JPH01315129A - Formation of soi structure - Google Patents

Formation of soi structure

Info

Publication number
JPH01315129A
JPH01315129A JP14729388A JP14729388A JPH01315129A JP H01315129 A JPH01315129 A JP H01315129A JP 14729388 A JP14729388 A JP 14729388A JP 14729388 A JP14729388 A JP 14729388A JP H01315129 A JPH01315129 A JP H01315129A
Authority
JP
Japan
Prior art keywords
film
single crystal
mgo
al2o3
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14729388A
Other languages
Japanese (ja)
Inventor
Hiroshi Hanabusa
寛 花房
Hidekane Ogata
秀謙 尾方
Kiyoshi Yoneda
清 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14729388A priority Critical patent/JPH01315129A/en
Publication of JPH01315129A publication Critical patent/JPH01315129A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce autodoping to an Si film and to enhance crystallinity by a method wherein a single-crystal gamma-Al2O3 film is used and a single-crystal Si film is formed on this film. CONSTITUTION:A single-crystal MgO.Al2O3 film 2 is formed on a single-crystal Si substrate 1 by an Al-HCl-MgCl2-CO2-H-based vapor epitaxial growth operation. When this single-crystal MgO.Al2O3 film 2 is irradiated with an Si molecular beam 3, a reaction of MgO.Al2O3+Si Mg +SiO +Al2O3 is caused; the MgO.Al2O3 film 2 is transformed into a gamma-Al2O3 film 4. A single-crystal Si film 5 is grown on this gamma-Al2O3 film. By this setup, autodoping to an Si film can be reduced; crystallinity can be enhanced.

Description

【発明の詳細な説明】 イ)産業上の利用分骨 本発明fd、S OI (Sili、aon  on 
 工naulaτor)構造の形成方法(:関し、上層
の81膜へのオートドーピングを低減させるものセ関す
る。
[Detailed description of the invention] A) Industrial application of the present invention fd, SOI (Sili, aon on
The present invention relates to a method for forming an 81 structure and a method for reducing autodoping to the upper layer 81 film.

口)従来の技術 絶縁層上(ニー結晶シリコツ層ン形成したものはSOt
O造と称され、半導体集積回路における高集積化、高速
化、低消費電力化が図れるものとして知られている。
) Conventional technology The one formed on the insulating layer (knee crystal silicon layer is SOt)
It is known as O-structure and is known for its ability to achieve higher integration, higher speed, and lower power consumption in semiconductor integrated circuits.

sor構造の一つに、単結晶81基板上に形成し九絶縁
層としてのMgo 、AI!203膜上(−単結晶S1
膜?形成したものがある。例えば、「電気通信学会技術
研究報告」gn36−65第21頁乃至第26頁では、
単結晶81基板上に、AI!−1101!−Mg、C1
2−002−H2系気相成長法(;より単結晶MgO,
A/203膜を成長させ、該MgO,AJ20B膜上に
、Bi、14−H2系気相成長法ζ;より基板温度90
0乃至1000℃1−て膜厚0.1μm(/JSiシー
ド層な成長させ友後、基板温度500乃至60Ll’C
でアモルファスSi層を堆積させ、基板温度Z700乃
至800℃にして固相成長させて、単結晶S1膜/単結
晶MgO・AJ205膜/単結晶81基板の構造?形成
しCいる。
One of the SOR structures is formed on a single crystal 81 substrate with Mgo, AI! 203 on the film (-single crystal S1
film? There is something that has been formed. For example, in "IECE Technical Research Report" gn36-65, pages 21 to 26,
AI! on a single crystal 81 substrate! -1101! -Mg, C1
2-002-H2-based vapor phase growth method (; more than single crystal MgO,
A/203 film was grown on the MgO, AJ20B film, and Bi was grown at a substrate temperature of 90% using the 14-H2 vapor phase growth method.
After growing the JSi seed layer, the substrate temperature was 500 to 60Ll'C.
Then, deposit an amorphous Si layer and grow it in solid phase at a substrate temperature of Z700 to 800°C to form a single crystal S1 film/single crystal MgO・AJ205 film/single crystal 81 substrate structure? It forms C.

ハ)発明が解決しようとする課題 然し乍ら、上述の方法では、81シ一ド層の成長の際(
二MgO,AI!203膜からMgや^L等のオートド
ーピングが起こる九め、成長させ−fcS1膜はMg−
?AI!等乞高濃度に含み、結晶性が悪かった。そして
、斯様なS1膜にM O8) 9ンジスタを形成した場
合(二を工、リーク電流が大きなものとなってしまう。
c) Problem to be solved by the invention However, in the above method, when growing the 81 seed layer (
Two MgO, AI! Nineth, autodoping of Mg, ^L, etc. occurs from the 203 film, and the grown-fcS1 film is Mg-
? AI! Contained at extremely high concentrations, the crystallinity was poor. If a MO8) transistor is formed on such an S1 film (second problem), the leakage current will become large.

本発明は上述の点I:鑑みて為され念もので、上層の8
1膜へのオートドーピング!低減し、結晶性の良いS1
膜から成るSO工構造を提供するものである。
The present invention has been made in view of the above-mentioned point I.
Auto-doping into one film! Reduced S1 with good crystallinity
This provides an SO-engineered structure consisting of a membrane.

二)課題を解決するための手段 本発明は基板上に単結晶MgO,Aj20!膜を形成し
、該単結晶MgO、Aj20g膜に81分子線を照射し
てr−Al2O3膜を形成し、該r−Aj203膜上:
;S1分子線を照射して単結晶S1膜を形成するもので
ある。
2) Means for Solving the Problems The present invention provides single crystal MgO on a substrate, Aj20! Form a film, irradiate the single crystal MgO, Aj20g film with 81 molecular beams to form an r-Al2O3 film, and on the r-Aj203 film:
; A single crystal S1 film is formed by irradiating S1 molecular beam.

ホ)作  用 単結晶MgO,AI!20!$膜(;81分子線Y!射
すると、 MgO,Aj2(H+31 →Mgt−t−8iOT+
Al2O3の反応が起き、Mgo、Al2O5膜はr−
Al2O3膜とな=oこのr−Aj20g膜上;二重結
晶S1膜な成長させるので、S1膜へのMgのオートド
ーピングはほとんどなくなる。また、γ−A/ 205
膜の表面エネルギーはMgO、Aj’203膜(:比べ
て小さいので、低い基板温度での単結晶5illdの成
長が可能となり、オートドーピングの発生?低減できる
e) Action Single crystal MgO, AI! 20! $ film (;81 When molecular beam Y! is irradiated, MgO,Aj2(H+31 →Mgt-t-8iOT+
A reaction of Al2O3 occurs, and the Mgo and Al2O5 films become r-
Since the Al2O3 film is grown on this r-Aj20g film as a double crystal S1 film, autodoping of Mg into the S1 film is almost eliminated. Also, γ-A/205
Since the surface energy of the film is smaller than that of the MgO and Aj'203 films, single crystal 5illd can be grown at a low substrate temperature, and the occurrence of autodoping can be reduced.

へ)実施例 第1図A乃至Eは本発明方法の工程説明図である。(1
)は(100)面に主面とする単結晶81基板(第1図
A)で、該基板(1)上(二A Jニー )i 01−
MgC!!2−C02−H2系の気相エピタキシャル成
長により、基板温度yx920℃とし、成長速W 10
 n m 7分で約10分間、膜厚約L1.1μmの単
結晶MgO、A/205膜(2)を形成する(第1図B
)。
f) Example FIGS. 1A to 1E are process explanatory diagrams of the method of the present invention. (1
) is a single crystal 81 substrate (FIG. 1A) whose main surface is the (100) plane, and on the substrate (1) (2 A J knee ) i 01-
MgC! ! By vapor phase epitaxial growth of 2-C02-H2 system, the substrate temperature yx is 920°C and the growth rate W 10
A single crystal MgO, A/205 film (2) with a film thickness of about L1.1 μm is formed for about 10 minutes at n m 7 minutes (Fig. 1B).
).

次C二この基@を図示しない分子線エピタキシャル(M
BE)装置の成長室内に設置し、成長室内’i’lX1
0  TOrrの超高真空1n;fl(:、f、6゜超
高真空状態を保持しながら、基板を820℃1:加熱し
保持する。図示しないが、MBE装置の蒸発源セルC二
収容されたSlに電子ビームを照射し、S1ン蒸発させ
て81分子線を発生させ、基板表面(シgo、A?2Q
5@(2)表面)1″−81分子線を1×10 個/−
0Sの強度にて照射して、表面のエツチングC;よる清
浄化を行う。
Molecular beam epitaxial (M
BE) Installed in the growth chamber of the device, and placed inside the growth chamber 'i'lX1
0 Torr ultra-high vacuum 1n; fl (:, f, 6°) While maintaining the ultra-high vacuum state, the substrate is heated and held at 820°C. Although not shown, the evaporation source cell C2 of the MBE apparatus is housed. The electron beam is irradiated onto the S1 to evaporate the S1 to generate 81 molecular beams, and the substrate surface (Shigo, A?2Q
5@(2) Surface) 1×10 1″-81 molecular beams/-
The surface is cleaned by etching C by irradiation with an intensity of 0S.

清浄化が終了したら基板温度7820℃に保持し次まま
、81分子線強度を5×10 個/ d 。
After cleaning, the substrate temperature was maintained at 7,820°C, and the intensity of the 81 molecular beam was increased to 5 × 10 molecules/d.

S(:増加して、MlgO・A/20g1l*(2)へ
と60秒間照射しく第1図O)、更に6分間加熱保持す
る0 このとき、第1図Oに示す様I:、飛来したS1原子+
31と単結晶ugo、AI!20!5膠(2)との間で
圧の高いME原子と810分子が滞発する。その結果、
スピネル膜(MgO、A/ 20 gll’j(21)
中のMIJ原子及びMg原子と結合してい声0原子が抜
けて空孔となり7′?、櫂造の単績晶γ−At!205
膜(4)が形成(単結晶MgO、Al2O5膜(2)が
単結晶γ−A/205膜(4)に改質)ざする(第1図
D)。
S (: increase and irradiate MlgO・A/20g1l*(2) for 60 seconds (Fig. 1 O), and heat and hold for another 6 minutes. At this time, as shown in Fig. 1 O, I:. S1 atom +
31 and single crystal ugo, AI! High-pressure ME atoms and 810 molecules stagnate between the 20!5 glue (2) and the 810 molecules. the result,
Spinel film (MgO, A/20 gll'j (21)
The voice 0 atom bonded to the MIJ atom and Mg atom inside falls out and becomes a vacancy 7'? , Kaizo's single crystal γ-At! 205
A film (4) is formed (the single crystal MgO, Al2O5 film (2) is modified to the single crystal γ-A/205 film (4)) (FIG. 1D).

第2図は、単結晶Mgo、Al2O5膜(21に81分
子線を照射して形成されたr−Al2O3膜(4)ヲ含
む基板X線回折測定の結果を示すものである。第2図か
られかる様【:、矢印で示すMgO。
Figure 2 shows the results of X-ray diffraction measurements on a substrate containing a single crystal Mgo, Al2O5 film (r-Al2O3 film (4) formed by irradiating 21 with 81 molecular beams). Rekaru-sama [:, MgO indicated by arrow.

)、1205を表す位置Cニピークはなく、代わり(:
r−Al2O3を表す位置でのピークが測定されておシ
、MgO’Aj20Mがr−A/ 20 !l二変わっ
ている。
), there is no position C double peak representing 1205, instead (:
A peak at the position representing r-Al2O3 was measured, and MgO'Aj20M is r-A/20! l2 has changed.

さて、r −Aj’ 20 S膜(4)?形成したら、
M BE装置の成長室内をlX10  Torrの超高
真空状態(:保持したtt1基板潟度を700℃まで降
温し、単結晶r−AI!203模(4)上(二分子線強
度5×10 個/cj 、 sの81分子線ケ照射して
単結晶81膜(5)をエピタキシャル成長させる(第1
図E)。
Now, r -Aj' 20 S film (4)? Once formed,
The growth chamber of the MBE apparatus was placed in an ultra-high vacuum state of 1 x 10 Torr (: The temperature of the tt1 substrate held therein was lowered to 700 °C, and the temperature was lowered to 700 °C, and a monocrystalline r-AI!203 model (4) (bimolecular beam intensity of 5 × 10 A single crystal 81 film (5) is grown epitaxially by irradiation with 81 molecular beams of /cj, s (first
Figure E).

通常MBE法により単結晶Si膜y成長させる場合1:
は、成長した単結晶S1膜の電気的特性や結晶性を考慮
して、基板温VをF3DO’C:以上に保持し念状態で
行われる。
When growing a single crystal Si film y by the normal MBE method 1:
This is carried out under the assumption that the substrate temperature V is maintained at F3DO'C or higher, taking into account the electrical characteristics and crystallinity of the grown single crystal S1 film.

し7かし、単結晶γ−A1205膜(4)上に単結晶S
1膜(5)を成長させる場合、単結晶MgO,AI!2
03膜上C=単結晶S1膜を成長させる場合と較べると
、S i原子とMgO,l/20!!膜のうちのMgO
との反応がなくなる分だけ、少ないエネルギーで単結晶
S1膜の成長が可能となる。つまりr−Al2O3膜の
ほうが、Mgo、Aj203膜C:比べて表面エネルギ
ーが小さいので、単結晶S1膜の成長(:少ないエネル
ギー、即ち低い基板温度での成長ができる。
However, single crystal S on single crystal γ-A1205 film (4)
When growing one film (5), single crystal MgO, AI! 2
Compared to the case of growing C=single crystal S1 film on 03 film, Si atoms and MgO, l/20! ! MgO in the film
Since the reaction with the oxide is eliminated, a single crystal S1 film can be grown with less energy. In other words, since the surface energy of the r-Al2O3 film is lower than that of the Mgo and Aj203 films, the single crystal S1 film can be grown with less energy, that is, at a lower substrate temperature.

単結晶S1膜(5)を成長させる下層がr−Al2O3
漢で、Mg原子ンはとんど含まない上C:、低い基板温
度で単結晶S1膜(4)の成長を行うので、単結晶S1
膜(5)へのオートドーピングが低減されるO 第6図C:、二次イオン質量分析C:よるMgのプロフ
ァイルを示す(但し、単結晶S1膜の厚さはα6μmで
ある)。実線は本発明C;よる単結晶r−A/205膜
上(:単結晶S1膜を成長させたもの、破線は従来の単
結晶Mg0−Al2O3膜上(;単結晶成長させ友もの
である。MgO、A/205膜よりもγ−A120s膜
上(二81膜を成長させたほうが、S1膜中にオートド
ーピングされるMgの濃度も分布領域(絶縁膜から81
膜への深さ、約%となっている)も非常C:小さいもの
となる。また、81膜中へのAlのオートドーピングC
:ついても、はぼ同様なプロファイルを示し、本発明で
は単結晶S1膜中へのオートドーピングが抑制される0 更に結晶性C;ついても、ホール電子移動度を測定する
と、単結晶MgO,A/203膜上に形成した単結晶S
1膜では1010j/v、sで、単結晶r−At205
膜上C;形成した上納;形成膜では650cd/V、B
であり、本発明C二よる単結晶S1膜のほうが結晶性が
向上している0尚、本実施例ではMgO0AI!202
膜(2+の厚さはα1μmとしたが、もつと厚く形成し
ても良く、その場合!=は、γ−Al2O3膜ζ;改質
するための81分子線の照射量は多くなる0また、SO
■構造としてはγ−kl!201膜の下菟:8102膜
が形成されていても良い。
The lower layer on which the single crystal S1 film (5) is grown is r-Al2O3.
Since the single-crystal S1 film (4) is grown at a low substrate temperature and contains almost no Mg atoms, the single-crystal S1 film (4)
Autodoping into the film (5) is reduced. Figure 6C: shows the Mg profile according to secondary ion mass spectrometry analysis (however, the thickness of the single crystal S1 film is α6 μm). The solid line is on a single-crystal r-A/205 film according to the present invention (a single-crystal S1 film grown), and the broken line is on a conventional single-crystal Mg0-Al2O3 film (a single-crystal-grown film). It is better to grow the MgO, A/20s film on the γ-A120s film (281 film) than on the A/205 film, since the concentration of Mg autodoped into the S1 film also increases from the distribution region (from the insulating film to 81
The depth into the film (approximately %) is also very small. In addition, autodoping of Al into the 81 film C
: However, in the present invention, autodoping into the single crystal S1 film is suppressed. Single crystal S formed on /203 film
Single crystal r-At205 at 1010j/v, s for one film
C on the film; above the formed film; 650 cd/V on the formed film, B
Therefore, the crystallinity of the single crystal S1 film according to Invention C2 is improved. In this example, MgO0AI! 202
The thickness of the film (2+ was α1 μm, but it may be formed thicker. In that case, != is the γ-Al2O3 film ζ; the amount of irradiation of the 81 molecular beam for modification is increased0. S.O.
■The structure is γ-kl! An 8102 film may be formed below the 201 film.

ト)発明の効果 本発明は以上の説明から明らかな如く、sor構造の絶
縁膜として単結晶r−A120s膜を用い、該r−A/
205膜上に単結晶S1膜を形成している。単結晶S1
膜の下層I:はMg原子がほとんど存在しないばかシか
、単結晶S1膜のエピタキシャル成長!従来より低温で
できるので、単結晶S1膜へのMg原子やhl原子のオ
ートドーピングが低減される。更に、単結晶S1膜の結
晶性も向上される。従って、本発明の801構造をもつ
基板(Si膜上)(二MO8)ランジスタを形成した場
合C二は、リーク電流の小さい、また特性のばらつきの
少ない素子が形成される。
g) Effects of the invention As is clear from the above description, the present invention uses a single crystal r-A120s film as an insulating film with a sor structure, and the r-A/
A single crystal S1 film is formed on the 205 film. Single crystal S1
The lower layer I: of the film has almost no Mg atoms, which is ridiculous because it is an epitaxial growth of a single crystal S1 film! Since this can be done at a lower temperature than conventionally, autodoping of Mg atoms and hl atoms into the single crystal S1 film is reduced. Furthermore, the crystallinity of the single crystal S1 film is also improved. Therefore, when a substrate (on a Si film) (two MO8) transistors having the 801 structure of the present invention is formed, an element with small leakage current and little variation in characteristics is formed in C2.

【図面の簡単な説明】[Brief explanation of the drawing]

iK1図A乃至Eは本発明一実施例の工程説明図、第2
図はX線回折による組成図、第5図は単結晶S1膜中の
Mgのプロファイルを示す図である0(1)・・・単結
晶81基板、(2)・・・単結晶MgO、Aj203@
、(3)・・・81分子線、(4)・・・単結晶γ−A
j205膜、(5)・・・単結晶S1膜。 第1図 第2図 田珂自 2θ (degree) 第3図
iK1 Figures A to E are process explanatory diagrams of one embodiment of the present invention, the second
The figure shows the composition diagram by X-ray diffraction, and Figure 5 shows the profile of Mg in the single crystal S1 film. @
, (3)...81 molecular beam, (4)...single crystal γ-A
j205 film, (5)...single crystal S1 film. Figure 1 Figure 2 Takaji 2θ (degree) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)基板上に単結晶MgO、Al_2O_3膜を形成し
、該単結晶MgO、Al_2O_3膜にSi分子線を照
射して単結晶γ−Al_2O_3膜を形成し、該単結晶
γ−Al_2O_3膜上にSi分子線を照射して単結晶
Si膜を形成することを特徴とするSOI構造の形成方
法。
1) Form a single crystal MgO, Al_2O_3 film on a substrate, irradiate the single crystal MgO, Al_2O_3 film with a Si molecular beam to form a single crystal γ-Al_2O_3 film, and form a single crystal γ-Al_2O_3 film on the single crystal γ-Al_2O_3 film. A method for forming an SOI structure, which comprises forming a single crystal Si film by irradiating molecular beams.
JP14729388A 1988-06-15 1988-06-15 Formation of soi structure Pending JPH01315129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14729388A JPH01315129A (en) 1988-06-15 1988-06-15 Formation of soi structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14729388A JPH01315129A (en) 1988-06-15 1988-06-15 Formation of soi structure

Publications (1)

Publication Number Publication Date
JPH01315129A true JPH01315129A (en) 1989-12-20

Family

ID=15426932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14729388A Pending JPH01315129A (en) 1988-06-15 1988-06-15 Formation of soi structure

Country Status (1)

Country Link
JP (1) JPH01315129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10326578B4 (en) * 2003-06-12 2006-01-19 Siltronic Ag Process for producing an SOI disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10326578B4 (en) * 2003-06-12 2006-01-19 Siltronic Ag Process for producing an SOI disk

Similar Documents

Publication Publication Date Title
JP3048201B2 (en) Manufacturing method of semiconductor material thin film
US5735949A (en) Method of producing electronic, electrooptical and optical components
TWI222110B (en) Semiconductor device and production process thereof
KR20030074152A (en) METHOD FOR PRODUCING RELAXED SiGe SUBSTRATE
JP3220864B2 (en) Method for manufacturing semiconductor device
JPH01315129A (en) Formation of soi structure
JPS58190020A (en) Epitaxial growth method
RU2390874C1 (en) Method for obtaining heteroepitaxial silicon-on-sapphire structures
JP3377814B2 (en) Polycrystalline silicon thin film and method for forming the same
JP3273037B2 (en) Method for manufacturing heterostructure semiconductor multilayer thin film
JPH04330717A (en) Manufacture of semiconductor film
JPS60180142A (en) Manufacture of semiconductor thin film
JPS5848415A (en) Formation of semiconductor single crystal film
JPH01183825A (en) Formation of single crystal silicon film
JPH0396223A (en) Forming method for soi structure
JPH03101121A (en) Formation of soi structure
JPS5893215A (en) Manufacture of semiconductor singlecrystal thin film
JPH02100315A (en) Formation of crystalline silicon film
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
Yamanaka et al. Strain relaxation and induced defects in SiGe thin films grown on ion-implanted Si substrates
Haond Recrystallization of Si on insulating substrates by using incoherent light sources
JPH03127823A (en) Selective epitaxial growth method
JPH02302024A (en) Solid epitaxial growth
JPH06120137A (en) Formation of single crystal silicon thin film
JPH07118451B2 (en) Method for manufacturing single crystal silicon layer