JPH05121413A - Electrolytic plating for bump electrode for integrated circuit device - Google Patents

Electrolytic plating for bump electrode for integrated circuit device

Info

Publication number
JPH05121413A
JPH05121413A JP3283370A JP28337091A JPH05121413A JP H05121413 A JPH05121413 A JP H05121413A JP 3283370 A JP3283370 A JP 3283370A JP 28337091 A JP28337091 A JP 28337091A JP H05121413 A JPH05121413 A JP H05121413A
Authority
JP
Japan
Prior art keywords
film
wafer
electrolytic plating
metal
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3283370A
Other languages
Japanese (ja)
Other versions
JP3047566B2 (en
Inventor
Hisashi Shirahata
久 白畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3283370A priority Critical patent/JP3047566B2/en
Publication of JPH05121413A publication Critical patent/JPH05121413A/en
Application granted granted Critical
Publication of JP3047566B2 publication Critical patent/JP3047566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Abstract

PURPOSE:To easily eliminate the irregularity of height of the projecting metal for bump electrode, which is subject to electrolytic plating growth, in an integrated circuit in which the chips buried in a wafer has not been separated yet. CONSTITUTION:A distribution film 15 of high conductive metal is provided in a grid pattern within a mutual scribe zone SZ of chip area in a wafer 10, and after each chip area of the wafer is covered with a protective film 16, the window is opened at the position to provide a bump electrode 20 projectingly. Then a metallic and thin base film 17 is adhered on the wafer surface in a manner to connect the film 15 and the distribution film 14 in the window of film 16, and a projecting metal 18 is grown on the connected position to the film 14 through an electrolytic plating while using the film 17 as a plating electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集積回路装置の外部接続
のためそのチップから突設される突起電極であるバンプ
電極の電解めっき方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic plating method for bump electrodes, which are protruding electrodes protruding from a chip for external connection of an integrated circuit device.

【0002】[0002]

【従来の技術】集積回路装置を種々の電子装置類に組み
込む際の実装に要する手間やスペースを節約するにはそ
れを一旦パッケージに収納するよりもチップのままで実
装するのが有利であり、このチップ実装用にはんだ,
金,銅等のバンプ電極を突設したいわゆるフリップチッ
プが広く用いられるに至っている。
2. Description of the Related Art In order to save the labor and space required for mounting an integrated circuit device in various electronic devices, it is advantageous to mount it as a chip rather than once package it. Solder for mounting this chip,
So-called flip chips, which have bump electrodes made of gold, copper or the like, are widely used.

【0003】このフリップチップ用のバンプ電極は数十
〜100 μmの高さに突設する必要があり、それ用の金属
をチップの全面に被着して不要部分をエッチングにより
除去すると著しく不経済になりかつ手間が掛かるので、
従来からバンプ電極用の突起金属をウエハ内に作り込ま
れたチップに単離する前の集積回路装置に対して電解め
っき法により必要な個所にのみ選択的に成長させるのが
常である。以下、よく知られていることではあるがこの
バンプ電極用突起金属の従来からの電解めっき方法を図
3を参照しながら簡単に説明する。
This flip chip bump electrode needs to be projected at a height of several tens to 100 .mu.m, and it is extremely uneconomical if the metal for it is deposited on the entire surface of the chip and the unnecessary portion is removed by etching. And it takes a lot of work,
Conventionally, it is usual to selectively grow only bumps of a bump electrode for a bump electrode on an integrated circuit device, which is not yet isolated into a chip formed in a wafer, by electrolytic plating only at a necessary portion. As is well known, a conventional electrolytic plating method for bump metal for bump electrodes will be briefly described below with reference to FIG.

【0004】図3はウエハ10の周縁部を拡大断面で示
し、集積回路が作り込まれるふつうはn形のエピタキシ
ャル層11の各チップの周縁部に当たる部分の表面に強い
p形で接合分離層12が拡散されており、その表面に付け
られた厚いフィールド酸化膜13の上にバンプ電極20が突
設される。フィールド酸化膜13上にエピタキシャル層11
の図示しない部分に作り込まれた集積回路と接続された
アルミの配線膜14が配設され、その上を覆う窒化シリコ
ン等の保護膜16に開口された窓内にバンプ電極20を接続
すべき配線膜14の端部が露出される。次に、電解めっき
時にめっき電極膜として用いられるチタン等のごく薄い
金属からなる下側下地膜17aをウエハ10の全面上に被着
して保護膜16の各窓の内部で配線膜14と接続し、さらに
窓の上側にパラジュウムや銅の薄い金属からなる上側下
地膜17bをバンプ電極20用の所望の数十μm径ないし角
の小さなパターンに形成する。
FIG. 3 is an enlarged cross-sectional view of the peripheral portion of the wafer 10. The junction separation layer 12 is a strong p-type on the surface of the portion of the n-type epitaxial layer 11 which is usually the peripheral portion of each chip in which an integrated circuit is formed. Are diffused, and bump electrodes 20 are projected on the thick field oxide film 13 attached to the surface thereof. Epitaxial layer 11 on field oxide 13
An aluminum wiring film 14 connected to an integrated circuit formed in a portion (not shown) is provided, and the bump electrode 20 should be connected in a window opened in a protective film 16 such as silicon nitride that covers the wiring film 14. The end of the wiring film 14 is exposed. Next, a lower base film 17a made of a very thin metal such as titanium used as a plating electrode film during electrolytic plating is deposited on the entire surface of the wafer 10 and connected to the wiring film 14 inside each window of the protective film 16. Then, the upper base film 17b made of a thin metal such as palladium or copper is formed on the upper side of the window in a desired pattern for the bump electrode 20 having a small diameter of several tens of μm or a small angle.

【0005】ついで、電解めっきのためにフォトレジス
ト膜30をウエハ10の全面上にスピンコートし、フォトプ
ロセスにより上側下地膜17bのみを露出させるめっき用
の窓を明ける。突起金属18の電解めっきはこのフォトレ
ジスト膜30をめっき用マスクとし下側下地膜17aをめっ
き電極膜として行なわれ、それ用のはんだ, 金, 銅等の
金属がフォトレジスト膜30の窓内に露出された上側下地
膜17bの上に選択的にふつう数十μmの高さに成長され
る。この際、下側下地膜17aをめっき用電源に接続する
ため、金属のニードル31の先端が柔らかいフォトレジス
ト膜30を通してウエハ10の周縁部の上下2層の下地膜17
に接続される。
Then, a photoresist film 30 is spin-coated on the entire surface of the wafer 10 for electrolytic plating, and a plating window exposing only the upper base film 17b is opened by a photo process. Electrolytic plating of the protruding metal 18 is performed by using the photoresist film 30 as a plating mask and the lower base film 17a as a plating electrode film, and a metal such as solder, gold, or copper for that is placed in the window of the photoresist film 30. The exposed upper underlayer film 17b is selectively grown to a height of several tens of μm. At this time, in order to connect the lower base film 17a to the plating power source, the tip of the metal needle 31 passes through the photoresist film 30 and the upper and lower base films 17 at the peripheral portion of the wafer 10 are passed.
Connected to.

【0006】この電解めっき後はまずフォトレジスト膜
30を除去した上で、下側下地膜17aのチタンを希ふっ酸
等を用いる化学エッチングによりその上側下地膜17bの
下側部分を除いてすべて溶解除去することにより、バン
プ電極20相互間の電気的接続を切って独立したバンプ電
極20とする。以降は、ウエハ10をスクライブラインSLに
沿い切断することにより各チップ40に単離する。
After this electrolytic plating, first, a photoresist film
After removing 30, the titanium of the lower base film 17a is completely removed by dissolution by chemical etching using dilute hydrofluoric acid or the like except the lower part of the upper base film 17b. The individual bump electrode 20 is formed by disconnecting the physical connection. After that, the wafer 10 is cut along the scribe line SL to isolate each chip 40.

【0007】[0007]

【発明が解決しようとする課題】従来のバンプ電極20の
電解めっき方法では、上述のようにそれ用の突起金属18
をフォトレジスト膜30をめっき用マスクとして利用する
ことによりウエハ10内の所望の個所にのみ選択的に,か
つ下側下地膜17aをめっき電極膜として利用することに
よりウエハ10の全面に一斉上に成長させることができる
が、突起金属18の成長高さがウエハ10の面内で均一に揃
いにくい問題がある。
In the conventional electrolytic plating method for the bump electrode 20, the bump metal 18 for the bump electrode 20 is used as described above.
By using the photoresist film 30 as a mask for plating only selectively at desired portions in the wafer 10, and by using the lower base film 17a as a plating electrode film all over the entire surface of the wafer 10. Although it can be grown, there is a problem in that the growth height of the protruding metal 18 is difficult to be uniform in the plane of the wafer 10.

【0008】これは、下側下地膜17aがその下側の配線
膜14用のアルミと上側の突起金属18用の元素の相互拡散
ないし原子的なマイグレーションを防止するバリアメタ
ルの役目を兼ねているためにチタンやクローム等の比抵
抗の高い金属を用いる必要があり、従って膜厚を 0.1〜
0.5 μm程度と薄くする必要があるためその面抵抗が相
当高くなり、このため電解めっき時の突起金属18の成長
が前述のニードル31を介してめっき電源と接続されるウ
エハ10の周縁部では速いが中央部では遅くなる傾向を避
け得ないからである。これによるウエハ10内の突起金属
18の高さの面内ばらつきは±20%以上にもなることがあ
って、従来から電解めっきの不良発生の主な原因となっ
ている現状である。
This is because the lower base film 17a also serves as a barrier metal for preventing mutual diffusion or atomic migration of the aluminum for the wiring film 14 on the lower side and the element for the protruding metal 18 on the upper side. Therefore, it is necessary to use a metal with a high specific resistance such as titanium or chrome.
Since it is necessary to reduce the thickness to about 0.5 μm, its surface resistance becomes considerably high. Therefore, the growth of the protruding metal 18 at the time of electrolytic plating is fast in the peripheral portion of the wafer 10 connected to the plating power source via the needle 31 described above. This is because there is an unavoidable tendency to slow down in the central part. This causes the protruding metal in the wafer 10.
The in-plane variation of the height of 18 can be as much as ± 20% or more, which has been the main cause of defective electroplating.

【0009】この対策として、下側下地膜17aのほかに
パラジュウムや銅からなる比抵抗の低い上側下地膜17b
もめっき電極膜として利用することは可能であるが、膜
厚が0.5μm程度に過ぎないので合成面抵抗を低める効
果はあまり高くなく、しかも電解めっき終了後に両下地
膜17aと17bを完全除去するのが非常に困難になって逆
にエッチング残渣による不良が発生しやすくなる。
As a measure against this, in addition to the lower base film 17a, an upper base film 17b made of palladium or copper and having a low specific resistance is used.
Can also be used as a plating electrode film, but since the film thickness is only about 0.5 μm, the effect of lowering the combined surface resistance is not very high, and both base films 17a and 17b are completely removed after completion of electrolytic plating. Becomes very difficult, and conversely, defects due to etching residues tend to occur.

【0010】また、ウエハ10のめっき電源への接続を中
央部でも行ない、またはその面内に分布した複数の個所
で接続するようにすれば突起金属18の高さの面内ばらつ
きを接続個所数に応じて減少させ得るが、電解めっき作
業やその準備に非常に手間が掛かって量産性が著しく低
下するのでこの対策も実用性に乏しい。
Further, if the connection of the wafer 10 to the plating power source is made at the central portion, or if the connection is made at a plurality of points distributed in the plane, the in-plane variation of the height of the protruding metal 18 is determined by the number of connection points. However, this method is also not practical because it takes a lot of time and effort for the electrolytic plating work and its preparation, and the mass productivity is significantly reduced.

【0011】かかる事情から、本発明はできるだけ簡単
かつ実用的な手段でバンプ電極用に突起金属をウエハ面
内に均一な高さで成長させることができる電解めっき方
法を提供することを目的とする。
Under such circumstances, it is an object of the present invention to provide an electrolytic plating method capable of growing a bump metal for a bump electrode at a uniform height in a wafer surface by a simple and practical means. ..

【0012】[0012]

【課題を解決するための手段】上述の目的は本発明によ
れば、ウエハ内のチップ用領域の相互間のスクライブゾ
ーン内に高導電性の金属からなる配電膜を格子状パター
ンで設け、ウエハ内の各チップ用領域を保護膜により覆
いかつその各チップ内の配線膜のバンプ電極を突設すべ
き個所の上に窓を開口し、ウエハの全面に薄い金属の下
地膜を配電膜と各チップの保護膜の窓内の配線膜に接続
するよう被着して置いた上で、下地膜をめっき電極とし
てその配線膜との接続個所の上に突起金属を電解めっき
法により選択的に成長させることによって達成される。
According to the present invention, the above object is to provide a distribution film made of a highly conductive metal in a grid pattern in a scribe zone between chip regions in a wafer, Each chip area in each chip is covered with a protective film, and a window is opened above the portion where the bump electrode of the wiring film in each chip is to be projected, and a thin metal base film is formed on the entire surface of the wafer as the distribution film and the distribution film. After depositing it so as to connect it to the wiring film in the window of the protective film of the chip, selectively grow the protruding metal on the connection part with the wiring film by using the base film as the plating electrode by the electrolytic plating method. It is achieved by

【0013】なお、上記の配電膜用の高導電性金属には
集積回路用の配線膜と同じアルミを用い、ウエハ内の各
チップ領域に対して配線膜を配設すると同時にこの配電
膜をスクライブゾーンに格子状パターンで配設するのが
有利である。なお、配線膜は絶縁膜上に配設されるに対
して配電膜はスクライブゾーン内に露出させた半導体の
表面上に直接に配設して置き、突起金属の電解めっき終
了後のウエハのチップへの単離前に下地膜に対すると同
様にこれを化学エッチング法によって除去するのがスク
ライブ作業を容易にする上で有利である。また、下地膜
を従来と同様に上下2層構成の複合膜とする場合は、下
側下地膜の方をこの配電膜に対して接続した状態で突起
金属を電解めっき法により上側下地膜の配線膜との接続
個所上に選択的に成長させることでよい。
The same highly conductive metal as the wiring film for the integrated circuit is used for the above-mentioned highly conductive metal for the distribution film, and the wiring film is arranged for each chip area in the wafer, and at the same time the distribution film is scribed. It is advantageous to arrange the zones in a grid pattern. The wiring film is provided on the insulating film, while the power distribution film is provided directly on the surface of the semiconductor exposed in the scribe zone, and the chip of the wafer after the electrolytic plating of the protruding metal is completed. It is advantageous to facilitate the scribing operation by removing it by the chemical etching method as in the case of the base film before isolation into the underlayer. Further, when the underlying film is a composite film composed of upper and lower two layers as in the conventional case, the protruding metal is electrolytically plated on the upper underlying film while the lower underlying film is connected to the distribution film. It may be grown selectively on the connection point with the film.

【0014】[0014]

【作用】本発明は、ウエハ内の各チップ用領域相互間の
スクライブゾーンがその面内に広く格子状に分布してい
る点に着目して、前項の構成にいうようこのスクライブ
ゾーン内に高導電性金属からなる配電膜を格子状パター
ンで設け、これにめっき電極膜用の下地膜を接続するこ
とにより、めっき電極膜をウエハ面内に分布した多数の
個所でめっき電源と接続したと実質上同じ状態で突起金
属を成長させて、バンプ電極の高さのウエハ面内のばら
つきを従来の3分の1ないしはそれ以下に減少させるこ
とに成功したものである。なお、バンプ電極はスクライ
ブゾーンにごく近接した各チップの周縁部に配設される
のがふつうで、この場合にはウエハ面内のバンプ電極を
突設すべき各個所をめっき電源と直接に接続したとほと
んど同じ状態で突起金属を成長させて、バンプ電極の高
さのウエハ面内のばらつきをさらに従来の5分の1程度
にまで減少させることができる。
In the present invention, attention is paid to the fact that the scribe zones between the respective chip areas in the wafer are widely distributed in the plane in a lattice pattern. By providing a distribution film made of a conductive metal in a grid pattern and connecting a base film for the plating electrode film to this, it is virtually possible to connect the plating electrode film to the plating power source at many points distributed in the wafer surface. It succeeded in growing the bump metal in the same state as above and reducing the variation in the height of the bump electrode in the wafer surface to one-third or less than the conventional one. Note that the bump electrodes are usually arranged on the peripheral edge of each chip in close proximity to the scribe zone.In this case, the bump electrodes on the wafer surface should be directly connected to the plating power source. By growing the protruding metal in almost the same state as described above, it is possible to further reduce the variation in the height of the bump electrode within the wafer surface to about 1/5 of the conventional case.

【0015】[0015]

【実施例】以下、図を参照しながら本発明の実施例を説
明する。図1は本発明による集積回路装置用バンプ電極
の電解めっき方法をその主な工程ごとの状態で示すウエ
ハの要部拡大断面図、図2は配電膜を配設した状態を示
すウエハの上面図であり、前に説明した図3に対応する
部分には同じ符号が付されているので、重複部分に対す
る説明は適宜省略することとする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged cross-sectional view of an essential part of a wafer showing a method of electrolytic plating bump electrodes for an integrated circuit device according to the present invention in each of its main steps, and FIG. 2 is a top view of the wafer showing a state in which a distribution film is provided. Since the same reference numerals are given to the portions corresponding to FIG. 3 described above, the description of the overlapping portions will be appropriately omitted.

【0016】図1(a) の工程ではウエハ10のスクライブ
ゾーンSZ内に配電膜15を配設する。この配電膜15用の高
導電性の金属には集積回路の配線膜14用のアルミを利用
するのが工程上有利なので、この実施例ではウエハ10内
の各チップ領域に配線膜14を配設する工程内に同じアル
ミからなる配電膜15をスクライブゾーンSZ内の図示の例
では半導体面上に図2に示す格子状パターンで配設す
る。図2のウエハ10内にやや拡大して示されたチップ40
の相互間にはスクライブゾーンSZが縦横両方向に設定さ
れており、配電膜15は例えば60μmの幅でスクライブゾ
ーンSZに対応する格子状のパターンに形成される。
In the step shown in FIG. 1A, the power distribution film 15 is arranged in the scribe zone SZ of the wafer 10. Since it is advantageous in the process to use aluminum for the wiring film 14 of the integrated circuit as the highly conductive metal for the power distribution film 15, the wiring film 14 is arranged in each chip area in the wafer 10 in this embodiment. In the step, the distribution film 15 made of the same aluminum is arranged in the scribe zone SZ on the semiconductor surface in the lattice pattern shown in FIG. 2 in the illustrated example. Chip 40 shown slightly enlarged in wafer 10 of FIG.
The scribe zones SZ are set in both the vertical and horizontal directions, and the power distribution film 15 is formed in a grid pattern corresponding to the scribe zones SZ with a width of, for example, 60 μm.

【0017】図1(b) は保護膜16の配設工程を示す。通
例のように保護膜16は1〜1.5 μmの膜厚の窒化シリコ
ン膜とされ、これをCVD法等によりウエハ10の全面に
成膜した上でドライエッチング法により窓16aをバンプ
電極を突設すべき個所に開口して配線膜14の端部を露出
させ、かつスクライブゾーンSZ内では例えば70μmの幅
でこれを除去して配電膜15を露出させる。
FIG. 1 (b) shows a step of disposing the protective film 16. As is customary, the protective film 16 is a silicon nitride film having a film thickness of 1 to 1.5 μm, which is formed on the entire surface of the wafer 10 by a CVD method or the like, and then a window 16a is provided with a bump electrode by a dry etching method. The end of the wiring film 14 is exposed by opening at a portion to be formed, and is removed in the scribe zone SZ with a width of, for example, 70 μm to expose the power distribution film 15.

【0018】図1(c) は下地膜17の被着工程を示す。こ
の実施例でも下地膜17は2層構成であり、下側下地膜17
aとしてチタンが0.2μmの膜厚で, 上側下地膜17bと
してパラジュウムが 0.4μmの膜厚でそれぞれスパッタ
法等により保護膜16の上側に成膜され、窓16a内では配
線膜14と,スクライブゾーンSZ内では配電膜15とそれぞ
れ接続される。なお、めっき電極膜とバリアメタルに兼
用の下側下地膜17aの金属にはチタンのほかクローム,
モリブデン, タングステン, ニッケルクローム合金が用
いられ、これを低抵抗で突起金属と接続する上側下地膜
17bの金属にはパラジュウムのほか銅が用いられる。こ
の複合膜のままで次の電解めっき工程に入ることも可能
であるが、この実施例では上側下地膜17bの方が王水液
を用いて図1(d) に示すバンプ電極用の小パターンにフ
ォトエッチングされる。
FIG. 1C shows a step of depositing the underlayer film 17. Also in this embodiment, the base film 17 has a two-layer structure, and the lower base film 17 is
Titanium has a thickness of 0.2 μm and upper base film 17b has a thickness of 0.4 μm and is formed on the upper side of the protective film 16 by sputtering or the like. Inside the window 16a, the wiring film 14 and the scribe zone are formed. In the SZ, they are respectively connected to the power distribution film 15. The metal of the lower base film 17a, which is also used for the plating electrode film and the barrier metal, is titanium, chromium,
Molybdenum-tungsten-nickel chrome alloy is used. Upper base film that connects it with protruding metal with low resistance
In addition to palladium, copper is used as the metal of 17b. It is possible to proceed to the next electrolytic plating step with this composite film as it is, but in this embodiment, the upper base film 17b uses aqua regia solution to form a small pattern for bump electrodes as shown in FIG. 1 (d). Photo-etched on.

【0019】図1(d) は突起金属18の電解めっき工程を
示す。上述のように上側下地膜17bをパターンニングし
た後、従来と同様にウエハ10の全面にフォトレジスト膜
30をスピンコートしてフォトプロセスにより上側下地膜
17bのみを露出させるめっき用の窓を開口し、このフォ
トレジスト膜をめっき用マスクとし下側下地膜17aをめ
っき電極膜とする電解めっき法によってはんだ, 金, 銅
等の突起金属18, この実施例では金を上側下地膜17a上
に選択的に成長させる。この電解めっきの際のめっき電
極膜としての下側下地膜17aをめっき電源に接続するた
め、図の右側に示されたウエハ10の周縁部のこの例では
2層構成の下地膜17に対してニードル31の先端が例えば
図2に示す3個所で従来と同様に柔らかいフォトレジス
ト膜30を通して接触される。突起金属18はふつうは数十
〜100 μmの高さ, この実施例のように金の場合は30〜
50μmの高さに成長される。
FIG. 1D shows an electroplating process of the bump metal 18. After patterning the upper base film 17b as described above, a photoresist film is formed on the entire surface of the wafer 10 as in the conventional case.
Spin coat 30 and perform photo process on upper base film
By opening a plating window that exposes only 17b, using this photoresist film as a plating mask, and using the lower base film 17a as a plating electrode film, a protruding metal such as solder, gold, or copper 18, In the example, gold is selectively grown on the upper base film 17a. In order to connect the lower base film 17a as a plating electrode film at the time of this electroplating to the plating power source, the peripheral part of the wafer 10 shown on the right side of the drawing is compared with the base film 17 having a two-layer structure in this example. The tip of the needle 31 is contacted through, for example, the soft photoresist film 30 at three points shown in FIG. The height of the protruding metal 18 is usually several tens to 100 μm, and in the case of gold as in this embodiment, it is 30 to 100 μm.
Grown to a height of 50 μm.

【0020】図1(e) はバンプ電極20の完成状態を示
す。上述の電解めっきの終了後、従来と同様にまずフォ
トレジスト膜30を除去した上、上側下地膜17bをマスク
として希ふっ酸液を用いる化学エッチング法で下側下地
膜17aのチタンを溶解除去することにより図示のように
独立したバンプ電極20とする。さらに、この実施例では
スクライブ作業を容易にするため、アルミの配電膜15を
燐酸と硝酸等の混合液を用いるエッチングによりスクラ
イブゾーンSZから除去して図示のウエハ10の完成状態と
する。これ以降は、ウエハ10を図のスクライブラインSL
に沿って切断してチップ40に単離することにより、それ
ぞれバンプ電極20を備える集積回路装置のフリップチッ
プが得られる。
FIG. 1 (e) shows a completed state of the bump electrode 20. After completion of the above-described electrolytic plating, the photoresist film 30 is first removed in the same manner as in the conventional case, and then the titanium of the lower base film 17a is dissolved and removed by a chemical etching method using a dilute hydrofluoric acid solution with the upper base film 17b as a mask. As a result, the independent bump electrode 20 is formed as shown in the figure. Further, in this embodiment, in order to facilitate the scribing work, the aluminum distribution film 15 is removed from the scribe zone SZ by etching using a mixed solution of phosphoric acid and nitric acid to complete the illustrated wafer 10. After this, the wafer 10 is moved to the scribe line SL shown in the figure.
By cutting along the lines and isolating into chips 40, flip chips of the integrated circuit device each having bump electrodes 20 are obtained.

【0021】以上説明した実施例のようにしてバンプ電
極20の突起金属18を電解めっき法により成長させる際、
アルミの配電膜15の面抵抗はその膜厚が 0.5〜1μmの
とき5〜10Ω/□で、めっき電極膜用の 0.2μmの膜厚
のチタンの下側下地膜17aの100Ω/□程度の面抵抗と
比べると10〜20分の1と格段に低いので、めっき電源か
らニードル31に与えられた電解めっき電圧は図2からわ
かるように配電膜15を介してほとんど電圧降下すること
なくウエハ10の全面に亘って伝達され、さらに図1(d)
からわかるように配電膜15からごく短い下側下地膜17a
を介してチップ領域の周縁部の突起金属18を成長させる
べき個所にほとんど元のままの電圧値で伝達される。従
って本発明方法ではウエハ10内の突起金属18をすべてほ
ぼ均等なめっき電圧で成長させることができ、本発明方
法を量産フリップチップの試作に適用して見た結果によ
ればバンプ電極20の高さのウエハ面内のばらつきが従来
の3分の1以下に減少し、電解めっき条件等が良好な場
合には5分の1程度にまで減少することが実証されてい
る。
When the protruding metal 18 of the bump electrode 20 is grown by the electrolytic plating method as in the embodiment described above,
The surface resistance of the aluminum distribution film 15 is 5 to 10 Ω / □ when the film thickness is 0.5 to 1 μm, and the surface resistance of the titanium lower base film 17a of 0.2 μm for the plating electrode film is about 100 Ω / □. As compared with the resistance, the electroplating voltage applied to the needle 31 from the plating power source is remarkably low, which is 1/10 to 1/20, so that as shown in FIG. It is transmitted over the entire surface, and further, Fig. 1 (d)
As can be seen from the distribution film 15, a very short lower base film 17a
Is transmitted to the place where the protruding metal 18 on the peripheral portion of the chip region is to be grown, via the via with almost the same voltage value. Therefore, according to the method of the present invention, all the protruding metals 18 in the wafer 10 can be grown at a substantially uniform plating voltage. The results of applying the method of the present invention to the trial production of a mass-produced flip chip show that the bump electrode 20 has a high height. It has been proved that the variation in the wafer surface is reduced to less than one-third of the conventional value, and to about one-fifth when the electrolytic plating conditions are good.

【0022】以上説明した実施例に限らず本発明は種々
の態様で実施をすることができる。実施例で述べた材
料, 数値, 構造, 条件等はあくまで一例ないし例示であ
って、実際には場合ないし必要に応じ本発明方法をその
要旨内で適宜に選択した態様で実施することが可能であ
る。
The present invention is not limited to the embodiments described above, and the present invention can be implemented in various modes. The materials, numerical values, structures, conditions, etc. described in the examples are merely examples or exemplifications, and it is possible to carry out the method of the present invention in an appropriately selected manner within the scope thereof in actual cases or as necessary. is there.

【0023】[0023]

【発明の効果】以上のとおり本発明方法では、高導電性
金属からなる配電膜をウエハのチップ領域相互間のスク
ライブゾーン内に格子状パターンで設け、ウエハ内の各
チップ用領域を保護膜で覆ってバンプ電極を突設すべき
個所に窓を明け、ウエハの全面に金属の下地膜を配電膜
と保護膜の窓内の配線膜に接続するよう被着して置いた
上で、下地膜をめっき電極としてその配線膜との接続個
所の上に突起金属を電解めっきにより選択的に成長させ
ることにより、めっき電源からウエハの周縁等に与えた
電解めっき電圧を下地膜より面抵抗が10〜20分の1と格
段に低い配電膜を介してほとんど電圧降下なしにウエハ
の全面に亘って伝達させ、めっき電極膜を多数の個所で
めっき電源と接続したと実質上同じ状態で突起金属を均
一な高さに成長させ、バンプ電極の高さのウエハ面内ば
らつきを従来の3〜5分の1に減少させることができ
る。
As described above, in the method of the present invention, a distribution film made of a highly conductive metal is provided in the scribe zone between the chip regions of the wafer in a grid pattern, and each chip region in the wafer is protected by a protective film. A window is opened at the place where the bump electrode should be covered and a metal underlayer film is deposited on the entire surface of the wafer so as to connect to the wiring film in the window of the distribution film and the protective film. As a plating electrode, a protruding metal is selectively grown on the connection point with the wiring film by electrolytic plating, so that the electrolytic plating voltage applied to the peripheral edge of the wafer from the plating power supply has a surface resistance of 10 ~ It is transmitted over the entire surface of the wafer with almost no voltage drop through a distribution film that is significantly lower than 1/20, and when the plating electrode film is connected to the plating power supply at many points, the protruding metal is evenly distributed. Grow to any height It is possible to reduce the variation in the height of the bump electrode within the wafer to one third to one fifth of the conventional one.

【0024】なお、配電膜は集積回路用の配線膜と同じ
金属を利用してかつ同じ工程で配設できるので、本発明
方法は従来方法にとくに新しい工程を追加する必要なく
容易かつ簡単に実施できる。本発明は外部接続点の多い
高集積化された小形フリップチップの量産への適用にと
くに有利であり、その製造歩留まりを向上し実装時の仕
損じを減少させる著効を奏し得るものである。
Since the power distribution film can be formed by using the same metal as the wiring film for the integrated circuit and in the same step, the method of the present invention can be easily and easily performed without adding any new step to the conventional method. it can. INDUSTRIAL APPLICABILITY The present invention is particularly advantageous when applied to mass production of highly integrated small-sized flip chips having many external connection points, and can exert a remarkable effect of improving the manufacturing yield and reducing the damage at the time of mounting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のバンプ電極の電解めっき方法の実施例
を主な工程ごとの状態で示し、同図(a) は配電膜の配設
工程,同図(b) は保護膜の形成工程,同図(c) は下地膜
の被着工程,同図(d) は電解めっき工程,同図(e) はバ
ンプ電極の完成時の状態をそれぞれ示すウエハの要部拡
大断面図である。
FIG. 1 shows an embodiment of a method for electroplating bump electrodes according to the present invention in a state of each main step, wherein FIG. 1 (a) is a distribution film arranging step, and FIG. 1 (b) is a protective film forming step. The figure (c) is an enlarged cross-sectional view of the essential part of the wafer, showing the step of depositing the base film, the figure (d) is the electroplating step, and the figure (e) is the completed state of the bump electrode.

【図2】配電膜の配設状態を例示するウエハの上面図で
ある。
FIG. 2 is a top view of a wafer illustrating an arrangement state of a power distribution film.

【図3】従来のバンプ電極の電解めっき方法を示すウエ
ハの要部拡大断面図である。
FIG. 3 is an enlarged sectional view of an essential part of a wafer showing a conventional electrolytic plating method for bump electrodes.

【符号の説明】[Explanation of symbols]

10 ウエハ 14 集積回路用配線膜 15 配電膜 16 保護膜 17 下地膜 17a めっき電極膜としての下側下地膜 17b 上側下地膜 18 突起金属 20 バンプ電極 40 集積回路装置のチップ SZ スクライブゾーン SL スクライブライン 10 Wafer 14 Wiring film for integrated circuit 15 Distribution film 16 Protective film 17 Underlayer film 17a Lower underlayer film as plating electrode film 17b Upper underlayer film 18 Protruding metal 20 Bump electrode 40 Chip of integrated circuit device SZ scribe zone SL scribe line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ウエハ内に作り込まれたチップに単離する
前の集積回路装置に対してバンプ電極用の突起金属を電
解めっき法により成長させる方法であって、ウエハ内の
チップ用領域の相互間のスクライブゾーン内に高導電性
金属からなる配電膜を格子状パターンで設け、ウエハ内
の各チップ用領域を保護膜で覆いかつ各チップ内の配線
膜のバンプ電極を突設すべき個所の上に窓を開口し、ウ
エハの全面に金属からなる薄い下地膜を配電膜と各チッ
プの保護膜の窓内の配線膜とに接続するように被着し、
下地膜をめっき電極としてそのチップの配線膜との接続
個所の上に突起金属を電解めっき法により選択的に成長
させるようにしたことを特徴とする集積回路装置用バン
プ電極の電解めっき方法。
1. A method for growing a bump metal for a bump electrode on an integrated circuit device before isolation into a chip formed in a wafer by electrolytic plating, comprising: A place where a distribution film made of a highly conductive metal is provided in a grid pattern in the scribe zone between each other, the area for each chip in the wafer is covered with a protective film, and the bump electrode of the wiring film in each chip is to be projected. A window is opened on the top surface of the wafer, and a thin base film made of metal is applied to the entire surface of the wafer so as to be connected to the distribution film and the wiring film in the window of the protective film of each chip.
An electrolytic plating method for bump electrodes for an integrated circuit device, characterized in that a bump metal is selectively grown by electrolytic plating on a connection portion of the chip with a wiring film using the base film as a plating electrode.
【請求項2】請求項1に記載の方法において、配電膜を
配線膜と同じ金属でかつそれと同時に設けるようにした
ことを特徴とする集積回路装置用バンプ電極の電解めっ
き方法。
2. An electrolytic plating method for bump electrodes for an integrated circuit device according to claim 1, wherein the power distribution film is formed of the same metal as the wiring film and at the same time.
【請求項3】請求項1に記載の方法において、突起金属
を電解めっきした後のウエハのチップへの単離前に配電
膜を除去することを特徴とする集積回路装置用バンプ電
極の電解めっき方法。
3. The electrolytic plating of bump electrodes for an integrated circuit device according to claim 1, wherein the distribution film is removed before the isolation of the wafer into chips after electrolytic plating of the protruding metal. Method.
JP3283370A 1991-10-30 1991-10-30 Electroplating method of bump electrode for integrated circuit device Expired - Fee Related JP3047566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3283370A JP3047566B2 (en) 1991-10-30 1991-10-30 Electroplating method of bump electrode for integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3283370A JP3047566B2 (en) 1991-10-30 1991-10-30 Electroplating method of bump electrode for integrated circuit device

Publications (2)

Publication Number Publication Date
JPH05121413A true JPH05121413A (en) 1993-05-18
JP3047566B2 JP3047566B2 (en) 2000-05-29

Family

ID=17664623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3283370A Expired - Fee Related JP3047566B2 (en) 1991-10-30 1991-10-30 Electroplating method of bump electrode for integrated circuit device

Country Status (1)

Country Link
JP (1) JP3047566B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188304A (en) * 1998-10-12 2000-07-04 Seiko Epson Corp Semiconductor device
USRE39603E1 (en) 1994-09-30 2007-05-01 Nec Corporation Process for manufacturing semiconductor device and semiconductor wafer
JP2008135756A (en) * 2007-12-03 2008-06-12 Oki Electric Ind Co Ltd Method of manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39603E1 (en) 1994-09-30 2007-05-01 Nec Corporation Process for manufacturing semiconductor device and semiconductor wafer
JP2000188304A (en) * 1998-10-12 2000-07-04 Seiko Epson Corp Semiconductor device
JP2008135756A (en) * 2007-12-03 2008-06-12 Oki Electric Ind Co Ltd Method of manufacturing semiconductor device
JP4653799B2 (en) * 2007-12-03 2011-03-16 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP3047566B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
KR100313706B1 (en) Redistributed Wafer Level Chip Size Package And Method For Manufacturing The Same
US5226232A (en) Method for forming a conductive pattern on an integrated circuit
US5403777A (en) Semiconductor bond pad structure and method
JPH09330934A (en) Semiconductor device and its manufacture
DE102014115775B4 (en) Semiconductor components and processes for their formation
JP2653179B2 (en) Method of manufacturing bump electrode for integrated circuit device
EP1517364B1 (en) Semiconductor device and its producing method
JPH05121409A (en) Bump electrode for integrated circuit device
US3893156A (en) Novel beam lead integrated circuit structure and method for making the same including automatic registration of beam leads with corresponding dielectric substrate leads
JP3047566B2 (en) Electroplating method of bump electrode for integrated circuit device
US9082649B2 (en) Passivation process to prevent TiW corrosion
US5482897A (en) Integrated circuit with on-chip ground plane
JPS6112047A (en) Manufacture of semiconductor device
JP3116469B2 (en) Method of forming bump type electrode and method of manufacturing semiconductor device
JP3116534B2 (en) Method for manufacturing flip chip of integrated circuit device
JPH02181457A (en) Testing method of integrated circuit device with bump electrode
JPH01215033A (en) Bonding pad for semiconductor chip
JPH03132036A (en) Manufacture of semiconductor device
JPH02170434A (en) Semiconductor integrated circuit device provided with bump electrode
JPH0786281A (en) Semiconductor device and manufacture of semiconductor device
JPS61141157A (en) Manufacture of semiconductor element
JPS60224248A (en) Manufacture of semiconductor device
JPH02154426A (en) Manufacture of semiconductor integrated circuit device
JPH04264733A (en) Formation of bump base film for integrated circuit device
JPS60245239A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees