JPS6164119A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6164119A
JPS6164119A JP59185840A JP18584084A JPS6164119A JP S6164119 A JPS6164119 A JP S6164119A JP 59185840 A JP59185840 A JP 59185840A JP 18584084 A JP18584084 A JP 18584084A JP S6164119 A JPS6164119 A JP S6164119A
Authority
JP
Japan
Prior art keywords
layer
substrate
ion
gaas
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59185840A
Other languages
Japanese (ja)
Inventor
Takeshi Konuma
小沼 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59185840A priority Critical patent/JPS6164119A/en
Publication of JPS6164119A publication Critical patent/JPS6164119A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a GaAs layer which is excellent in crystallization and electric characteristics on an Si substrate by directly depositing the GaAs layer on a Ge ion implanted layer formed by implanting a Ge ion on the Si substrate or by growing the GaAs layer after depositing a Ge layer on the Ge ion implanted layer. CONSTITUTION:A Ge ion implanted layer 3 is formed by implanting a Ge ion on an Si substrate 1 using an ion implantation technique. The implanted ion is activated and a crystal defect due to implantation is recovered by heat treat ment for 10sec at 1,300 deg.C using a lamp annealing method. A Ge layer 4 is grown at growing speed of 1.2Angstrom /sec to the thickness of 0.5mum the temperature of the substrate being made at 650 deg.C by MBE method and then a GaAs layer 5 is grown on the Ge layer 4 at growing speed 0.1Angstrom /min to the thickness of 2mum the temperature of the substrate being at 620 deg.C by MBE method. This enables forming the GaAs layer which is excellent in crystallization electric characteristics on the Si substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気−光集積回路等複合デバイス用の基体とし
て用いるSi基板上へのG a A s結晶の成長方法
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in the method of growing GaAs crystals on Si substrates used as substrates for composite devices such as electrical-optical integrated circuits.

従来例の構成とその問題点 Si基板上へのG a A sの結晶成長は、G a 
A sが高゛覗子移動度2発光機能を有し、一方S1は
大口径高品質結晶が得られ、かつデバイス製作技術が確
立しているので、Si基板上に高集積デバイスを、G 
a A sに高速デバイス、発光デバイス等を集積する
複合デバイスの基体として有望である。
Structure of the conventional example and its problems The crystal growth of GaAs on the Si substrate is
A s has a high object mobility 2 light emitting function, while S 1 has a large-diameter high-quality crystal and has established device manufacturing technology, so it is possible to fabricate highly integrated devices on a Si substrate.
It is promising as a substrate for composite devices that integrate high-speed devices, light-emitting devices, etc. on aAs.

Si基板上へのG a A sの成長法としては、Si
基板上にMBE法(Holecular Beam E
pitaxy法)或はMOCVD法(Metal Or
ganic ChemicalVapor Depos
ition)を用いてG a A sを堆積している。
As a method for growing GaAs on a Si substrate, Si
The MBE method (Holecular Beam E
pitaxy method) or MOCVD method (Metal Or
ganic Chemical Vapor Depos
tion) to deposit GaAs.

この方法で成長したG a A s層は、クラックが発
生する。双晶が発生する等結晶性の優れたものは得られ
ていない。この原因として、基板SiとG a A s
層の格子定数の不整合によると考えられている。これを
改良する方法として、Si基板上にGeを堆積し、この
Ge層上にG a A sを堆積する方法が用いられて
いる。GeとG a A gはほぼ格子定数が等しいの
で、Si基板上に直接G a A s層を堆積した場合
に比して結晶性はかなり向上するが、通常のG a A
 s基板上に成長したG a A s層の移動度に比し
て1/2〜173に低下する。これはSi基板とGe層
の格子定数の違いが大きいだめ、Ge層の結晶性が悪い
だめと推測される。
Cracks occur in the GaAs layer grown by this method. A product with excellent crystallinity such as generation of twins has not been obtained. The cause of this is that the substrate Si and GaAs
This is thought to be due to a mismatch in the lattice constants of the layers. As a method to improve this, a method has been used in which Ge is deposited on a Si substrate and Ga As is deposited on this Ge layer. Since Ge and GaAg have almost the same lattice constant, the crystallinity is considerably improved compared to when a GaAs layer is deposited directly on a Si substrate.
The mobility decreases to 1/2 to 173 times that of the GaAs layer grown on the S substrate. This is presumably due to the large difference in lattice constant between the Si substrate and the Ge layer, and the poor crystallinity of the Ge layer.

発明の目的 本発明はSi基板上に結晶性、電気的相性の優れたG 
a A s層を得るだめの半導体装置の製造方法を提供
する。
Purpose of the Invention The present invention provides a G film with excellent crystallinity and electrical compatibility on a Si substrate.
A method for manufacturing a semiconductor device that obtains an aAs layer is provided.

発明の構成 本発明の骨子とするところは、Si基板上に結晶性、電
気的特性の優れたG a A s層を得るため、Si基
板にGeをイオン注入してGeイオン注入層を形成し、
Geイオン注入層上に直接G a A s層を堆積する
か或はGeイオン注入層上にGe層を堆積したる後G 
a A s層を成長させるものである。
Structure of the Invention The gist of the present invention is to form a Ge ion-implanted layer by implanting Ge ions into the Si substrate in order to obtain a GaAs layer with excellent crystallinity and electrical properties on the Si substrate. ,
Depositing the Ga As layer directly on the Ge ion implantation layer or depositing the Ge layer on the Ge ion implantation layer and then depositing the G
This is to grow an aAs layer.

これにより結晶性、電気的特性の優れたG a A s
層を得るものである。
As a result, GaAs with excellent crystallinity and electrical properties
It's about gaining layers.

実施例の説明 (実施例1) 第1図は本発明の一実施例である。(a)に示すSi基
板1に、イオン注入法を用いてGe(ゲルマニウム)イ
オン2を注入してGeイオン注入層3を形成する(b)
。イオン注入は加速エネルギー50KeV  で注入量
5×1015側−2である。ランプアーニール法を用い
1300℃で10秒間熱処理し注入イオンの活性化と注
入によって生じた結晶欠陥を回復せしめる。MBE法を
用いてGe層4を基板温度を650℃として、成長速度
1.2人/secで0.6prn成長する(C)。次に
Ge層4の上にG a A s層5をMBE法を用いて
基板温度620℃で成長速度0.I A / minで
2pm成長した(d)。G a A s層5はシリコン
を添加して不純物濃度約10 ’ 5儒−3である。電
子移動度は7,500,7/V、secでほぼGaAs
+基板上に成長したG a A s層の電子移動度の約
86%であり良好な結晶性を示している。一方従来のS
i基板上にGe層を堆積した後G a A s層を成長
した場合のG a A s層の電子移動度ば3,500
 crl / V 。
Description of Examples (Example 1) FIG. 1 shows an example of the present invention. Ge (germanium) ions 2 are implanted into the Si substrate 1 shown in (a) using an ion implantation method to form a Ge ion implantation layer 3 (b)
. The ion implantation was performed at an acceleration energy of 50 KeV and an implantation amount of 5.times.10@15 -2. A heat treatment is performed at 1300° C. for 10 seconds using a ramp annealing method to activate the implanted ions and recover crystal defects caused by the implantation. Using the MBE method, the Ge layer 4 is grown at a substrate temperature of 650° C. at a growth rate of 1.2 people/sec to 0.6 prn (C). Next, a Ga As layer 5 is formed on the Ge layer 4 using the MBE method at a substrate temperature of 620° C. and a growth rate of 0. Grows 2 pm at IA/min (d). The GaAs layer 5 is doped with silicon and has an impurity concentration of about 10'5 F-3. The electron mobility is 7,500,7/V, sec, which is almost GaAs.
The electron mobility was approximately 86% of that of the GaAs layer grown on the + substrate, indicating good crystallinity. On the other hand, the conventional S
When the Ga As layer is grown after depositing the Ge layer on the i-substrate, the electron mobility of the Ga As layer is 3,500.
crl/V.

気であった。G a A s層の結晶性が良好なのはS
i基板上に成長したGeの結晶性が良いだめである。
I was curious. The crystallinity of the GaAs layer is good because of S.
The crystallinity of Ge grown on the i-substrate is a good problem.

これはSi基板上に直接Ge層を成長する場合に比して
、Ge注入層を介してGe層を形成するので、格子定数
の整合が良くなるためと推察している。
This is presumed to be because the Ge layer is formed via the Ge injection layer, which improves the matching of lattice constants, compared to the case where the Ge layer is grown directly on the Si substrate.

(実施例2) 第2図に他の実施例を示す。実施例1と同様に(a)の
Si基板1にGe イオン2を注入し、Geイオン注入
層3を形成する(b)。Ge イオン注入層3を活性化
し、結晶性を回復するため熱処理し、しかる後MBE法
でGe  イオン注入層3上にG a A s層4と形
成する(C)。実施例1との差はGe層を形成せずに直
接G a A s層6をGθイオン注入層3上に堆積し
ている。G a A s層6はシリコンを添加して不純
物濃度約1015=i−3である。電子移動度は、ア、
○○o(7/v、secであった。実施列1に比して、
電子移動度は劣るが、従来のSi基板上にG。
(Example 2) FIG. 2 shows another example. As in Example 1, Ge ions 2 are implanted into the Si substrate 1 of (a) to form a Ge ion implanted layer 3 (b). The Ge ion-implanted layer 3 is activated and heat treated to restore crystallinity, and then a GaAs layer 4 is formed on the Ge ion-implanted layer 3 by MBE (C). The difference from Example 1 is that a Ga As layer 6 is directly deposited on the Gθ ion-implanted layer 3 without forming a Ge layer. The GaAs layer 6 is doped with silicon and has an impurity concentration of about 1015=i-3. The electron mobility is a,
○○o(7/v, sec. Compared to implementation row 1,
G on a conventional Si substrate, although the electron mobility is inferior.

層を堆積した後G a A sを成長する方法【比して
電子移動度は大きいし又Si 基板上にG a A s
層を直接堆積した場合は、クラック、双晶等が発生する
が、実施例2ではその発生はなかった。これはG。
A method of growing GaAs after depositing a layer [Comparatively, the electron mobility is large and GaAs is
If the layers were directly deposited, cracks, twins, etc. would occur, but in Example 2, no such occurrences occurred. This is G.

をイオン注入することにより、Ge イオン注入層の格
子常数が大きくなり、G a A s層との格子常数と
の不整合が緩和されたためではないかと考えている。
We believe that this is because the lattice constant of the Ge ion-implanted layer increases by ion implantation, and the mismatch between the lattice constant and the Ga As layer is alleviated.

実施例では、Geのイオン注入法としてSi基板に直接
注入したが、SiO2等を介して注入しても良い。Si
O2の厚みとしてはGe注入層のピーク濃度が51表面
近傍に位置する様にするのが望ましい。又Ge層、Ga
As層の成長法としてMBE法を用いたが、MOCVD
法、ICBE法(LonCluster Beam E
pitaxy、)  等を用いても良いし、それらの組
合せでも良い。又選択的にGe注入層と形成して選択的
にG a A s層を成長しても良いことは勿論である
In the embodiment, Ge was directly implanted into the Si substrate as the ion implantation method, but it may also be implanted through SiO2 or the like. Si
It is desirable that the thickness of O2 be such that the peak concentration of the Ge injection layer is located near the surface of 51. Also, Ge layer, Ga
The MBE method was used as the growth method for the As layer, but MOCVD
ICBE method (LonCluster Beam E
pitaxy, ), etc., or a combination thereof. Of course, it is also possible to selectively form a Ge injection layer and selectively grow a GaAs layer.

発明の詳細 な説明した様に本発明は、81基板上に結晶性電気的特
性の良好なG a A s層を形成することが出来る方
法で電気−光回路等に用いる複合デバイスの基体として
その工業的価値は大きい。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention provides a method for forming a GaAs layer with good crystalline electrical properties on an 81 substrate as a substrate for a composite device used for electrical-optical circuits, etc. It has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d) 、 第2図(a)〜(C)は本
発明の一実施例を説明するだめの工程概略図である。 1 ・・・・・Si基板、2・・・・−・Geイオン、
3・・・・Geイオン注入層、4・・・・・Ge層、5
・・・・・・G a A s層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名蔦1
FIGS. 1(a) to (d) and FIGS. 2(a) to (C) are process schematic diagrams for explaining one embodiment of the present invention. 1...Si substrate, 2...--Ge ion,
3...Ge ion implantation layer, 4...Ge layer, 5
...G a As layer. Name of agent: Patent attorney Toshio Nakao and 1 other person Tsuta 1
figure

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板に、イオン注入法を用いてGeのイ
オン注入層を形成した後、上記Geイオン注入層上にG
aAs層を堆積することを特徴とする半導体装置の製造
方法。
(1) After forming a Ge ion implantation layer on a silicon substrate using an ion implantation method, a Ge ion implantation layer is formed on the Ge ion implantation layer.
A method for manufacturing a semiconductor device, comprising depositing an aAs layer.
(2)シリコン基板にイオン注入法を用いてGeイオン
注入層を形成する工程、上記Geイオン注入層上にGe
を堆積する工程、上記Ge層上にGaAsを堆積する工
程を有することを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。
(2) Step of forming a Ge ion implantation layer on a silicon substrate using an ion implantation method, a step of forming a Ge ion implantation layer on the Ge ion implantation layer.
2. The method of manufacturing a semiconductor device according to claim 1, further comprising the steps of: depositing GaAs on the Ge layer; and depositing GaAs on the Ge layer.
JP59185840A 1984-09-05 1984-09-05 Manufacture of semiconductor device Pending JPS6164119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59185840A JPS6164119A (en) 1984-09-05 1984-09-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59185840A JPS6164119A (en) 1984-09-05 1984-09-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6164119A true JPS6164119A (en) 1986-04-02

Family

ID=16177795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59185840A Pending JPS6164119A (en) 1984-09-05 1984-09-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6164119A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130511A (en) * 1985-12-02 1987-06-12 Hitachi Ltd Manufacture of semiconductor element
JPH01170081A (en) * 1987-12-25 1989-07-05 Sumitomo Electric Ind Ltd Semiconductor substrate provided with superconductor layer
US7459354B2 (en) 2001-01-29 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device including top gate thin film transistor and method for manufacturing an active matrix device including top gate thin film transistor
JP2010508676A (en) * 2006-11-02 2010-03-18 アイメック Removal of impurities from semiconductor device layers
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130511A (en) * 1985-12-02 1987-06-12 Hitachi Ltd Manufacture of semiconductor element
JPH01170081A (en) * 1987-12-25 1989-07-05 Sumitomo Electric Ind Ltd Semiconductor substrate provided with superconductor layer
US7459354B2 (en) 2001-01-29 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device including top gate thin film transistor and method for manufacturing an active matrix device including top gate thin film transistor
JP2010508676A (en) * 2006-11-02 2010-03-18 アイメック Removal of impurities from semiconductor device layers
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate

Similar Documents

Publication Publication Date Title
DE60126328T2 (en) PROCESS FOR THE PRODUCTION OF A SUBSTRATE, IN PARTICULAR FOR OPTICS, ELECTRONICS OR OPTOELECTRONICS AND RESULTING SUBSTRATE
KR20070059157A (en) Semiconductor wafer manufacturing method
JPH076950A (en) Manufacture of structural parts for electron, lightning and optical constituent
JPS6164119A (en) Manufacture of semiconductor device
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JP2010199338A (en) Method of manufacturing laminated wafer
JPH04206932A (en) Semiconductor device and manufacture thereof
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JP2698147B2 (en) Method of forming SOI structure
JPH01265525A (en) Manufacture of semiconductor substrate
JPS63305529A (en) Substrate and manufacture thereof
JP4649918B2 (en) Method for manufacturing bonded wafer
JP2010062219A (en) Production process of silicon carbide
JPH0479228A (en) Formation of semiconductor layer
JPS63278217A (en) Manufacture of semiconductor substrate
JPH0513327A (en) Method of forming single crystal silicon film
JP3981782B2 (en) Manufacturing method of semiconductor device
JPS63192223A (en) Manufacture of semiconductor device
JPH05283355A (en) Manufacture of semiconductor device
JP2705374B2 (en) Method for forming group IV element semiconductor on III-V compound semiconductor
JPS60236213A (en) Manufacture of semiconductor substrate
JPH0311618A (en) Crystalline semiconductor film and forming method thereof
JPH04107918A (en) Manufacture of semiconductor device
JPS6164118A (en) Manufacture of semiconductor device
JPS59181609A (en) Manufacture of semiconductor device