JPS60224248A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60224248A
JPS60224248A JP59080049A JP8004984A JPS60224248A JP S60224248 A JPS60224248 A JP S60224248A JP 59080049 A JP59080049 A JP 59080049A JP 8004984 A JP8004984 A JP 8004984A JP S60224248 A JPS60224248 A JP S60224248A
Authority
JP
Japan
Prior art keywords
layer
plating
plated
bump
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59080049A
Other languages
Japanese (ja)
Other versions
JPH0129064B2 (en
Inventor
Norio Totsuka
戸塚 憲男
Yasumitsu Sugawara
菅原 安光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59080049A priority Critical patent/JPS60224248A/en
Publication of JPS60224248A publication Critical patent/JPS60224248A/en
Publication of JPH0129064B2 publication Critical patent/JPH0129064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Abstract

PURPOSE:To omit activator treatment of Pt when copper or tin is plated on a diffused barrier plated layer, by providing a Pt layer on the diffused barrier layer of a bump electrode, and providing a tin plated layer at the outside of the bump electrode. CONSTITUTION:A bump is formed on a field oxide film 2, which is formed on a semiconductor substrate 1. An Al electrode pad 3 is formed at a part, where the bump is to be formed. A passivation film 4 is formed by a CVD method. Then, a through hole is provided on the Al electrode pad 3. Thereafter, an Al layer 10 is evaporated on the entire surface of the substrate 1. Then, Ti11 and Pt12 are evaporated. Patterning of the Ti11 and the Pt12 is performed at the place, where a bump electrode is formed. A part other than a place, where the bump electrode is to be formed is coated, by a resist 7. A diffused barrier plated 8a is applied with the Al layer 10 as a conducting layer of a current. Then lead 13 is plated on the entire surface and tin 14 is plated thereon continuously.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、バンプ電極を有する半導体装置の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method of manufacturing a semiconductor device having bump electrodes.

(従来技術) 従来、半導体フリップ・チップ素子のハンダ電極を形成
する方法としては、選択蒸着法、電気メツキ法およびハ
ンダポール法、ハンダディップ法があり、たとえば、特
公昭43−28735号公報あるいはPh1lip T
ech 、 Rev Vol 34’、 74などによ
り知られている。
(Prior Art) Conventionally, methods for forming solder electrodes of semiconductor flip chip devices include selective vapor deposition, electroplating, solder pole method, and solder dip method. T
ech, Rev Vol 34', 74, etc.

前者の選択蒸着法は、蒸着時間が非常に長いこと、蒸着
膜厚の制御が困難であること、および製造装置の投資が
非常に掛るなどの理由で、一般には行われていない。
The former selective deposition method is not generally practiced because it requires a very long deposition time, it is difficult to control the thickness of the deposited film, and it requires a large investment in manufacturing equipment.

従来の電気メツキ法による半導体フリップ・チップ素子
のバンプ電極形成法の一例を第1図(a)〜第1図(h
)に示す。まず第1図(a)に示すように、半導体基板
1上に形成されたフィールド酸化膜2の上のパンダを形
成すべき個所に、M電極パッド3を形成し、さらにCV
D法にてパシベーション膜4を成長させ九後%M電極パ
ッド3上にスルーホールを開孔する。
An example of a method for forming bump electrodes of a semiconductor flip chip device using the conventional electroplating method is shown in FIGS. 1(a) to 1(h).
). First, as shown in FIG. 1(a), an M electrode pad 3 is formed on a field oxide film 2 formed on a semiconductor substrate 1 at a location where a panda is to be formed, and then a CV
A passivation film 4 is grown using the D method, and a through hole is then formed on the M electrode pad 3.

次に、第1図(b)に示すように、A/−Ni合金層5
、Ni層6を順次蒸着する。
Next, as shown in FIG. 1(b), the A/-Ni alloy layer 5
, Ni layers 6 are sequentially deposited.

次に、第1図(e)に示すようにレジストなどにてマス
キングを行って、バング電極が形成される個所以外のN
i層6をエツチングしてAt −Ni合金層5の一部を
露出させる。
Next, as shown in FIG. 1(e), masking is performed with a resist or the like to remove the N
The i-layer 6 is etched to expose a portion of the At--Ni alloy layer 5.

次に、第1図(d)に示すように、At−Ni合金層5
が露出された個所において、通常のホトリソ工程により
レジスト7にてバンプ電極が形成される個所以外を覆う
Next, as shown in FIG. 1(d), the At-Ni alloy layer 5
In the exposed areas, a resist 7 is used to cover areas other than the areas where bump electrodes will be formed using a normal photolithography process.

次に第1図(e)に示すように、 At−Ni合金層5
を電流の導通層として、電気メツキ法によυ銅メッキ層
8金メッキする。この銅メッキ層8は、通常10μm程
度の厚さである。
Next, as shown in FIG. 1(e), an At-Ni alloy layer 5 is formed.
As a current conducting layer, a υ copper plating layer 8 gold is plated by electroplating. This copper plating layer 8 usually has a thickness of about 10 μm.

その後、第1図(f)に示すように、ノーンダメツキを
行ないノ・ンダメツキ層9のバンプ電極を形成する。こ
のハンダの厚さは、40〜60μm程度であるO 次に、第1図□□□)に示すように、メッキ用のレジス
ト7を通常の溶剤およびAt −Ni合金層5f!−、
エンチャントにてそれぞれ除去する。
Thereafter, as shown in FIG. 1(f), non-damping is performed to form bump electrodes of the non-damping layer 9. The thickness of this solder is about 40 to 60 μm.Next, as shown in FIG. -,
Remove each with enchantment.

最後に、第1図伍)に示すように、通常340〜350
℃の温度でノーンダメツキ層9を溶解させて、円板状の
バンプ電極を半球状にさせる。
Finally, as shown in Figure 1 5), it is usually 340 to 350
The non-damaged layer 9 is melted at a temperature of .degree. C. to make the disc-shaped bump electrode into a hemispherical shape.

ここで、中間金属層A7−Ni合金層5はフィールド酸
化膜2およびM電極バッド3への密着金属で、中間金属
層Ni 6および銅メッキ層8は、AI!電極パッド3
とノ・ンダ層9との相互拡散を防止する拡散バリヤ層で
ある。ここでは銅メッキ層8を拡散バリヤメッキ層と呼
ぶことにする。
Here, the intermediate metal layer A7-Ni alloy layer 5 is a metal that adheres to the field oxide film 2 and the M electrode pad 3, and the intermediate metal layer Ni 6 and the copper plating layer 8 are made of AI! Electrode pad 3
This is a diffusion barrier layer that prevents mutual diffusion between the oxide layer 9 and the oxide layer 9. Here, the copper plating layer 8 will be referred to as a diffusion barrier plating layer.

第1図の製造方法では、二つの欠点がある。その一つは
拡散バリヤメッキ層8を行う際、下地がNi層6である
ためにNiの表面の酸化物を除去する活性剤で処理を行
う必要がある。この活性剤処理が不充分であると、酸化
物が残り、密着強度に悪影響を与える。また処理時間が
長ずざると、Niがエツチングされ過ぎて、拡散ノくリ
ヤ一層の効果を示さなくなる。
The manufacturing method shown in FIG. 1 has two drawbacks. One of them is that when forming the diffusion barrier plating layer 8, since the underlying layer is the Ni layer 6, it is necessary to perform treatment with an activator to remove oxides on the Ni surface. If this activator treatment is insufficient, oxides remain and adversely affect adhesion strength. Moreover, if the treatment time is not long, Ni will be etched too much and the diffusion effect will not be even greater.

したがって、この活性剤処理は、コントロールが非常に
困難で、製造工程の簡略化の意味でも、行わないのが望
ましい。なお、ノーンダメツキ層9は、拡散バリヤメッ
キ層8の後、連続的に行えるので、活性剤処理を必要と
しない0 もう一つの欠点は、第1図□□□)に示すAt−Ni合
金層5を除去する工程においてノーンダメツキ層9が一
緒にエツチングされてしまう点である。ノ・ンダメツキ
層9がエツチングされると、第1図(h)に示すハンダ
・バンプの球状化処理がうまく行えず、フリップ・チッ
プのボンディング性に悪影響を与えるO また、ハンダメッキ層9のエツチング防止策として、レ
ジストをバンプ電極に覆う方法があるが、バンプ電極の
高さが40μm程度あるため、ホトリンがうまく行えな
い。
Therefore, this activator treatment is very difficult to control, and it is preferable not to perform it in order to simplify the manufacturing process. Note that since the non-damping layer 9 can be formed continuously after the diffusion barrier plating layer 8, activator treatment is not required. Another drawback is that the At-Ni alloy layer 5 shown in FIG. The problem is that the non-damaged layer 9 is etched together in the removal process. If the solder plating layer 9 is etched, the solder bump spheroidization process shown in FIG. As a preventive measure, there is a method of covering the bump electrodes with resist, but since the height of the bump electrodes is about 40 μm, photorining cannot be performed well.

以上は、第1図に示したように、ノ1ンダ・ノ(ンプ電
極の形成法として、 y −Ni −Cu −PI)/
snの金属構成を例示したが、その他の代表的金属構成
として、Ti−Cu−Ni−Pb/Sn、 Cr−Cu
−Ni−Pb/Snがある。
As shown in FIG.
Although the metal configuration of sn is illustrated, other representative metal configurations include Ti-Cu-Ni-Pb/Sn, Cr-Cu
-Ni-Pb/Sn.

これらの例の場合にも下地の蒸着膜Cu上にNiメッキ
を施すが銅(表面の活性剤の処理工程が必要となり%ま
た。 Ti 、 Cu 、 Cr tエツチングする際
に、ハンダメッキ層Pb/snも同時にエツチングされ
、ボンディングの信頼性に悪影響を与える。
In these cases as well, Ni plating is performed on the underlying vapor deposited film Cu, but copper (a surface activator treatment step is required). sn is also etched at the same time, which adversely affects bonding reliability.

また、ハンダボール法あるいは)−ンダデイツプ法の場
合にも、拡散バリヤメッキ層は必要となり、活性処理を
行う必要がある(ただし、これらの方法では、メッキの
電流導通層を除去する際に、)・ンダがエツチングされ
る心配はない)。加えて、ボンディングの信頼性に悪影
響を与える。
In addition, in the case of the solder ball method or )-under dip method, a diffusion barrier plating layer is also required, and activation treatment must be performed (However, in these methods, when removing the current conductive layer of the plating) There is no need to worry about your data being etched). In addition, bonding reliability is adversely affected.

(発明の目的) この発明の目的は、拡散バリヤメッキ層の銅あるいはN
iメッキを行う際、Ptの活性剤処理を必要とせず、製
造工程の簡略化と高信頼性のバリヤ効果を示すとともに
、高歩留りで球状化処理を行うことができ、基板へのフ
リラグチップポンディングの信頼性を高めることのでき
る半導体装置の製造方法を得ることにある。
(Object of the invention) The object of the invention is to
When performing i-plating, there is no need for Pt activator treatment, which simplifies the manufacturing process and provides a highly reliable barrier effect. It also allows for spheroidization treatment with high yield, making it possible to attach free lag chips to the substrate. An object of the present invention is to obtain a method for manufacturing a semiconductor device that can improve the reliability of bonding.

(発明の概要) この発明の要点は、バンプ電極の拡散のバリヤ層にpt
層を設けるとともに、バンプ電極の外側にスズメッキ層
を設けたことにある。
(Summary of the Invention) The main point of this invention is that PT is used in the diffusion barrier layer of the bump electrode.
This is because a tin plating layer is provided on the outside of the bump electrode.

(実施例) 以下、この発明の半導体装置の製造方法の実施例につい
て図面に基づき説明する。第2図(a)〜第2図色)は
その一実施例の工程説明図であり、これらの第2図(a
)〜第2図(h)において、第1図(a)〜第1図(h
)と同一部分には同一符号を付して述べることにする。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor device of the present invention will be described based on the drawings. Figures 2(a) to 2(color) are process explanatory diagrams of one example.
) to Fig. 2(h), Fig. 1(a) to Fig. 1(h)
) The same parts will be described with the same reference numerals.

まず、第2図(a)に示すように半導体基板l上に形成
されたフィールド酸化膜2の上のバンプを形成すべき個
所に、M電極パッド3を形成し、さらにCVD法にてパ
シベーション膜4を成長させた後1M電極パッド3上に
スルー・ホールを開孔するO 次に、第2図(b)に示すように、半導体基板1全面に
メッキの電流導通層としてAI!層10を蒸着する。
First, as shown in FIG. 2(a), an M electrode pad 3 is formed on a field oxide film 2 formed on a semiconductor substrate 1 at a location where a bump is to be formed, and then a passivation film is formed using a CVD method. After growing the 1M electrode pad 3, a through hole is formed on the electrode pad 3.Next, as shown in FIG. Deposit layer 10.

次に、第2図(0)に示すように、レジストにてパター
ニングを行ってからTi 11− Pt 12の蒸着を
行ない、その後アセトンのような溶剤でレジストを溶解
させて、バンプ電極が形成される個所にTi 11− 
Pt 12のパターニングを行う。
Next, as shown in FIG. 2(0), after patterning with resist, Ti 11-Pt 12 is deposited, and then the resist is dissolved with a solvent such as acetone to form bump electrodes. Ti 11-
Perform Pt 12 patterning.

次に、第2図(d)に示すように通常のホトリソ工程に
よりレジスト7にてバンプ電極が形成される個所以外を
覆う。
Next, as shown in FIG. 2(d), a resist 7 is used to cover the area other than the area where the bump electrode will be formed using a normal photolithography process.

次に第2図(e)に示すように、M層10を電流の導通
層として、電気メツキ法により、拡散バリヤメッキ層8
aをメッキする。この拡散バリヤメッキ層8aは、銅あ
るいは、ニッケルでもよい。この拡散バリヤメッキ層8
aの厚みとしては、通常10μm程度の厚さである。
Next, as shown in FIG. 2(e), using the M layer 10 as a current conductive layer, a diffusion barrier plating layer 8 is formed by electroplating.
Plate a. This diffusion barrier plating layer 8a may be copper or nickel. This diffusion barrier plating layer 8
The thickness of a is usually about 10 μm.

次に、第2図(f)に示すように、全面に鉛メッキ13
を行ない連続してスズメッキ14を行う。鉛メッキ13
とスズメッキ14の厚さの比は、要求されるハンダ組成
から決定される。一般にはハンダの組成としては、Pb
/5n=90/1oのものが使われる。
Next, as shown in FIG. 2(f), the entire surface is plated with lead 13.
Then, tin plating 14 is performed continuously. Lead plating 13
The ratio between the thickness of the tin plating 14 and the thickness of the tin plating 14 is determined from the required solder composition. Generally, the composition of solder is Pb
/5n=90/1o is used.

次に、第2図□□□)に示すように、メッキ用のレジス
ト7を通常の溶剤、たとえばアセトンにて途去した後、
電流導通層の純M層10を半導体工業に使われている通
常のMのエッチャント、すなわちりん酸、硝酸、氷酢酸
、水の混合液にて、エツチングを行う。バンプ電極の表
面は、スズメッキ14で覆われており、スズメッキ14
は、シん酸、硝酸、氷酢酸、水の混合エッチャントでは
、侵されない。
Next, as shown in Fig. 2 □□□), after removing the plating resist 7 with an ordinary solvent, such as acetone,
The pure M layer 10 of the current conducting layer is etched with a common M etchant used in the semiconductor industry, ie, a mixture of phosphoric acid, nitric acid, glacial acetic acid, and water. The surface of the bump electrode is covered with tin plating 14.
is not attacked by a mixed etchant of cynic acid, nitric acid, glacial acetic acid, and water.

次に、第2図色)に示すように、通常340〜350℃
の温度で、それぞれ鉛メッキ層13およびスズメッキ層
14を溶解させてハンダの合金化処理を行う。
Next, as shown in Figure 2 (color), the temperature is usually 340 to 350℃.
The lead plating layer 13 and the tin plating layer 14 are respectively melted and alloyed with solder at a temperature of .

この発明では、AJ!層10がメッキの電流導通層、T
i層11がフィールド酸化膜2およびM電極パッド3へ
の密着金属、Pt層12がM電極パッド3とハンダメッ
キ層9との拡散バリヤメッキ層、および銅メッキあるい
は、Niメッキが拡散バリヤメッキ層の役割を果たす。
In this invention, AJ! Layer 10 is a plated current conducting layer, T
The i layer 11 serves as a metal adhesion to the field oxide film 2 and the M electrode pad 3, the Pt layer 12 serves as a diffusion barrier plating layer between the M electrode pad 3 and the solder plating layer 9, and the copper plating or Ni plating serves as the diffusion barrier plating layer. fulfill.

(発明の効果) この発明は1以上説明したように、拡散バリヤメッキ層
にpt層を設けたので、拡散バリヤメッキ層の銅あるい
は、Nlメッキを行う際、Ptの活性剤処理を必要とし
ない。
(Effects of the Invention) As described above, in the present invention, since the PT layer is provided in the diffusion barrier plating layer, Pt activator treatment is not required when performing copper or Nl plating for the diffusion barrier plating layer.

また、バング電極のメッキに合金ハンダメッキを使わな
いで、鉛メッキを施した後、連続的にスズメッキを行な
い、バンプ電極の外側をスズで覆うため、電流導通層を
エツチングする際に、通常のりん酸を主体とするエッチ
ャントでもバンプ電極を侵されることなく、電流導通層
をエツチングできる。したがって、活性剤処理が不要に
なることで製造工程の簡略化、高信頼性のバリヤ効果を
示すことが可能となるとともに、電流導通層をエツチン
グする際にバンプ電極が侵されないため、高歩留りで球
状化処理が行なえ、基板へのフリップチップポンデイン
ダの信頼性を高められる。
In addition, instead of using alloy solder plating for plating the bump electrode, tin plating is performed continuously after lead plating to cover the outside of the bump electrode with tin, so when etching the current conductive layer, it is difficult to etch the current conductive layer. Even with an etchant mainly composed of phosphoric acid, the current conducting layer can be etched without damaging the bump electrodes. Therefore, by eliminating the need for activator treatment, it is possible to simplify the manufacturing process and provide a highly reliable barrier effect, and the bump electrodes are not attacked when etching the current conducting layer, resulting in a high yield. Spheroidization processing can be performed, increasing the reliability of flip-chip bonding to substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないし第1図(h)はそれぞれ従来のバン
プ電極形成法の工程説明図、第2図(a)ないし第2図
(h)はそれぞれこの発明の半導体装置の製造方法の一
実施例の工程説明図である。 1・・・半導体基板、2・・・フィールド酸化膜、3・
・・アルミ電極パッド、4・・・パシベーション膜、7
・・・レジスト% 8a・・・拡散バリアメッキ層、9
・・・ハンダメッキ層、10・・・アルミ層、11・・
・Ti層、12・・・pt層、13・・・鉛メッキ層、
14・・・スズメッキ層。
1(a) to 1(h) are process explanatory diagrams of the conventional bump electrode forming method, respectively, and FIGS. 2(a) to 2(h) are respectively illustrations of the process of manufacturing a semiconductor device of the present invention. It is a process explanatory diagram of one Example. 1... Semiconductor substrate, 2... Field oxide film, 3...
...Aluminum electrode pad, 4...Passivation film, 7
...Resist% 8a...Diffusion barrier plating layer, 9
...Solder plating layer, 10...Aluminum layer, 11...
・Ti layer, 12... pt layer, 13... lead plating layer,
14...Tin plating layer.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に突起電極が形成される個所以外を絶縁膜
で覆う工程と、上記半導体基板上の全面にメッキの電流
導通層を蒸着する工程と、上記突起電極が形成される個
所にTiおよびptを順次蒸着によシ被着させる工程と
、上記電流導通層に通電して上記pt上に銅あるいはニ
ッケルの拡散バリヤメッキ層を形成する工程と、この拡
散バリヤメッキ層上に鉛メッキを行う工程と、上記鉛メ
ツキ上にスズメッキを行う工程とよりなる半導体装置の
製造方法。
A process of covering the semiconductor substrate with an insulating film other than the area where the protruding electrode is formed, a process of depositing a plated current conductive layer on the entire surface of the semiconductor substrate, and a process of depositing Ti and PT on the area where the protruding electrode is to be formed. a step of sequentially depositing the PTFE by vapor deposition; a step of applying current to the current conducting layer to form a diffusion barrier plating layer of copper or nickel on the PT; and a step of plating lead on the diffusion barrier plating layer; A method for manufacturing a semiconductor device comprising the step of plating tin on the lead plating.
JP59080049A 1984-04-23 1984-04-23 Manufacture of semiconductor device Granted JPS60224248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59080049A JPS60224248A (en) 1984-04-23 1984-04-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59080049A JPS60224248A (en) 1984-04-23 1984-04-23 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60224248A true JPS60224248A (en) 1985-11-08
JPH0129064B2 JPH0129064B2 (en) 1989-06-07

Family

ID=13707382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59080049A Granted JPS60224248A (en) 1984-04-23 1984-04-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60224248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003465A1 (en) * 1995-07-12 1997-01-30 Hitachi, Ltd. Semiconductor pellet, method of its packaging, and bump electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847273A (en) * 1971-10-15 1973-07-05
JPS51117574A (en) * 1975-04-08 1976-10-15 Seiko Epson Corp Semiconductor equipment
JPS5524414A (en) * 1978-08-09 1980-02-21 Hitachi Ltd Electrode forming process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847273A (en) * 1971-10-15 1973-07-05
JPS51117574A (en) * 1975-04-08 1976-10-15 Seiko Epson Corp Semiconductor equipment
JPS5524414A (en) * 1978-08-09 1980-02-21 Hitachi Ltd Electrode forming process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003465A1 (en) * 1995-07-12 1997-01-30 Hitachi, Ltd. Semiconductor pellet, method of its packaging, and bump electrode

Also Published As

Publication number Publication date
JPH0129064B2 (en) 1989-06-07

Similar Documents

Publication Publication Date Title
US3952404A (en) Beam lead formation method
US5492235A (en) Process for single mask C4 solder bump fabrication
US3761309A (en) Ctor components into housings method of producing soft solderable contacts for installing semicondu
US4182781A (en) Low cost method for forming elevated metal bumps on integrated circuit bodies employing an aluminum/palladium metallization base for electroless plating
US5208186A (en) Process for reflow bonding of bumps in IC devices
EP0382080A2 (en) Bump structure for reflow bonding of IC devices
KR20010029097A (en) Redistributed Wafer Level Chip Size Package And Method For Manufacturing The Same
JPH05335313A (en) Manufacture of indium bump
JPS62145758A (en) Method for protecting copper bonding pad from oxidation using palladium
JPS6112047A (en) Manufacture of semiconductor device
JPS60224248A (en) Manufacture of semiconductor device
JP3446021B2 (en) Bump electrode structure of semiconductor device and method for forming the same
JPH0697663B2 (en) Method for manufacturing semiconductor device
JPS636850A (en) Manufacture of electronic component
JP2730492B2 (en) Semiconductor device
JPH02224336A (en) Manufacture of semiconductor device
JPS63122248A (en) Manufacture of semiconductor device
JPS6329940A (en) Manufacture of semiconductor device
KR960011857B1 (en) Semiconductor device and the manufacturing method
CN1103119C (en) Process for single mask C4 solder bump fabrication
JPH03190240A (en) Manufacture of semiconductor device
JP3308882B2 (en) Method for manufacturing electrode structure of semiconductor device
JP2839513B2 (en) Method of forming bump
JPH04278542A (en) Semiconductor device and manufacture thereof
JPH0590271A (en) Bump forming method