USRE39603E1 - Process for manufacturing semiconductor device and semiconductor wafer - Google Patents
Process for manufacturing semiconductor device and semiconductor wafer Download PDFInfo
- Publication number
- USRE39603E1 USRE39603E1 US10/645,782 US64578203A USRE39603E US RE39603 E1 USRE39603 E1 US RE39603E1 US 64578203 A US64578203 A US 64578203A US RE39603 E USRE39603 E US RE39603E
- Authority
- US
- United States
- Prior art keywords
- chip
- electrodes
- bump electrodes
- bump
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductors Substances 0.000 title claims abstract description 119
- 238000000034 methods Methods 0.000 title abstract description 43
- 238000004519 manufacturing process Methods 0.000 title abstract description 29
- 239000010410 layers Substances 0.000 claims abstract description 54
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound   [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000007747 plating Methods 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound   [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 239000010950 nickel Substances 0.000 claims description 13
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound   [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound   [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000011248 coating agents Substances 0.000 abstract description 9
- 238000000576 coating method Methods 0.000 abstract description 9
- 230000000875 corresponding Effects 0.000 abstract description 9
- 239000010408 films Substances 0.000 description 78
- 239000000969 carriers Substances 0.000 description 35
- 229910000679 solders Inorganic materials 0.000 description 12
- 238000009413 insulation Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000005755 formation reactions Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 4
- 229920001721 Polyimides Polymers 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000000463 materials Substances 0.000 description 3
- 229910052751 metals Inorganic materials 0.000 description 3
- 239000002184 metals Substances 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 Chemical compound   O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- 229930001305 Rosin Natural products 0.000 description 2
- 238000010586 diagrams Methods 0.000 description 2
- 239000011159 matrix materials Substances 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 239000000203 mixtures Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- WKODDKLNZNVCSL-UHFFFAOYSA-N 1,3,2$l^{2},4$l^{2}-oxazadisiletidine Chemical compound   N1[Si]O[Si]1 WKODDKLNZNVCSL-UHFFFAOYSA-N 0.000 description 1
- 229910001020 Au alloys Inorganic materials 0.000 description 1
- 210000001503 Joints Anatomy 0.000 description 1
- UGGOXAKGNZEJKX-UHFFFAOYSA-N [Al][Cu][Au] Chemical compound   [Al][Cu][Au] UGGOXAKGNZEJKX-UHFFFAOYSA-N 0.000 description 1
- 230000001070 adhesive Effects 0.000 description 1
- 239000000853 adhesives Substances 0.000 description 1
- 229910045601 alloys Inorganic materials 0.000 description 1
- 239000000956 alloys Substances 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class   [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- -1 copper may be used Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003379 elimination reactions Methods 0.000 description 1
- 239000000945 fillers Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004973 liquid crystal related substances Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000155 melts Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reactions Methods 0.000 description 1
- 230000000149 penetrating Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound   O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxides Inorganic materials 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrates Substances 0.000 description 1
- 229920005992 thermoplastic resins Polymers 0.000 description 1
- 238000007736 thin film deposition techniques Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/023—Redistribution layers [RDL] for bonding areas
- H01L2224/0231—Manufacturing methods of the redistribution layers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/023—Redistribution layers [RDL] for bonding areas
- H01L2224/0231—Manufacturing methods of the redistribution layers
- H01L2224/02319—Manufacturing methods of the redistribution layers by using a preform
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/05124—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05155—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05541—Structure
- H01L2224/05548—Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05644—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05655—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13024—Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/831—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
- H01L2224/83101—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
Abstract
Description
The present invention relates to a process for manufacturing a semiconductor device and, more particularly, to a process suited for mass production of a highly integrated semiconductor device.
Semiconductor devices of various forms have been developed to meet recent demands in the electronics field towards size and weight reduction, speed increase, and improvement of functional operations of the devices. The semiconductor device comprises a package and a semiconductor chip (hereinafter, also referred to as a chip) contained in the package. The chip has been integrated higher and higher, and such a highly integrated semiconductor chip increases the number of terminals thereon. In addition, there have been severe demands on the semiconductor chips towards the possible reduction in size. The terminal-to-terminal pitch should thus be reduced to meet these demands or requirements for the semiconductor devices. A semiconductor device having a high terminal count can be obtained by inner lead bonding or by area array bonding. The inner lead bonding and the area array bonding are expected to be inevitable for the field of the semiconductors.
The inner lead bonding (ILB) is used to make electrical contact between the chip and the leads within the package. Various bonding technologies are available to achieve this inner lead bonding. Wire bonding is the most extensively used electrical interconnection process. In this process, fine wires are used to make electrical contact between the bonding pads on the chip and the corresponding leads on the package. The wire diameter is typically from 20 to 30 micrometers. Wire bonding techniques include thermocompression bonding, ultrasonic bonding, and thermosonic bonding.
The use of the fine wires limits the number of interconnections available in one package. The recent demands for the semiconductor devices with a high terminal count thus causes a problem of poor connections between the wire and the bonding pads. Considering this fact, the wire bonding has been replaced with wireless bonding. The wireless bonding is also called gang bonding, with which all bumps on the electrode pads are bonded simultaneously to the leads. Wireless bonding techniques include tape automated bonding (TAB) and flip-chip bonding. The TAB is also referred to as tape carrier bonding.
In the TAB technique, a laminated tape of gold-plated copper foil etching in the form of leads is bonded to the bumps on the electrode pads. The elimination of the wire bonding is advantageous from viewpoints of size reduction and highly integrated packaging of the device. On the other hand, the flip-chip bonding requires to make a raised metallic bump of solder on the chip. The chip is then inverted and bonded face down to the substrate interconnection pattern. This process lends itself to production of semiconductor devices with a high terminal count and a smaller pitch. In addition, this technique is also advantageous to provide a fast, low-noise semiconductor device with the short length of the interconnections.
The TAB and flip-chip bonding techniques use the bumps provided between the chip and the package to make electrical interconnection between them. These techniques are disclosed in, for example, Japanese Patent Laid-open Nos. 5-129366 and 6-77293.
As mentioned above, the film carrier semiconductor device disclosed in these laid-open publications uses the bumps for the electrical interconnection between the chip and the carrier film. There is another film carrier semiconductor device in which the electrical interconnection between the chip and the carrier film is achieved without using the bumps. The semiconductor chip and the carrier film are electrically connected during the assembly process. The bumps are used only for the purpose of connecting the film carrier semiconductor device with, for example, a circuit board or a mounting board. The film carrier semiconductor device of the type described comprises a semiconductor chip and a carrier film. Contact pads are provided on the semiconductor chip at one side thereof. The contact pads are arranged along the periphery of the semiconductor chip. Interconnecting layers are provided on the carrier film. The carrier film is also provided with through-holes and openings formed therein. The openings are formed at the position corresponding to the contact pads (chip electrodes).
A conventional process for manufacturing a semiconductor device is described first for the purpose of facilitating the understanding of the present invention. In this event, description is made on a process for manufacturing a film carrier semiconductor device. A wafer, which comprises a number of chip sections each having chip electrodes formed thereon, is covered with a passivating film by using a well-known technique. After the formation of the passivating film, the chip electrodes are exposed to the atmosphere. The chip sections are then separated from each other into individual chips along scribe lines by means of a known dicing technique using a dicing saw. The semiconductor chip so obtained is prepared along with a carrier film and an adhesion film. The adhesion film is positioned relative to the semiconductor chip and placed thereon. The carrier film and the semiconductor chip are subjected to heat and pressure to adhere them through the adhesion film. The carrier film is then cut along the edges of the chip by means of any adequate method. Next, bump electrodes (solder bump) are formed on corresponding outer chip electrodes arranged on the carrier film.
Semiconductor devices so obtained may find various applications in the electronics, electrical, and other fields. For example, semiconductor devices may be used for memories and drivers for a liquid crystal display. Such applications are suited for mass-production of the semiconductor device. However, the above mentioned manufacturing process has a certain limitation on the number of chips obtained per unit time because the operation should be made for each chip. Recent demands for smaller memories or drivers have reduced the size of the semiconductor device itself. Accordingly, it is necessary to conduct the operations such as the inner lead bonding and the formation of the bumps for each small chip. Such operation is so elaborate and somewhat troublesome because the semiconductor chip is relatively small. It is thus difficult to position the carrier film positively or with a high accuracy. The elaborate operation is also associated with the reliability of the electrical interconnection between the semiconductor chip and the carrier film. In other words, there may be trouble in the interconnection between the semiconductor chip and the carrier film as well as the adhesion of the individual components. In this respect, a batch process may be more effective than the conventional process for the mass-production of the semiconductor device, in which most operations are conducted on chip sections of a wafer. In this process, the bump electrodes are formed on the chip sections of the wafer which are not separated from each other into the individual chips.
Such a method is disclosed in, for example, U.S. Pat. No. 5,137,845, issued to Lochon et al. This method has developed by IBM Corporation and is applicable to the manufacturing of bump electrodes for semiconductor chips that are suitable for Controlled Collapse Chip Connection (C4) or flip-chip technique. In this method, a barrier metal is deposited on aluminum chip electrodes, on which bump electrodes are deposited for a terminal contact. The resultant wafer is, however, directed to the application as it is. In other words, this patent is not for a wafer to be divided into semiconductor chips. There is no disclosure of the separation of the wafer nor the disclosure about the position of the interconnection, chip electrodes, and bump electrodes to avoid the breakage of them upon dicing. In addition, the bump electrodes in the above mentioned conventional semiconductor devices are formed on the corresponding chip electrodes. The formation of the bumps on the electrodes is, however, difficult or even impossible by the practical consideration to meet recent demands on the semiconductor chips towards the possible reduction in size with a higher terminal count and a smaller pitch.
This problem may be solved by means of using a multi-layered electrode structure of the semiconductor device which allows the distribution of the solder pads on the entire surface of the semiconductor chip. Such a structure is, however, complex and difficult to be manufactured. In addition, the multi-layered electrode significantly affects the configuration of the chip surface. A larger number of layers may sometimes make the surface irregular.
Accordingly, an object of the present invention is to provide a process for manufacturing a semiconductor device having bump electrodes formed at different positions from chip electrodes, which is suited for mass-production.
Another object of the present invention is to provide a process for manufacturing a semiconductor device having a good thermal stress resistance.
Yet another object of the present invention is to provide a process for manufacturing a semiconductor device having a good moisture resistance.
In order to achieve the above mentioned object, there is provided a process for manufacturing a semiconductor device comprising the steps of defining a number of semiconductor chip sections on a wafer, each semiconductor chip section having a number of chip electrodes formed on one surface along a periphery thereof, the one surface being covered with a passivating film except for the positions where the chip electrodes are formed; forming a number of interconnection layers on the wafer for each semiconductor chip section such that each interconnection layer is connected to the chip electrode at one end thereof and is extended inward the chip section at the other end; covering the entire surface of the wafer with a cover coating film; forming a number of apertures in the cover coating film, the apertures being formed into a matrix; forming a number of bumps on the apertures; and separating the semiconductor chip sections on the wafer as individual semiconductor chips along scribe lines.
In the above mentioned process, the intermediate layer extended inward the semiconductor chip section is preferably exposed to the atmosphere through the aperture. In addition, the solder bumps are preferably formed away from the scribe line. Furthermore, the bump electrodes are preferably formed at the position not just over the chip electrodes.
The above and other objects, features and advantages of the present invention will become more apparent in the following description and the accompanying drawing in which like reference numerals refer to like parts and components.
According to another aspect of the present invention, there is provided a semiconductor wafer having a number of semiconductor chips comprising bump electrodes formed into a matrix on an entire surface of the wafer except for on scribe lines between the semiconductor chips.
A conventional process for manufacturing a semiconductor device is described first for the purpose of facilitating the understanding of the present invention. In this event, description is made on a process for manufacturing a film carrier semiconductor device. Referring to
Referring to
The carrier film 30 comprises an organic insulation film 31. The organic insulation film 31 may be, for example, a polyimide-based insulation film. The organic insulation film 31 has a first surface 31a and a second surface 31b. Interconnection layers 32 are provided on the organic insulation film 31 on the side of the first surface 31a. Through-holes 33 are formed in the insulation film 31. One end of each through-hole 33 faces the interconnection layer 32. Each through-hole 33 passes through the insulation film 31 to the second surface 31b thereof. The insulation film 31 is also provided with openings 34 penetrating through the film. The openings 34 are formed at the position corresponding to the chip electrodes 11. Each through-hole 33 is filled with a conductive electrode 35. Likewise, each opening 34 is filled with a filler material 36.
Referring to
Referring to
Referring to
The above mentioned steps illustrated in
In
In
Referring to
As mentioned above, this conventional manufacturing process is available only for the limited number of chips obtained per unit time because it is necessary to conduct the operations such as the inner lead bonding and the formation of the bumps for each small chip. Accordingly, there may be trouble in the interconnection between the semiconductor chip and the carrier film as well as the adhesion of the individual components. In addition, the bump electrodes in the above mentioned conventional semiconductor devices are formed on the corresponding chip electrodes, which causes some problems under the recent demands on the semiconductor chips towards the possible reduction in size with a higher terminal count and a smaller pitch.
Next, an embodiment of the present invention is described with reference to
Referring to
Referring to
Referring to
The wafer at this stage is illustrated in
Turning to
The conventional wafer 10′ illustrated in
As mentioned above, according to the present invention, it is possible to mass-produce semiconductor devices without making a large investment for manufacturing facilities because the present process is in-line with a well-known chip manufacturing process. The semiconductor device obtained according to the present invention has a superior thermal stress resistance and good joints between the adjacent layers. This improves the moisture resistance of the semiconductor devices.
While the present invention has thus been described in conjunction with a specific embodiment thereof, it is understood that the present invention is not limited to the illustrated embodiment. Instead, any changes, modifications, and variations may be made by those skilled in the art without departing from the scope and spirit of the appended claims. For example, gold may be used for the bumps rather than the solder. In such a case, the nickel plating and the gold plating can be eliminated.
Claims (22)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6237653A JP2792532B2 (en) | 1994-09-30 | 1994-09-30 | Semiconductor device manufacturing method and semiconductor wafer |
US08/533,207 US5844304A (en) | 1994-09-30 | 1995-09-25 | Process for manufacturing semiconductor device and semiconductor wafer |
US10/645,782 USRE39603E1 (en) | 1994-09-30 | 2003-08-22 | Process for manufacturing semiconductor device and semiconductor wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/645,782 USRE39603E1 (en) | 1994-09-30 | 2003-08-22 | Process for manufacturing semiconductor device and semiconductor wafer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US08/533,207 Reissue US5844304A (en) | 1994-09-30 | 1995-09-25 | Process for manufacturing semiconductor device and semiconductor wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE39603E1 true USRE39603E1 (en) | 2007-05-01 |
Family
ID=17018517
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/533,207 Expired - Lifetime US5844304A (en) | 1994-09-30 | 1995-09-25 | Process for manufacturing semiconductor device and semiconductor wafer |
US10/645,782 Expired - Lifetime USRE39603E1 (en) | 1994-09-30 | 2003-08-22 | Process for manufacturing semiconductor device and semiconductor wafer |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/533,207 Expired - Lifetime US5844304A (en) | 1994-09-30 | 1995-09-25 | Process for manufacturing semiconductor device and semiconductor wafer |
Country Status (6)
Country | Link |
---|---|
US (2) | US5844304A (en) |
EP (1) | EP0704895B1 (en) |
JP (1) | JP2792532B2 (en) |
KR (1) | KR100241573B1 (en) |
CA (1) | CA2159242C (en) |
DE (1) | DE69526895T2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070275493A1 (en) * | 2006-05-25 | 2007-11-29 | Canon Kabushiki Kaisha | Method of manufacturing image display device and method of dividing device |
US20090174068A1 (en) * | 1996-12-04 | 2009-07-09 | Seiko Epson Corporation | Semiconductor device, circuit board, and electronic instrument |
US20110095432A1 (en) * | 1996-12-04 | 2011-04-28 | Seiko Epson Corporation | Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board and electronic instrument |
US8633588B2 (en) * | 2011-12-21 | 2014-01-21 | Mediatek Inc. | Semiconductor package |
US9659893B2 (en) | 2011-12-21 | 2017-05-23 | Mediatek Inc. | Semiconductor package |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2792532B2 (en) * | 1994-09-30 | 1998-09-03 | 日本電気株式会社 | Semiconductor device manufacturing method and semiconductor wafer |
US6111317A (en) * | 1996-01-18 | 2000-08-29 | Kabushiki Kaisha Toshiba | Flip-chip connection type semiconductor integrated circuit device |
EP0821407A3 (en) * | 1996-02-23 | 1998-03-04 | Matsushita Electric Industrial Co., Ltd. | Semiconductor devices having protruding contacts and method for making the same |
US6169329B1 (en) | 1996-04-02 | 2001-01-02 | Micron Technology, Inc. | Semiconductor devices having interconnections using standardized bonding locations and methods of designing |
DE19613561C2 (en) * | 1996-04-04 | 2002-04-11 | Micronas Gmbh | Method for separating electrically tested electronic elements connected to one another in a body |
JP4034351B2 (en) | 1996-04-25 | 2008-01-16 | バイオアレイ ソリューションズ エルエルシー | Light-controlled electrokinetic assembly of particle-proximal surfaces |
KR100186333B1 (en) * | 1996-06-20 | 1999-03-20 | 문정환 | Chip-sized semiconductor package and its manufacturing method |
US6075279A (en) * | 1996-06-26 | 2000-06-13 | Sanyo Electric Co., Ltd. | Semiconductor device |
JP3796016B2 (en) | 1997-03-28 | 2006-07-12 | 三洋電機株式会社 | Semiconductor device |
JP2962351B2 (en) * | 1997-03-31 | 1999-10-12 | 日本電気株式会社 | Bonding structure to semiconductor chip and semiconductor device using the same |
US6034437A (en) * | 1997-06-06 | 2000-03-07 | Rohm Co., Ltd. | Semiconductor device having a matrix of bonding pads |
JP3335575B2 (en) | 1997-06-06 | 2002-10-21 | 松下電器産業株式会社 | Semiconductor device and manufacturing method thereof |
US6441473B1 (en) * | 1997-09-12 | 2002-08-27 | Agere Systems Guardian Corp. | Flip chip semiconductor device |
JP3068534B2 (en) * | 1997-10-14 | 2000-07-24 | 九州日本電気株式会社 | Semiconductor device |
AU4726397A (en) * | 1997-10-30 | 1999-05-24 | Hitachi Limited | Semiconductor device and method for manufacturing the same |
TW434646B (en) | 1997-11-21 | 2001-05-16 | Rohm Co Ltd | Semiconductor device and method for making the same |
US7215025B1 (en) * | 1998-03-20 | 2007-05-08 | Mcsp, Llc | Wafer scale semiconductor structure |
US6982475B1 (en) | 1998-03-20 | 2006-01-03 | Mcsp, Llc | Hermetic wafer scale integrated circuit structure |
US7205635B1 (en) | 1998-03-20 | 2007-04-17 | Mcsp, Llc | Hermetic wafer scale integrated circuit structure |
JP3727172B2 (en) * | 1998-06-09 | 2005-12-14 | 沖電気工業株式会社 | Semiconductor device |
US6341070B1 (en) * | 1998-07-28 | 2002-01-22 | Ho-Yuan Yu | Wafer-scale packing processes for manufacturing integrated circuit (IC) packages |
WO2000011715A1 (en) | 1998-08-21 | 2000-03-02 | Infineon Technologies Ag | Method for producing integrated switching circuits and semiconductor wafer comprising integrated switching circuits |
US6903451B1 (en) * | 1998-08-28 | 2005-06-07 | Samsung Electronics Co., Ltd. | Chip scale packages manufactured at wafer level |
JP3661444B2 (en) | 1998-10-28 | 2005-06-15 | 株式会社ルネサステクノロジ | Semiconductor device, semiconductor wafer, semiconductor module, and semiconductor device manufacturing method |
US6219910B1 (en) * | 1999-03-05 | 2001-04-24 | Intel Corporation | Method for cutting integrated circuit dies from a wafer which contains a plurality of solder bumps |
JP3339838B2 (en) * | 1999-06-07 | 2002-10-28 | ローム株式会社 | Semiconductor device and method of manufacturing the same |
US6181569B1 (en) * | 1999-06-07 | 2001-01-30 | Kishore K. Chakravorty | Low cost chip size package and method of fabricating the same |
US6228687B1 (en) | 1999-06-28 | 2001-05-08 | Micron Technology, Inc. | Wafer-level package and methods of fabricating |
JP2001085560A (en) * | 1999-09-13 | 2001-03-30 | Sharp Corp | Semiconductor device and manufacture thereof |
JP3619410B2 (en) * | 1999-11-18 | 2005-02-09 | 株式会社ルネサステクノロジ | Bump forming method and system |
JP3494940B2 (en) * | 1999-12-20 | 2004-02-09 | シャープ株式会社 | Tape carrier type semiconductor device, manufacturing method thereof, and liquid crystal module using the same |
JP2001196524A (en) * | 2000-01-12 | 2001-07-19 | Seiko Epson Corp | Method of manufacturing connection substrate, connection substrate, method of manufacturing semiconductor device and semiconductor device |
US9709559B2 (en) | 2000-06-21 | 2017-07-18 | Bioarray Solutions, Ltd. | Multianalyte molecular analysis using application-specific random particle arrays |
EP1311839B1 (en) | 2000-06-21 | 2006-03-01 | Bioarray Solutions Ltd | Multianalyte molecular analysis using application-specific random particle arrays |
TW507352B (en) * | 2000-07-12 | 2002-10-21 | Hitachi Maxell | Semiconductor module and producing method therefor |
JP3526548B2 (en) | 2000-11-29 | 2004-05-17 | 松下電器産業株式会社 | Semiconductor device and manufacturing method thereof |
US7262063B2 (en) | 2001-06-21 | 2007-08-28 | Bio Array Solutions, Ltd. | Directed assembly of functional heterostructures |
DE10231385B4 (en) * | 2001-07-10 | 2007-02-22 | Samsung Electronics Co., Ltd., Suwon | Semiconductor chip with bond pads and associated multi-chip package |
KR20040068122A (en) | 2001-10-15 | 2004-07-30 | 바이오어레이 솔루션스 리미티드 | Multiplexed analysis of polymorphic loci by concurrent interrogation and enzyme-mediated detection |
US7423336B2 (en) * | 2002-04-08 | 2008-09-09 | Micron Technology, Inc. | Bond pad rerouting element, rerouted semiconductor devices including the rerouting element, and assemblies including the rerouted semiconductor devices |
US6965160B2 (en) * | 2002-08-15 | 2005-11-15 | Micron Technology, Inc. | Semiconductor dice packages employing at least one redistribution layer |
US6964881B2 (en) * | 2002-08-27 | 2005-11-15 | Micron Technology, Inc. | Multi-chip wafer level system packages and methods of forming same |
AU2003298655A1 (en) | 2002-11-15 | 2004-06-15 | Bioarray Solutions, Ltd. | Analysis, secure access to, and transmission of array images |
US7550852B2 (en) | 2002-12-31 | 2009-06-23 | Texas Instruments Incorporated | Composite metal column for mounting semiconductor device |
TW200423344A (en) | 2002-12-31 | 2004-11-01 | Texas Instruments Inc | Composite metal column for mounting semiconductor device |
US7927796B2 (en) | 2003-09-18 | 2011-04-19 | Bioarray Solutions, Ltd. | Number coding for identification of subtypes of coded types of solid phase carriers |
TW200521436A (en) | 2003-09-22 | 2005-07-01 | Bioarray Solutions Ltd | Surface immobilized polyelectrolyte with multiple functional groups capable of covalently bonding to biomolecules |
WO2005042763A2 (en) | 2003-10-28 | 2005-05-12 | Bioarray Solutions Ltd. | Optimization of gene expression analysis using immobilized capture probes |
EP1694859B1 (en) | 2003-10-29 | 2015-01-07 | Bioarray Solutions Ltd | Multiplexed nucleic acid analysis by fragmentation of double-stranded dna |
JP3819395B2 (en) * | 2004-02-20 | 2006-09-06 | 沖電気工業株式会社 | Manufacturing method of semiconductor device |
US7508052B2 (en) * | 2004-06-03 | 2009-03-24 | International Rectifier Corporation | Crack protection for silicon die |
US7848889B2 (en) | 2004-08-02 | 2010-12-07 | Bioarray Solutions, Ltd. | Automated analysis of multiplexed probe-target interaction patterns: pattern matching and allele identification |
US7419852B2 (en) * | 2004-08-27 | 2008-09-02 | Micron Technology, Inc. | Low temperature methods of forming back side redistribution layers in association with through wafer interconnects, semiconductor devices including same, and assemblies |
EP1815515A4 (en) * | 2004-10-29 | 2009-03-11 | Flipchip Internat L L C | Semiconductor device package with bump overlying a polymer layer |
JP4797368B2 (en) * | 2004-11-30 | 2011-10-19 | 株式会社デンソー | Manufacturing method of semiconductor device |
US8486629B2 (en) | 2005-06-01 | 2013-07-16 | Bioarray Solutions, Ltd. | Creation of functionalized microparticle libraries by oligonucleotide ligation or elongation |
JP4137929B2 (en) * | 2005-09-30 | 2008-08-20 | シャープ株式会社 | Semiconductor device |
US7723830B2 (en) * | 2006-01-06 | 2010-05-25 | International Rectifier Corporation | Substrate and method for mounting silicon device |
US7973418B2 (en) | 2007-04-23 | 2011-07-05 | Flipchip International, Llc | Solder bump interconnect for improved mechanical and thermo-mechanical performance |
JP5005429B2 (en) * | 2007-05-31 | 2012-08-22 | 京セラクリスタルデバイス株式会社 | Method for manufacturing piezoelectric oscillator |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3719981A (en) * | 1971-11-24 | 1973-03-13 | Rca Corp | Method of joining solder balls to solder bumps |
US3760238A (en) | 1972-02-28 | 1973-09-18 | Microsystems Int Ltd | Fabrication of beam leads |
JPS4952973A (en) * | 1972-09-22 | 1974-05-23 | ||
JPS5287983A (en) | 1976-01-19 | 1977-07-22 | Hitachi Ltd | Production of semiconductor device |
US4604644A (en) * | 1985-01-28 | 1986-08-05 | International Business Machines Corporation | Solder interconnection structure for joining semiconductor devices to substrates that have improved fatigue life, and process for making |
JPS6386458A (en) | 1986-09-30 | 1988-04-16 | Toshiba Corp | Manufacture of ic chip with bump and wafer for manufacture thereof |
JPS63293965A (en) | 1987-05-27 | 1988-11-30 | Hitachi Ltd | Semiconductor device and manufacture thereof |
JPS6457643U (en) | 1987-09-30 | 1989-04-10 | ||
JPH01173733A (en) | 1987-12-28 | 1989-07-10 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPH01196856A (en) | 1988-02-02 | 1989-08-08 | Fujitsu Ltd | Formation of bump for semiconductor device |
US4878098A (en) | 1986-09-16 | 1989-10-31 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device |
US4907062A (en) | 1985-10-05 | 1990-03-06 | Fujitsu Limited | Semiconductor wafer-scale integrated device composed of interconnected multiple chips each having an integration circuit chip formed thereon |
US4948754A (en) | 1987-09-02 | 1990-08-14 | Nippondenso Co., Ltd. | Method for making a semiconductor device |
US5027188A (en) * | 1988-09-13 | 1991-06-25 | Hitachi, Ltd. | Semiconductor integrated circuit device in which a semiconductor chip is mounted with solder bumps for mounting to a wiring substrate |
US5049980A (en) | 1987-04-15 | 1991-09-17 | Kabushiki Kaisha Toshiba | Electronic circuit device and method of manufacturing same |
US5111278A (en) | 1991-03-27 | 1992-05-05 | Eichelberger Charles W | Three-dimensional multichip module systems |
EP0485760A1 (en) * | 1990-11-05 | 1992-05-20 | International Business Machines Corporation | Low temperature controlled collapse chip attach process |
US5137845A (en) * | 1990-07-31 | 1992-08-11 | International Business Machines Corporation | Method of forming metal contact pads and terminals on semiconductor chips |
JPH04373131A (en) | 1991-06-22 | 1992-12-25 | Nec Corp | Ic pellet for high-density mounting use |
JPH05121413A (en) | 1991-10-30 | 1993-05-18 | Fuji Electric Co Ltd | Electrolytic plating for bump electrode for integrated circuit device |
JPH05129366A (en) * | 1991-11-08 | 1993-05-25 | Fujitsu Ltd | Tab mounting structure for integrated circuit use |
JPH05166812A (en) | 1991-12-11 | 1993-07-02 | Sony Corp | Semiconductor device |
JPH05218042A (en) | 1992-02-05 | 1993-08-27 | Toshiba Corp | Semiconductor device |
US5250843A (en) * | 1991-03-27 | 1993-10-05 | Integrated System Assemblies Corp. | Multichip integrated circuit modules |
JPH05267302A (en) | 1992-03-19 | 1993-10-15 | Fujitsu Ltd | Semiconductor device |
US5289038A (en) | 1991-10-30 | 1994-02-22 | Fuji Electric Co., Ltd. | Bump electrode structure and semiconductor chip having the same |
JPH0677293A (en) * | 1992-06-25 | 1994-03-18 | Nitto Denko Corp | Film carrier and semiconductor device using the same |
JPH06112211A (en) | 1992-09-25 | 1994-04-22 | Tanaka Kikinzoku Kogyo Kk | Forming method for bump |
US5327013A (en) * | 1992-04-30 | 1994-07-05 | Motorola, Inc. | Solder bumping of integrated circuit die |
US5434452A (en) * | 1993-11-01 | 1995-07-18 | Motorola, Inc. | Z-axis compliant mechanical IC wiring substrate and method for making the same |
US5554940A (en) | 1994-07-05 | 1996-09-10 | Motorola, Inc. | Bumped semiconductor device and method for probing the same |
US5604379A (en) * | 1994-09-21 | 1997-02-18 | Sharp Kabushiki Kaisha | Semiconductor device having external electrodes formed in concave portions of an anisotropic conductive film |
US5844304A (en) * | 1994-09-30 | 1998-12-01 | Nec Corporation | Process for manufacturing semiconductor device and semiconductor wafer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63269854A (en) * | 1987-04-28 | 1988-11-08 | Nec Corp | Guidance service device |
-
1994
- 1994-09-30 JP JP6237653A patent/JP2792532B2/en not_active Expired - Lifetime
-
1995
- 1995-09-25 US US08/533,207 patent/US5844304A/en not_active Expired - Lifetime
- 1995-09-27 CA CA002159242A patent/CA2159242C/en not_active Expired - Fee Related
- 1995-09-29 KR KR1019950033151A patent/KR100241573B1/en not_active IP Right Cessation
- 1995-10-02 DE DE69526895T patent/DE69526895T2/en not_active Expired - Fee Related
- 1995-10-02 EP EP95306974A patent/EP0704895B1/en not_active Expired - Lifetime
-
2003
- 2003-08-22 US US10/645,782 patent/USRE39603E1/en not_active Expired - Lifetime
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3719981A (en) * | 1971-11-24 | 1973-03-13 | Rca Corp | Method of joining solder balls to solder bumps |
US3760238A (en) | 1972-02-28 | 1973-09-18 | Microsystems Int Ltd | Fabrication of beam leads |
JPS4952973A (en) * | 1972-09-22 | 1974-05-23 | ||
JPS5287983A (en) | 1976-01-19 | 1977-07-22 | Hitachi Ltd | Production of semiconductor device |
US4604644A (en) * | 1985-01-28 | 1986-08-05 | International Business Machines Corporation | Solder interconnection structure for joining semiconductor devices to substrates that have improved fatigue life, and process for making |
US4907062A (en) | 1985-10-05 | 1990-03-06 | Fujitsu Limited | Semiconductor wafer-scale integrated device composed of interconnected multiple chips each having an integration circuit chip formed thereon |
US4878098A (en) | 1986-09-16 | 1989-10-31 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device |
JPS6386458A (en) | 1986-09-30 | 1988-04-16 | Toshiba Corp | Manufacture of ic chip with bump and wafer for manufacture thereof |
US5049980A (en) | 1987-04-15 | 1991-09-17 | Kabushiki Kaisha Toshiba | Electronic circuit device and method of manufacturing same |
JPS63293965A (en) | 1987-05-27 | 1988-11-30 | Hitachi Ltd | Semiconductor device and manufacture thereof |
US4948754A (en) | 1987-09-02 | 1990-08-14 | Nippondenso Co., Ltd. | Method for making a semiconductor device |
JPS6457643U (en) | 1987-09-30 | 1989-04-10 | ||
JPH01173733A (en) | 1987-12-28 | 1989-07-10 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPH01196856A (en) | 1988-02-02 | 1989-08-08 | Fujitsu Ltd | Formation of bump for semiconductor device |
US5027188A (en) * | 1988-09-13 | 1991-06-25 | Hitachi, Ltd. | Semiconductor integrated circuit device in which a semiconductor chip is mounted with solder bumps for mounting to a wiring substrate |
US5137845A (en) * | 1990-07-31 | 1992-08-11 | International Business Machines Corporation | Method of forming metal contact pads and terminals on semiconductor chips |
EP0485760A1 (en) * | 1990-11-05 | 1992-05-20 | International Business Machines Corporation | Low temperature controlled collapse chip attach process |
US5250843A (en) * | 1991-03-27 | 1993-10-05 | Integrated System Assemblies Corp. | Multichip integrated circuit modules |
US5111278A (en) | 1991-03-27 | 1992-05-05 | Eichelberger Charles W | Three-dimensional multichip module systems |
JPH04373131A (en) | 1991-06-22 | 1992-12-25 | Nec Corp | Ic pellet for high-density mounting use |
JPH05121413A (en) | 1991-10-30 | 1993-05-18 | Fuji Electric Co Ltd | Electrolytic plating for bump electrode for integrated circuit device |
US5289038A (en) | 1991-10-30 | 1994-02-22 | Fuji Electric Co., Ltd. | Bump electrode structure and semiconductor chip having the same |
JPH05129366A (en) * | 1991-11-08 | 1993-05-25 | Fujitsu Ltd | Tab mounting structure for integrated circuit use |
JPH05166812A (en) | 1991-12-11 | 1993-07-02 | Sony Corp | Semiconductor device |
JPH05218042A (en) | 1992-02-05 | 1993-08-27 | Toshiba Corp | Semiconductor device |
JPH05267302A (en) | 1992-03-19 | 1993-10-15 | Fujitsu Ltd | Semiconductor device |
US5327013A (en) * | 1992-04-30 | 1994-07-05 | Motorola, Inc. | Solder bumping of integrated circuit die |
JPH0677293A (en) * | 1992-06-25 | 1994-03-18 | Nitto Denko Corp | Film carrier and semiconductor device using the same |
JPH06112211A (en) | 1992-09-25 | 1994-04-22 | Tanaka Kikinzoku Kogyo Kk | Forming method for bump |
US5434452A (en) * | 1993-11-01 | 1995-07-18 | Motorola, Inc. | Z-axis compliant mechanical IC wiring substrate and method for making the same |
US5554940A (en) | 1994-07-05 | 1996-09-10 | Motorola, Inc. | Bumped semiconductor device and method for probing the same |
US5604379A (en) * | 1994-09-21 | 1997-02-18 | Sharp Kabushiki Kaisha | Semiconductor device having external electrodes formed in concave portions of an anisotropic conductive film |
US5844304A (en) * | 1994-09-30 | 1998-12-01 | Nec Corporation | Process for manufacturing semiconductor device and semiconductor wafer |
Non-Patent Citations (2)
Title |
---|
R. Chanchani et al., "A New mini Ball Grid Array (mBGA) Multichip Module Technology"; International Journal of Microcircuits & Electronic Packaging, 18(1995) Third Quarter, No. 3, Reston, VA, pp. 185-192., Dec. 1995. * |
Ray-Long Day et al., "A Silicon-on-Silicon Multichip Module Technology with Integrated Bipolar Components in the Substrate", IEEE Multi-Chip Module Conference MCMC-94, Mar. 15-17, 1994, pp. 64-67. |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090174068A1 (en) * | 1996-12-04 | 2009-07-09 | Seiko Epson Corporation | Semiconductor device, circuit board, and electronic instrument |
US20110095432A1 (en) * | 1996-12-04 | 2011-04-28 | Seiko Epson Corporation | Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board and electronic instrument |
US8115284B2 (en) | 1996-12-04 | 2012-02-14 | Seiko Epson Corporation | Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board and electronic instrument |
US8384213B2 (en) | 1996-12-04 | 2013-02-26 | Seiko Epson Corporation | Semiconductor device, circuit board, and electronic instrument |
US20070275493A1 (en) * | 2006-05-25 | 2007-11-29 | Canon Kabushiki Kaisha | Method of manufacturing image display device and method of dividing device |
US7510898B2 (en) * | 2006-05-25 | 2009-03-31 | Canon Kabushiki Kaisha | Method of manufacturing image display device and method of dividing device |
US8633588B2 (en) * | 2011-12-21 | 2014-01-21 | Mediatek Inc. | Semiconductor package |
US9142526B2 (en) | 2011-12-21 | 2015-09-22 | Mediatek Inc. | Semiconductor package with solder resist capped trace to prevent underfill delamination |
US9640505B2 (en) | 2011-12-21 | 2017-05-02 | Mediatek Inc. | Semiconductor package with trace covered by solder resist |
US9659893B2 (en) | 2011-12-21 | 2017-05-23 | Mediatek Inc. | Semiconductor package |
Also Published As
Publication number | Publication date |
---|---|
JP2792532B2 (en) | 1998-09-03 |
EP0704895A2 (en) | 1996-04-03 |
JPH08102466A (en) | 1996-04-16 |
EP0704895B1 (en) | 2002-06-05 |
DE69526895D1 (en) | 2002-07-11 |
CA2159242A1 (en) | 1996-03-31 |
US5844304A (en) | 1998-12-01 |
DE69526895T2 (en) | 2003-02-27 |
KR100241573B1 (en) | 2000-02-01 |
EP0704895A3 (en) | 1996-12-04 |
CA2159242C (en) | 1999-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5624649B2 (en) | Fusible input / output interconnect system and method for flip chip packaging with stud bumps attached to a substrate | |
US5611140A (en) | Method of forming electrically conductive polymer interconnects on electrical substrates | |
CN1147928C (en) | Semiconductor device having sub-chip-scale package structure and method for forming same | |
US6326697B1 (en) | Hermetically sealed chip scale packages formed by wafer level fabrication and assembly | |
US5950070A (en) | Method of forming a chip scale package, and a tool used in forming the chip scale package | |
US7015072B2 (en) | Method of manufacturing an enhanced thermal dissipation integrated circuit package | |
US6555906B2 (en) | Microelectronic package having a bumpless laminated interconnection layer | |
US5477082A (en) | Bi-planar multi-chip module | |
JP3526788B2 (en) | Method for manufacturing semiconductor device | |
EP0683517B1 (en) | Semiconductor device having semiconductor chip bonded to circuit board through bumps and process of mounting thereof | |
US5227662A (en) | Composite lead frame and semiconductor device using the same | |
US6350668B1 (en) | Low cost chip size package and method of fabricating the same | |
US6552427B2 (en) | BGA package and method of fabrication | |
US6753208B1 (en) | Wafer scale method of packaging integrated circuit die | |
JP3186941B2 (en) | Semiconductor chips and multi-chip semiconductor modules | |
US6124637A (en) | Carrier strip and molded flex circuit ball grid array and method of making | |
US6232147B1 (en) | Method for manufacturing semiconductor device with pad structure | |
US6515357B2 (en) | Semiconductor package and semiconductor package fabrication method | |
KR100209993B1 (en) | Film carrier semiconductor device | |
US6876553B2 (en) | Enhanced die-up ball grid array package with two substrates | |
US6884652B2 (en) | Semiconductor package free of substrate and fabrication method thereof | |
US6593648B2 (en) | Semiconductor device and method of making the same, circuit board and electronic equipment | |
JP3262497B2 (en) | Chip mounted circuit card structure | |
US6552426B2 (en) | Semiconductor device and method of manufacturing same | |
US4949224A (en) | Structure for mounting a semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:NEC ELECTRONICS CORPORATION;REEL/FRAME:025525/0145 Effective date: 20100401 |