JPH01173733A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01173733A
JPH01173733A JP33201887A JP33201887A JPH01173733A JP H01173733 A JPH01173733 A JP H01173733A JP 33201887 A JP33201887 A JP 33201887A JP 33201887 A JP33201887 A JP 33201887A JP H01173733 A JPH01173733 A JP H01173733A
Authority
JP
Japan
Prior art keywords
insulating resin
electrodes
insulating
resin
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33201887A
Other languages
Japanese (ja)
Other versions
JPH0793343B2 (en
Inventor
Takao Ochi
岳雄 越智
Hiroaki Fujimoto
博昭 藤本
Kenzo Hatada
畑田 賢造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62332018A priority Critical patent/JPH0793343B2/en
Publication of JPH01173733A publication Critical patent/JPH01173733A/en
Publication of JPH0793343B2 publication Critical patent/JPH0793343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body

Abstract

PURPOSE:To simplify the processes for cutting down the manufacturing coat by a method wherein a thermoplastic resin is used for a photosetting insulating resin forming a resist film while semiconductor elements and an insulating substrate are fixed to one another using this resin as a bonding agent. CONSTITUTION:A semiconductor wafer 24 is coated with a photosetting thermo plastic resin 26 while the parts of resist part insulating resin 23 irradiated with UV rays are to be set. Then, opening part insulating resins 25 are removed to make openings forming protrusion electrodes 21. Next, the wafer 24 is diced leaving the resist films 23 as they are to be divided into chip type semiconductor elements 22, Successively, the electrodes 21 of elements 22 and the wiring electrodes of the insulating substrate are oppositely aligned with one another to be pressurized while fusing the resist resin by heating process and then electrodes are pressure-welded with one another to be electrically connected. Through these procedures. the removing process of resist film and the coating process of bonding resin are eliminated to reduce the manufacturing cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特に狭ピッチ、多端子の半導体装
置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, particularly a narrow pitch, multi-terminal semiconductor device.

従来の技術 多端子、狭ピッチ化が進む半導体素子の電極を絶縁性基
板の導体配線に一括接合する実装方法としてマイクロバ
ンプボンディング実装技術がある。
BACKGROUND ART Microbump bonding is a mounting method for collectively bonding the electrodes of semiconductor devices, which are becoming increasingly multi-terminal and narrower in pitch, to conductor wiring on an insulating substrate.

この実装方法の1実施例を第4図に示した。まず第4図
aに示した様に半導体素子2の電極1を有する側に熱硬
化性の絶縁性樹脂3をデイスペンサー等で塗布する。つ
いで第4図すに示した様に絶縁性基板4の導体配線6′
f:有する面が半導体素子2の電極1と向かい合う様に
して絶縁性基板4を熱硬化性の絶縁性樹脂3の上から半
導体素子2に載せ、絶縁性基板4の配線電極6と半導体
素子2の電極1とを位置合わせする。次に第4図Cに示
した様に、加圧治具6を用いて半導体素子2と絶縁性基
板4を加圧し、半導体素子2の電極1と絶縁性基板4の
配線電極6とを圧接する。この状態のまま加熱し、熱硬
化性の絶縁性樹脂を硬化させる。硬化終了後は加圧を取
り去る。この際、半導体素子2の電極1は絶縁性基板1
の配線電極6に、熱硬化性の絶縁性樹脂3の硬化によっ
て生じる収縮応力により圧接されており、加圧を取り去
っても、両者の電気的接続は保たれる。
An example of this mounting method is shown in FIG. First, as shown in FIG. 4a, a thermosetting insulating resin 3 is applied to the side of the semiconductor element 2 having the electrode 1 using a dispenser or the like. Next, as shown in Figure 4, the conductor wiring 6' of the insulating substrate 4
f: Place the insulating substrate 4 on the semiconductor element 2 from above the thermosetting insulating resin 3 so that the surface thereof faces the electrode 1 of the semiconductor element 2, and connect the wiring electrode 6 of the insulating substrate 4 and the semiconductor element 2. Align with electrode 1 of. Next, as shown in FIG. 4C, the semiconductor element 2 and the insulating substrate 4 are pressurized using the pressing jig 6, and the electrode 1 of the semiconductor element 2 and the wiring electrode 6 of the insulating substrate 4 are pressed together. do. This state is heated to harden the thermosetting insulating resin. After curing is complete, remove the pressure. At this time, the electrode 1 of the semiconductor element 2 is connected to the insulating substrate 1.
It is pressed against the wiring electrode 6 by the shrinkage stress generated by the hardening of the thermosetting insulating resin 3, and even if the pressure is removed, the electrical connection between the two is maintained.

第6図に半導体素子12に突起電極11を形成させる方
法を示した。まず第4図aに示す様に半導体ウェハー1
4に光硬化性の絶縁性樹脂16をスピンナー等を使って
均一に塗布する。ついでフォ) IJソ技術に用いて、
第4図すに示す様に突起電極11を形成させる部分(開
孔部絶縁性樹脂16)以外の絶縁性樹脂(レジスト部絶
縁性樹脂13)のみにUV線を照射して、レジスト部絶
縁性樹脂13を硬化させる。
FIG. 6 shows a method for forming the protruding electrodes 11 on the semiconductor element 12. First, as shown in FIG. 4a, a semiconductor wafer 1 is
A photo-curable insulating resin 16 is uniformly applied to 4 using a spinner or the like. Then, using the IJ technology,
As shown in FIG. 4, only the insulating resin (the resist part insulating resin 13) other than the part where the protruding electrode 11 is formed (the opening part insulating resin 16) is irradiated with UV rays, and the resist part is insulated. The resin 13 is cured.

次に、第6図Cに示す様に開孔部絶縁性樹脂15のみを
溶剤を用いて溶出させ、開孔部17を形成させる。つい
で半導体ウエノ・−14ごと絶縁性樹脂13のベーキン
グを行った後、これをレジスト皮膜として用いて電気メ
ツキ法等により第5図dに示した様な突起電極11全形
成させる。突起電極を形成させた後は、第6図eに示し
た様に溶剤を用いて、残りの未硬化の絶縁性樹脂16を
完全り取り除く。最後に半導体ウエノ・−14のダイシ
ングを行い、半導体ウェハーを第6図rに示した様な半
導体素子12に分割する0 発明が解決しようとする問題点 マイクロバンプボンディング実装技術では以上に示した
様なプロセスを経て半導体装置を製造する訳であるが、
この方式では、半導体素子に突起電極を設ける為に形成
させたレジスト皮膜を取り除き、ウェハーのダイシング
を行ってから、あらためて半導体素子に光硬化性の絶縁
性の樹脂を塗布する必要があり、工程が多く、コスト高
につながる。
Next, as shown in FIG. 6C, only the hole insulating resin 15 is eluted using a solvent to form the hole 17. After baking the insulating resin 13 together with the semiconductor Ueno-14, the entire protruding electrode 11 as shown in FIG. 5d is formed by electroplating or the like using this as a resist film. After forming the protruding electrodes, the remaining uncured insulating resin 16 is completely removed using a solvent as shown in FIG. 6e. Finally, the semiconductor wafer is diced to divide the semiconductor wafer into semiconductor elements 12 as shown in FIG. Semiconductor devices are manufactured through various processes,
In this method, it is necessary to remove the resist film formed to provide the protruding electrodes on the semiconductor element, dice the wafer, and then recoat the semiconductor element with a photocurable insulating resin. This often leads to higher costs.

問題点を解決するための手段 本発明は上記問題点を解決するために、レジスト皮膜を
形成する光硬化性の絶縁性樹脂に硬化物が熱可塑性の性
質を有するものを用い、突起電極形成後もレジスト皮膜
を除去せず、そのままダイシングし、半導体素子と絶縁
性基板の接着の際に、半導体素子上に残っているレジス
ト皮膜を熱によV溶融させ、そのまま接着剤として用い
ることとした。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention uses a photocurable insulating resin that forms the resist film, the cured product of which has thermoplastic properties, and after forming the protruding electrodes. However, the resist film was not removed, but was diced as it was, and when bonding the semiconductor element and the insulating substrate, the resist film remaining on the semiconductor element was V-melted by heat and used as an adhesive as it was.

作用 上記工法で突起電極を形成させ、かつ半導体素子を配線
電極を有する絶縁性基板に実装することにより、レジス
ト皮膜を半導体素子から除去する工程及び半導体素子を
基板上に接着する為の樹脂を半導体素子上に塗布する工
程をマイクロバンプボンディングの工程から取り除くこ
とができる。
Function: By forming protruding electrodes using the above method and mounting the semiconductor element on an insulating substrate having wiring electrodes, the resist film is removed from the semiconductor element and the resin for bonding the semiconductor element to the substrate is applied to the semiconductor element. The process of coating on the device can be removed from the microbump bonding process.

実施例 本発明の実施例を第1図及び第2図を用いて説明する。Example Embodiments of the present invention will be described with reference to FIGS. 1 and 2.

まず第1図を用いて突起電極形成プロセスを説明する。First, the protrusion electrode forming process will be explained using FIG.

初めに第1図aに示す様に半導体ウェハー24の電極金
有する側の面に光硬化性でしかも硬化物が熱可塑性であ
る様な絶縁性樹脂26をスピ/す−等で塗布する。つい
で第1図すに示す様に、ガラスマスクを用いて突起電極
21全形成させる部分(開孔部絶縁性樹脂25)以外の
絶縁性樹脂(レジスト部絶縁性樹脂23)のみにUV線
を照射して、レジスト部絶縁性樹脂23のみ全硬化させ
る。UV線の照射を受けず、未硬化のままである開孔部
絶縁性樹脂26は有機溶剤等により溶出させ、第1図C
に示す様に突起電極21を形成させる部分のみに開孔部
27を開ける。こうして形成させたレジスト皮膜を用い
て電気メツキ法によυ開孔部27を開けた場所に突起電
極21を形成させる。
First, as shown in FIG. 1A, an insulating resin 26 which is photocurable and whose cured material is thermoplastic is coated on the surface of the semiconductor wafer 24 on the side having the electrode metal using a sprayer or the like. Next, as shown in FIG. 1, using a glass mask, UV rays are irradiated only to the insulating resin (insulating resin 23 in the resist part) other than the part where the entire protruding electrode 21 is to be formed (the insulating resin 25 in the opening part). Then, only the resist portion insulating resin 23 is completely cured. The insulating resin 26 in the openings, which is not irradiated with UV rays and remains uncured, is eluted with an organic solvent or the like, and the resin 26 shown in FIG.
As shown in FIG. 2, an opening 27 is made only in the portion where the protruding electrode 21 is to be formed. Using the resist film thus formed, the protruding electrodes 21 are formed at the locations where the υ openings 27 are made by electroplating.

ただし、本発明による実装法ではメツキ後にバリアメタ
ルのエツチング処理ができない。そこで第3図に示す様
に電気メツキ法により突起電極21を形成させる電極部
4oへ電気を流すために必要な配線部41以外のバリア
メタルはあらかじめエツチングにより除去しておく必要
がある。配線部41はウェハー24のダイシングライン
42に沿わせておき、その幅をダイシングの際のカッテ
ィング幅よシ細くしておく。また、この際、形成させる
突起電極21はレジスト皮膜の厚さより低くしておく必
要がある。最後に第1図eに示す様にレジスト皮膜を表
面に有したままで半導体ウェハー24のダイシングを行
い、半導体素子をチップ状に分割する。この際、配線部
41はダイシングの際に削り取られ、それぞれの突起電
極21は電気的に分離される。こうして突起電極21と
、熱可塑性の絶縁性樹脂を表面に有する半導体素子が用
意される。次に第2図を用いてその実装プロセスについ
て説明する。
However, in the mounting method according to the present invention, the barrier metal cannot be etched after plating. Therefore, as shown in FIG. 3, it is necessary to remove by etching in advance the barrier metal other than the wiring part 41 necessary for flowing electricity to the electrode part 4o on which the protruding electrode 21 is formed by electroplating. The wiring portion 41 is placed along the dicing line 42 of the wafer 24, and its width is made narrower than the cutting width during dicing. Further, at this time, the thickness of the protruding electrode 21 to be formed needs to be lower than the thickness of the resist film. Finally, as shown in FIG. 1e, the semiconductor wafer 24 is diced with the resist film still on the surface to divide the semiconductor elements into chips. At this time, the wiring portion 41 is scraped off during dicing, and each protruding electrode 21 is electrically isolated. In this way, the protruding electrode 21 and the semiconductor element having the thermoplastic insulating resin on the surface are prepared. Next, the mounting process will be explained using FIG. 2.

まず第2図aに示した半導体素子32の突起電極31を
有する側の面に第2図すに示した様に配線電極36f:
有する絶縁性基板34を配線電極36が突起電極31と
向かい合う様にして載せ、配線電極36と突起電極31
の位置合わせを行う。この状態のまま、第2図Cに示す
様に加熱し絶縁性樹脂33を溶融させながら加圧治具3
6を用いて半導体素子32を絶縁性基板34に加圧し、
配線電極36と突起電極31を圧接する。ついで系全体
を冷却し、絶縁性樹脂33が再硬化したら第2図dに示
す様に加圧を取り去る。この際、半導体素子32の突起
電極31と絶縁性基板32の配線電極35とは、絶縁性
樹脂33の再硬化の際に発生する収縮応力により圧接さ
れ、電気的接続を保つ。本実施例では電気メツキ法によ
り突起電極を形成させたが、突起電極を無電解メツキ法
により形成させてもよい。
First, a wiring electrode 36f is placed on the surface of the semiconductor element 32 shown in FIG. 2a on the side having the protruding electrode 31 as shown in FIG.
Place the insulating substrate 34 with the wiring electrode 36 facing the protruding electrode 31, and place the wiring electrode 36 and the protruding electrode 31.
Perform alignment. In this state, as shown in FIG. 2C, the pressing jig 3 is heated while melting the insulating resin 33.
6 to pressurize the semiconductor element 32 to the insulating substrate 34,
The wiring electrode 36 and the protruding electrode 31 are brought into pressure contact. The entire system is then cooled, and once the insulating resin 33 has re-hardened, the pressure is removed as shown in FIG. 2d. At this time, the protruding electrodes 31 of the semiconductor element 32 and the wiring electrodes 35 of the insulating substrate 32 are pressed together by the shrinkage stress generated when the insulating resin 33 is re-hardened to maintain electrical connection. In this embodiment, the protruding electrodes were formed by electroplating, but the protruding electrodes may also be formed by electroless plating.

発明の効果 以上のように本発明によれば、次のような効果を得るこ
とができる。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1)  マイクロバンプポンディング実装技術の実装
プロセスにおいて、レジスト皮膜を除去する工程と、半
導体素子に接着用の熱硬化性の絶縁性樹脂を塗布する工
程とを除去することが可能となり、低コスト化を実現で
きる。
(1) In the mounting process of micro bump bonding mounting technology, it is possible to eliminate the process of removing the resist film and the process of applying thermosetting insulating resin for adhesion to the semiconductor element, resulting in lower costs. can be realized.

(2)また、絶縁性樹脂の量が均一になる為、品質がよ
く、信頼性が高い。
(2) Also, since the amount of insulating resin is uniform, the quality is good and reliability is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法における突起電極形成工
程を示す断面図、第2図は本発明の実施例の実装工程を
示す断面図、第3図は本発明に用いる半導体素子部の平
面図、第4図は従来のマイクロボンディング実装工程の
断面図、第5図は突起電極の形成工程の断面図である。 23・・・・・・レジスト部絶縁性樹脂(硬化物)、2
4・・・・・・半導体ウェハー、26・・・・・・開孔
部絶縁性樹脂(未硬化物)、26・・・・・・絶縁性樹
脂、27・・・・・・開孔部、21.31・・・・・・
突起電極、32・・・・・・半導体素子、33・・・・
・・UV硬化型熱可塑性絶縁樹脂、34・・・・・・絶
縁性基板、36・・・・・・配線電極、36・・・・・
・加圧治具、40・・・・・・電極、41・・・・・・
配線、42・・・・・・ダイシングライン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名w&
S            フ へ                       Q
Q                ℃       
          7第2図    3j−突μtI
c桂 3ざ−・−配様電縁 31’)E−“7は゛′−パ 第3図 40−電極 41−−一霞ごi’−Y< 第4図 第5図
FIG. 1 is a cross-sectional view showing the protruding electrode forming process in an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the mounting process in the embodiment of the present invention, and FIG. 3 is a cross-sectional view of the semiconductor element part used in the present invention. A plan view, FIG. 4 is a sectional view of a conventional microbonding mounting process, and FIG. 5 is a sectional view of a protrusion electrode formation process. 23... Resist part insulating resin (cured product), 2
4... Semiconductor wafer, 26... Opening part insulating resin (uncured material), 26... Insulating resin, 27... Opening part , 21.31...
Projection electrode, 32... Semiconductor element, 33...
...UV curing thermoplastic insulating resin, 34...Insulating substrate, 36...Wiring electrode, 36...
・Pressure jig, 40... Electrode, 41...
Wiring, 42...Dicing line. Name of agent: Patent attorney Toshio Nakao and one other person w&
S Fuhe Q
Q ℃
7Figure 2 3j-TutμtI
c Katsura 3za--Distribution electric edge 31')E-"7 is"-Pa Fig.3

Claims (4)

【特許請求の範囲】[Claims] (1)フォトリソ技術を用いて半導体ウェハー表面に、
絶縁性樹脂膜を用いて、突起電極形成部に開孔部を形成
する工程と次いで前記開孔部に金属突起電極を形成する
工程と、前記半導体ウェハーを前記絶縁性樹脂膜を表面
に有するままチップ状態の半導体素子に分割する工程と
、分割した前記半導体素子を配線電極を有する絶縁性基
板に互いの電極同志が向い合う様にして搭載する工程と
、前記絶縁性樹脂を用いて前記半導体素子を前記絶縁性
基板に固着し、電極同志を電気的に接続する工程を有す
る半導体装置の製造方法。
(1) On the surface of a semiconductor wafer using photolithography technology,
a step of forming an aperture in the protruding electrode forming portion using an insulating resin film, a step of forming a metal protruding electrode in the aperture, and a step of forming the semiconductor wafer with the insulating resin film on its surface. a step of dividing the semiconductor element into chip-like semiconductor elements, a step of mounting the divided semiconductor element on an insulating substrate having wiring electrodes with the electrodes facing each other, and a step of dividing the semiconductor element using the insulating resin. A method for manufacturing a semiconductor device, comprising the steps of fixing the electrode to the insulating substrate and electrically connecting the electrodes to each other.
(2)絶縁性樹脂がUV硬化性であり、かつ熱可塑性で
あり、加熱により前記絶縁性樹脂を軟化させた後に冷却
し、再硬化させることにより、半導体素子を絶縁性基板
に固着させる特許請求の範囲第1項記載の半導体装置の
製造方法。
(2) A patent claim in which the insulating resin is UV curable and thermoplastic, and the semiconductor element is fixed to the insulating substrate by softening the insulating resin by heating, cooling it, and hardening it again. A method for manufacturing a semiconductor device according to item 1.
(3)フォトリソ技術を用いて配線電極を有する絶縁性
基板ウェハー表面に、絶縁性樹脂膜により突起電極形成
部に開孔部を形成する工程と、前記開孔部に突起電極を
形成する工程と、及び前記絶縁性基板ウェハーを前記絶
縁性樹脂を表面に有するままチップ状態の絶縁性基板に
分割する工程と、分割した前記絶縁性基板に電極を有す
る半導体素子を互いの電極が向かいあう様にして搭載す
る工程と、前記絶縁性樹脂を用いて前記半導体素子を前
記絶縁性基板に固着し、電極同志を電気的に接続する工
程を有する半導体装置の製造方法。
(3) a step of forming an opening in a protruding electrode formation part with an insulating resin film on the surface of an insulating substrate wafer having wiring electrodes using photolithography technology; and a step of forming a protruding electrode in the opening. , a step of dividing the insulating substrate wafer into insulating substrates in the form of chips while having the insulating resin on the surface, and forming semiconductor elements having electrodes on the divided insulating substrates so that the electrodes face each other. A method for manufacturing a semiconductor device, comprising a step of mounting, and a step of fixing the semiconductor element to the insulating substrate using the insulating resin and electrically connecting electrodes to each other.
(4)絶縁性樹脂がUV硬化性であり、かつ熱可塑性で
あり、加熱により前記絶縁性樹脂を軟化させた後に冷却
し、再硬化させることにより、半導体素子を絶縁性基板
に固着させる特許請求の範囲第3項記載の半導体装置の
製造方法。
(4) A patent claim in which the insulating resin is UV curable and thermoplastic, and the semiconductor element is fixed to the insulating substrate by softening the insulating resin by heating, cooling it, and hardening it again. A method for manufacturing a semiconductor device according to item 3.
JP62332018A 1987-12-28 1987-12-28 Method for manufacturing semiconductor device Expired - Fee Related JPH0793343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62332018A JPH0793343B2 (en) 1987-12-28 1987-12-28 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62332018A JPH0793343B2 (en) 1987-12-28 1987-12-28 Method for manufacturing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7052547A Division JP2532825B2 (en) 1995-03-13 1995-03-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01173733A true JPH01173733A (en) 1989-07-10
JPH0793343B2 JPH0793343B2 (en) 1995-10-09

Family

ID=18250221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62332018A Expired - Fee Related JPH0793343B2 (en) 1987-12-28 1987-12-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0793343B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297750A (en) * 1998-04-08 1999-10-29 Matsushita Electron Corp Semiconductor device, manufacture thereof, and mounting of the semiconductor device
US6501169B1 (en) 1999-11-29 2002-12-31 Casio Computer Co., Ltd. Semiconductor device which prevents leakage of noise generated in a circuit element forming area and which shields against external electromagnetic noise
US6600234B2 (en) 1999-02-03 2003-07-29 Casio Computer Co., Ltd. Mounting structure having columnar electrodes and a sealing film
EP1022774A3 (en) * 1999-01-21 2003-08-06 Lucent Technologies Inc. Flip chip assembly of semiconductor IC chips
WO2004070826A1 (en) * 2003-02-06 2004-08-19 Fujitsu Limited Method of forming electrode connection structure and electrode connection structure
USRE39603E1 (en) 1994-09-30 2007-05-01 Nec Corporation Process for manufacturing semiconductor device and semiconductor wafer
JP2010062514A (en) * 2008-09-03 2010-03-18 Ultratera Corp Semiconductor wafer with adhesive protection layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39603E1 (en) 1994-09-30 2007-05-01 Nec Corporation Process for manufacturing semiconductor device and semiconductor wafer
JPH11297750A (en) * 1998-04-08 1999-10-29 Matsushita Electron Corp Semiconductor device, manufacture thereof, and mounting of the semiconductor device
EP1022774A3 (en) * 1999-01-21 2003-08-06 Lucent Technologies Inc. Flip chip assembly of semiconductor IC chips
US6600234B2 (en) 1999-02-03 2003-07-29 Casio Computer Co., Ltd. Mounting structure having columnar electrodes and a sealing film
US6501169B1 (en) 1999-11-29 2002-12-31 Casio Computer Co., Ltd. Semiconductor device which prevents leakage of noise generated in a circuit element forming area and which shields against external electromagnetic noise
WO2004070826A1 (en) * 2003-02-06 2004-08-19 Fujitsu Limited Method of forming electrode connection structure and electrode connection structure
JP2010062514A (en) * 2008-09-03 2010-03-18 Ultratera Corp Semiconductor wafer with adhesive protection layer

Also Published As

Publication number Publication date
JPH0793343B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JP2871800B2 (en) Method of manufacturing hybrid semiconductor structure and synthetic hybrid semiconductor structure
US6822320B2 (en) Microelectronic connection components utilizing conductive cores and polymeric coatings
KR20000048152A (en) Semiconductor device and process for producing same
JPH01173733A (en) Manufacture of semiconductor device
JP2532825B2 (en) Method for manufacturing semiconductor device
JPS62281360A (en) Manufacture of semiconductor device
JPH0777227B2 (en) Method for manufacturing semiconductor device
JPH09246325A (en) Semiconductor element mounting structure and manufacture thereof
JPH084101B2 (en) Method for manufacturing semiconductor device
JPH012331A (en) Manufacturing method of semiconductor device
US4792533A (en) Coplanar die to substrate bond method
JPS62132331A (en) Manufacture of semiconductor device
JPH06139824A (en) Anisotropic conducting film
JP2780499B2 (en) Semiconductor device mounting method
JP2004253529A (en) Semiconductor device and its manufacturing method
JPH08102464A (en) Bump electrode structure and its forming method, and connection structure using bump electrode and its connection method
JPH04269475A (en) Electric connecting member and connecting method of electric circuit part using same
JPS62281361A (en) Semiconductor device
JP2793899B2 (en) Bonding and curing method of resin adhesive
JP4032320B2 (en) Electrode connection method
JP2879159B2 (en) Method of forming electrical connection member and metal bump
JPH0677282A (en) Manufacture of semiconductor device
JPH04322439A (en) Manufacture of semiconductor device
JPH0482240A (en) Manufacture of semiconductor device
JPH03129843A (en) Multichip mounting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees