晶GaAs層4中の結晶欠陥密度も
上記単結晶GaAs層3と同様に10f′個/d程度で
ある。
Next, as shown in FIG.
It is grown until the total thickness including the s-layer 3 is about 1 μm, for example. The crystal defect density in this single-crystal GaAs layer 4 is also about 10f' pieces/d, similar to the above-mentioned single-crystal GaAs layer 3.

次に、この単結晶GaAs層4に例えばホウ素(B)を
例えば加速エネルギー240keV、ドースI5 X 
10 ”cm−”程度の条件でイオン注入する。
Next, for example, boron (B) is applied to this single crystal GaAs layer 4 at an acceleration energy of 240 keV and a dose of I5
Ion implantation is performed under conditions of about 10 cm-.

その結果、この単結晶GaAs層4中にその表面から約
0.3μm程度の深さの所にピーク濃度(約10”cm
−’)を持つガウス分布状の濃度プロファイルでBが導
入される(Bが導入された領域に点描を付す)。単結晶
GaAs層4中のこのBが導入された領域では結晶格子
が歪んでいる。
As a result, a peak concentration (approximately 10" cm) was found in this single crystal GaAs layer 4 at a depth of approximately 0.3 μm from the surface.
B is introduced in a Gaussian concentration profile with -') (the region where B is introduced is marked with stippling). In the region of the single crystal GaAs layer 4 into which B is introduced, the crystal lattice is distorted.

次に、アニールを行うことにより上記単結晶GaAs層
4を面相エピタキシャル成長させて再結晶化する。その
結果、上述の結晶格子が歪んだ領域が消滅し、第1図E
に示すような状態となる。この時点で、この単結晶Ga
As層4中の貫通転位の数は減少している。
Next, by performing annealing, the single crystal GaAs layer 4 is grown by phase epitaxial growth and recrystallized. As a result, the above-mentioned region in which the crystal lattice is distorted disappears, and Fig. 1E
The situation will be as shown below. At this point, this single crystal Ga
The number of threading dislocations in the As layer 4 is reduced.

この後、この単結晶GaAs層4の上にさらにGaAs
を成長させる。これによって、第1図Fに示すように、
目的とする厚さの単結晶GaAs層5を得る。
After this, further GaAs is deposited on this single crystal GaAs layer 4.
grow. As a result, as shown in Figure 1F,
A single crystal GaAs layer 5 of a desired thickness is obtained.

以上のように、本実施例によれば、二段階成長法により
Si基板l上に形成した単結晶GaAs層4にBをイオ
ン注入することにより結晶格子が歪んだ領域を形成し、
その後アニールを行うことによりこの単結晶GaAs層
4を再結晶化しているので、この結晶格子が歪んだ領域
の下側の貫通転位はこの再結晶の過程でこの領域により
主として横方向に曲げられ、上方への伝播が妨げられる
。その結果、再結晶化後の単結晶GaAs層4中に存在
する貫通転位の数はイオン注入前のそれに比べて減少す
る。
As described above, according to this embodiment, a region in which the crystal lattice is distorted is formed by ion-implanting B into the single-crystal GaAs layer 4 formed on the Si substrate 1 by the two-step growth method,
Since this single-crystal GaAs layer 4 is recrystallized by subsequent annealing, the threading dislocations below the region where the crystal lattice is distorted are mainly bent laterally by this region during the recrystallization process. Upward propagation is impeded. As a result, the number of threading dislocations existing in the single crystal GaAs layer 4 after recrystallization is reduced compared to that before ion implantation.

従って、この貫通転位の数が少ない単結晶GaAs層4
上に形成される単結晶GaAs層5中の転位等の結晶欠
陥密度を例えば107個/cd程度に低くすることがで
きる。すなわち、本実施例によれば、転位等の結晶欠陥
密度が低い良質の単結晶GaAs層5をSi基板l上に
ヘテロエピタキシャル成長させることができる。
Therefore, the single crystal GaAs layer 4 with a small number of threading dislocations
The density of crystal defects such as dislocations in the single-crystal GaAs layer 5 formed thereon can be reduced to, for example, about 10 7 defects/cd. That is, according to this embodiment, a high quality single crystal GaAs layer 5 having a low density of crystal defects such as dislocations can be heteroepitaxially grown on the Si substrate l.

本実施例により得られる良質な単結晶GaAs層5を能
動層として用いることにより、高速半導体素子等の高性
能の半導体素子の作製が可能となる。
By using the high-quality single-crystal GaAs layer 5 obtained in this example as an active layer, it becomes possible to manufacture high-performance semiconductor devices such as high-speed semiconductor devices.

また、この高速半導体素子と光半導体素子とのモノリシ
ック化により、高性能の光電子集積回路(OEIC)の
実現が可能となる。
Further, by making the high-speed semiconductor element and the optical semiconductor element monolithic, it becomes possible to realize a high-performance optoelectronic integrated circuit (OEIC).

以上、本発明の一実施例について具体的に説明したが、
本発明は上述の実施例に限定されるものではなく、本発
明の技術的思想に基づく各種の変形が可能である。
Although one embodiment of the present invention has been specifically described above,
The present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention.

例えば、結晶格子を歪ませるために単結晶GaAs層4
にイオン注入する原子としては上述の実施例で用いたB
以外にクリプトン(Kr) 、リン(P)、ヒ素(As
)、Si等を用いることも可能である。また、非晶質G
aAs層20代わりに多結晶のGaAs層を用いること
も可能である。さらに、単結晶GaAs層4の成長は必
ずしも二段階成長法により行う必要はない。
For example, a single crystal GaAs layer 4 is used to distort the crystal lattice.
The atoms to be ion-implanted are B used in the above example.
In addition, krypton (Kr), phosphorus (P), arsenic (As)
), Si, etc. can also be used. Also, amorphous G
It is also possible to use a polycrystalline GaAs layer instead of the aAs layer 20. Furthermore, the growth of the single-crystal GaAs layer 4 does not necessarily have to be performed by a two-step growth method.

また、上述の実施例においては、Si基板上べのGaA
s層のへテロエピタキシャル成長に本発明を適用した場
合について説明したが、本発明は、Si基板上にGaA
s以外の単結晶半導体層をヘテロエピタキシャル成長さ
せる場合に適用することも可能である。
In addition, in the above embodiment, GaA on the Si substrate is
The case where the present invention is applied to the heteroepitaxial growth of an s-layer has been described, but the present invention also applies to the heteroepitaxial growth of a GaA layer on a Si substrate.
It is also possible to apply this method to the case of heteroepitaxially growing a single crystal semiconductor layer other than s.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、特に単結晶半導体
層に所定の原子をイオン注入した後に熱処理を行うこと
により上記原子がイオン注入された上記単結晶半導体層
を再結晶化しているので、このイオン注入により形成さ
れる結晶格子が歪んだ領域により貫通転位の上方への伝
播が妨げられ、その結果この単結晶半導体層中の貫通転
位の数が減少する。このため、この単結晶半導体層上に
さらに単結晶半導体層を形成することにより、結晶欠陥
密度が低い良質の単結晶半導体層をシリコンミt上にヘ
テロエピタキシャル成長させることができる。
As described above, according to the present invention, the single-crystal semiconductor layer into which the atoms have been ion-implanted is recrystallized by performing heat treatment after ion-implanting predetermined atoms into the single-crystal semiconductor layer. The upward propagation of threading dislocations is hindered by the region in which the crystal lattice is distorted, which is formed by this ion implantation, and as a result, the number of threading dislocations in this single crystal semiconductor layer is reduced. Therefore, by further forming a single crystal semiconductor layer on this single crystal semiconductor layer, a high quality single crystal semiconductor layer with a low crystal defect density can be heteroepitaxially grown on the silicon layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜第1図Fは本発明の一実施例によるヘテロエ
ピタキシャル成長方法を工程順に説明するための断面図
である。 図面における主要な符号の説明 1:Si基板、  2:非晶質GaAs層、  3.4
.5:単結晶GaAs層。 代理人   弁理士 杉 浦 正 知 勇1図り 第1図E
FIGS. 1A to 1F are cross-sectional views for sequentially explaining a heteroepitaxial growth method according to an embodiment of the present invention. Explanation of main symbols in the drawings 1: Si substrate, 2: Amorphous GaAs layer, 3.4
.. 5: Single crystal GaAs layer. Agent Patent Attorney Tadashi Sugiura Chiyu 1 Diagram 1 E

Claims (1)

【特許請求の範囲】  シリコン基板上にシリコンと異なる種類の単結晶半導
体層を形成し、 上記単結晶半導体層に所定の原子をイオン注入した後に
熱処理を行うことにより上記原子がイオン注入された上
記単結晶半導体層を再結晶化し、上記再結晶化された上
記単結晶半導体層上に上記単結晶半導体層をさらに形成
するようにしたことを特徴とするヘテロエピタキシャル
成長方法。
[Scope of Claims] A single crystal semiconductor layer of a type different from silicon is formed on a silicon substrate, and the atoms are ion-implanted by ion-implanting predetermined atoms into the single-crystal semiconductor layer and then performing heat treatment. A heteroepitaxial growth method, comprising recrystallizing a single crystal semiconductor layer and further forming the single crystal semiconductor layer on the recrystallized single crystal semiconductor layer.
JP63123505A 1988-05-20 1988-05-20 Heteroepitaxial growth method Expired - Fee Related JP2727564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123505A JP2727564B2 (en) 1988-05-20 1988-05-20 Heteroepitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123505A JP2727564B2 (en) 1988-05-20 1988-05-20 Heteroepitaxial growth method

Publications (2)

Publication Number Publication Date
JPH01292814A true JPH01292814A (en) 1989-11-27
JP2727564B2 JP2727564B2 (en) 1998-03-11

Family

ID=14862284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123505A Expired - Fee Related JP2727564B2 (en) 1988-05-20 1988-05-20 Heteroepitaxial growth method

Country Status (1)

Country Link
JP (1) JP2727564B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200613A (en) * 1988-02-05 1989-08-11 Hitachi Ltd Heteroepitaxial film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200613A (en) * 1988-02-05 1989-08-11 Hitachi Ltd Heteroepitaxial film

Also Published As

Publication number Publication date
JP2727564B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
US4177084A (en) Method for producing a low defect layer of silicon-on-sapphire wafer
CA1225571A (en) Growth of oriented single crystal semiconductor on insulator
EP0871208A2 (en) Reduction threading dislocations by amorphization and recrystalization
JPS63253616A (en) Formation of semiconductor thin film
JPH01315127A (en) Formation of gallium arsenide layer
JPH01292814A (en) Hetero epitaxial growth
JP2687445B2 (en) Heteroepitaxial growth method
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JPH04206932A (en) Semiconductor device and manufacture thereof
JPH059099A (en) Method for growing crystal
EP0420516B1 (en) Method for forming semiconductor thin film
JPH0236052B2 (en)
JP2696928B2 (en) Heteroepitaxial growth method
JP2001110725A (en) Method of manufacturing hetero-structure semiconductor moltilayer thin film
JPS60164316A (en) Formation of semiconductor thin film
JP2649928B2 (en) Method for manufacturing semiconductor wafer
JPH0732121B2 (en) Method for manufacturing semiconductor device
JPH06244122A (en) Method of growing compound semiconductor on silicon substrate
JPH03250621A (en) Manufacture of semiconductor film
JPS59228713A (en) Manufacture of semiconductor device
JP2747823B2 (en) Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate
JPH01291420A (en) Manufacture of semiconductor substrate
JPS5856408A (en) Method of growing single crystal silicon film
JPS63311718A (en) Manufacture of hetero-structured single crystal semiconductor thin film
JPS63281420A (en) Manufacture of compound semiconductor substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees