JPH05218042A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05218042A
JPH05218042A JP4019855A JP1985592A JPH05218042A JP H05218042 A JPH05218042 A JP H05218042A JP 4019855 A JP4019855 A JP 4019855A JP 1985592 A JP1985592 A JP 1985592A JP H05218042 A JPH05218042 A JP H05218042A
Authority
JP
Japan
Prior art keywords
semiconductor device
bonding pad
semiconductor
region
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4019855A
Other languages
Japanese (ja)
Other versions
JP3285919B2 (en
Inventor
Hiroshi Yamada
浩 山田
Masayuki Saito
雅之 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP01985592A priority Critical patent/JP3285919B2/en
Publication of JPH05218042A publication Critical patent/JPH05218042A/en
Application granted granted Critical
Publication of JP3285919B2 publication Critical patent/JP3285919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To avoid damage, rupture, etc., of an electrode bump due to a later thermal stress even when a flip chip is connected to a mounting board having different thermal expansion coefficients by disposing a bonding pad on an insulating layer of a semiconductor device region and providing the bump thereon. CONSTITUTION:The semiconductor device comprises a semiconductor substrate 9', a semiconductor element region 9a formed on its main surface, first bonding pads 8 arranged on the outer periphery of the region 9a, and an insulating film 10 covering the surface of the region 9a. Further, the device comprises second bonding pads 11 formed inside from the pads 8 on the film 10, bump electrodes 13 provided on the surface of the pads 11, and wirings 12 connected at one ends to the pads 8 and at the other to the pads 11. The area of the pad 11 is formed larger than that of the pad 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置に係り、特
に半導体装置の半導体素子領域上にバンプ電極が設けら
れて成る半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device having bump electrodes provided on a semiconductor element region of the semiconductor device.

【0002】[0002]

【従来の技術】周知のように、半導体装置は高集積化の
方向にあるとともに、一方では、高集積化された半導体
装置を高密度に実装して、回路のコンパクト化ないし機
能の大容量化も図られている。たとえば半導体メモリ装
置を搭載するメモリカードにおいて、半導体メモリ容量
を増加させると同時に、基板への半導体装置の高密度実
装が試みられている。この半導体装置の高密度実装手段
として、パッケージ化された半導体素子(装置)を用い
る場合、製品の規格により要求されるカード厚の制限か
ら、表面実装部品が使われる。
2. Description of the Related Art As is well known, semiconductor devices are in the direction of high integration, and on the other hand, highly integrated semiconductor devices are mounted at high density to make circuits compact and increase the capacity of functions. Is also planned. For example, in a memory card equipped with a semiconductor memory device, an attempt has been made to increase the semiconductor memory capacity and simultaneously mount the semiconductor device on a substrate at a high density. When a packaged semiconductor element (device) is used as a high-density mounting means for this semiconductor device, surface mount components are used because of the card thickness limitation required by the product standard.

【0003】しかして、前記表面実装部品の場合、その
アウターリードの構成によって、ガルウィング型と、よ
り高密度実装を目的としたJリード型に大別できるが、
パッケージ部品を用いる点で高密度化には限界がある。
そこで表面実装技術より高密度化が可能な、フリップチ
ップ接続方法が用いられる。つまり、フリップチップ接
続方法(フリップチップ実装技術)によれば、半導体装
置(半導体素子)を基板面に実装する場合、パッケージ
部品を用いる場合と比較して1/2 〜1/3 程度の実装面積
で実装できるからである。
However, in the case of the above-mentioned surface mount component, it can be roughly classified into a gull wing type and a J lead type for the purpose of higher density mounting, depending on the constitution of the outer lead.
There is a limit to the high density in that package parts are used.
Therefore, a flip chip connection method is used, which enables higher density than surface mounting technology. In other words, according to the flip-chip connection method (flip-chip mounting technology), when mounting a semiconductor device (semiconductor element) on the substrate surface, the mounting area is about 1/2 to 1/3 of that when using package components. It can be implemented with.

【0004】そして、前記実装用基板に対するフリップ
チップ接続は、図14,図15および図16にそれぞれ断面的
に示すごとく行われている。図14および図15はフリップ
チップ接続の構造を拡大して示すもので、1は半導体装
置2面にパッシベーション膜3から露出して予め配置さ
れているボンディングパッド、4は前記ボンディングパ
ッド1の露出面上に形成されたバリアメタル層、5は前
記バリアメタル層4面上に電気メッキ法,ディップ法,
蒸着法などで形成された半田から成るストレートウォー
ル状もしくは太鼓型状などのバンプ電極である。一方、
6は実装用基板(回路基板)7面にパッシベーション膜
3′から露出して予め配置されている端子電極、4′は
前記端子電極6の露出面上に形成されたバリアメタル層
である。しかして、前記半導体装置2の突起状バンプ電
極5端面を、実装用基板7面のバリアメタル層4′面に
位置合わせ・対接させて配置した後、前記突起状バンプ
電極5をリフローさせることによって、電気的および機
械的な接続が行われている。 図16は前記により実装用
基板7に対して半導体装置2をフリップチップ接続した
ときの構造を断面的に示したもので、半導体基板2′の
主面に形成された半導体素子領域2aに対応して半導体素
子領域2aの外周囲に配列されたボンディングパッド1面
に対応した位置において、実装用基板7面に突起状バン
プ電極5を介して接続した構成を成している。つまり、
電極バンプ5を介しての実装用基板7に対する半導体装
置2の接続(実装)は、半導体素子領域2aよりも外側で
成されている。なお、図17は前記半導体装置2のボンデ
ィングパッド1の配置状態を平面的に示すものである。
The flip-chip connection to the mounting board is performed as shown in cross sections in FIGS. 14, 15 and 16. 14 and 15 are enlarged views showing the structure of the flip chip connection, in which 1 is a bonding pad which is pre-disposed on the surface of the semiconductor device 2 from the passivation film 3 and 4 is an exposed surface of the bonding pad 1. The barrier metal layer 5 formed on the surface of the barrier metal layer 4 is formed by electroplating, dipping,
The bump electrode is a straight wall-shaped or drum-shaped bump electrode made of solder formed by a vapor deposition method or the like. on the other hand,
Reference numeral 6 denotes a terminal electrode that is previously arranged on the surface of the mounting substrate (circuit board) 7 so as to be exposed from the passivation film 3'and 4'denotes a barrier metal layer formed on the exposed surface of the terminal electrode 6. Then, after the end face of the bump electrode 5 of the semiconductor device 2 is aligned and placed in contact with the barrier metal layer 4'of the mounting substrate 7, the bump electrode 5 is reflowed. Provide electrical and mechanical connections. FIG. 16 is a sectional view showing a structure when the semiconductor device 2 is flip-chip connected to the mounting substrate 7 as described above, and corresponds to the semiconductor element region 2a formed on the main surface of the semiconductor substrate 2 '. In the position corresponding to the surface of the bonding pad 1 arranged around the outer periphery of the semiconductor element region 2a, the surface of the mounting substrate 7 is connected through the bump-shaped bump electrodes 5. That is,
The connection (mounting) of the semiconductor device 2 to the mounting substrate 7 via the electrode bumps 5 is made outside the semiconductor element region 2a. Note that FIG. 17 is a plan view showing an arrangement state of the bonding pads 1 of the semiconductor device 2.

【0005】ところで、この種のフリップチップ接続
(実装)の場合は、半導体装置(半導体基板)2と実装
用基板7の熱膨張係数の相違によって発生する応力がバ
ンプ電極5に集中して、バンプ電極5が破損され易いと
いう問題がある。すなわち、実装用基板7とこれにフリ
ップチップ接続(ないし実装)した半導体装置2との熱
膨張性に起因して、半導体装置2の動作に伴う発熱およ
び使用動作温度範囲内で互いに膨張するが、それらの熱
膨張係数の相違から、これらの接続一体化に関与してい
る電極バンプ5の接続部に集中的に熱ストレスが加わる
ことになる。そして、この熱ストレスの加わり方は、電
極バンプ5間が離隔している程大きくなる。こうした熱
膨張係数の相違による電極バンプ5の破損を防止するた
め、実装した半導体装置2と実装用基板7面とが成す空
間部を樹脂で充填することも試みられている。この樹脂
充填手段により、前記熱膨張係数の相違に起因する不都
合(故障)は、ある程度減少されるが実用上十分満足し
得るものではない。特に、半導体装置2と実装用基板7
との熱膨張係数が大きく相違場合は、実装用基板7と充
填樹脂との界面に応力が集中して、電極バンプ5の破壊
を招来し易いので、所要の機能を失する恐れがあるなど
信頼性の点で問題がある。この点、たとえばシリコンウ
エハを実装用基板7とし、半導体装置(半導体素子)2
を配置する手段(Chip On Wafer)が好ましいといえる
が、製造工程の煩雑さおよび製造コストなどの面で問題
がある。
By the way, in the case of this type of flip-chip connection (mounting), the stress generated by the difference in the thermal expansion coefficient between the semiconductor device (semiconductor substrate) 2 and the mounting substrate 7 is concentrated on the bump electrode 5, and the bump There is a problem that the electrode 5 is easily damaged. That is, due to the thermal expansion of the mounting substrate 7 and the semiconductor device 2 flip-chip bonded (or mounted) to the mounting substrate 7, the semiconductor substrate 2 generates heat and expands with each other within the operating temperature range. Due to the difference in the coefficient of thermal expansion, thermal stress is intensively applied to the connection portions of the electrode bumps 5 involved in the connection integration. The way the thermal stress is applied increases as the distance between the electrode bumps 5 increases. In order to prevent the electrode bumps 5 from being damaged due to the difference in the thermal expansion coefficient, it has been attempted to fill the space between the mounted semiconductor device 2 and the surface of the mounting substrate 7 with resin. With this resin filling means, the inconvenience (fault) due to the difference in the thermal expansion coefficient is reduced to some extent, but it is not satisfactory in practice. In particular, the semiconductor device 2 and the mounting substrate 7
When the coefficient of thermal expansion is greatly different from that of the mounting substrate 7, stress concentrates on the interface between the mounting substrate 7 and the filling resin, and the electrode bumps 5 are likely to be broken. There is a problem in terms of sex. In this respect, for example, a silicon wafer is used as the mounting substrate 7, and the semiconductor device (semiconductor element) 2
Although it can be said that a means for arranging (Chip On Wafer) is preferable, there are problems in terms of complexity of manufacturing process and manufacturing cost.

【0006】[0006]

【発明が解決しようとする課題】上記したように、たと
えばメモリカードの構成において、半導体装置の実装を
フリップチップ実装技術(接続技術)で使えば、高密度
実装が可能であるなど多くの利点があるものの、熱膨張
係数の相違に起因する電極バンプ5の破損性,機能的な
信頼性などに問題がある。このような電極バンプ5の破
損性,換言するとバンプ接続部分における切断不良の発
生を解消するため、電極バンプ5の構造を熱ストレスに
対して耐性ある構造とすることも試みられている。たと
えば、ポリイミド樹脂フイルムを挟んでバンプを積層型
に構成(電子通信情報学会技術報告CPM-19〜24(1987)、
あるいはバンプの形状を鼓型に構成することが知られて
いる。 しかし、前記のように電極バンプを積層型に構
成する場合は、いわゆるバンプシートの製作を要するな
ど形成が煩雑になり、コストアップとなるばかりでな
く、積層に伴う接続箇所の増加で電気的な接続の信頼性
にも問題がある。また、電極バンプを鼓型に構成する場
合は、電極バンプ5を溶融させ実装用基板7の端子電極
4′に一旦接続させた状態で、半導体装置2と実装用基
板7との距離を適度に引離してバンプを鼓型化するた
め、前記電極バンプを形成する半田量などに応じて引離
しが適正に行われないと、接続不良を招いたり、あるい
は所要の鼓型を構成し得ないという問題がある。
As described above, in the structure of a memory card, for example, if the semiconductor device is mounted by flip-chip mounting technology (connection technology), there are many advantages such as high-density mounting. However, there are problems in breakage of the electrode bumps 5 due to the difference in thermal expansion coefficient, functional reliability, and the like. In order to eliminate the damage of the electrode bumps 5, in other words, the occurrence of defective cutting at the bump connection portion, attempts have been made to make the structure of the electrode bumps 5 resistant to thermal stress. For example, a bump is formed in a laminated type with a polyimide resin film sandwiched (Technical Report of the Institute of Electronics, Information and Communication Engineers CPM-19 to 24 (1987),
Alternatively, it is known that the bumps are formed in a drum shape. However, when the electrode bumps are laminated as described above, the formation of a so-called bump sheet becomes complicated, which not only increases the cost but also increases the number of connection points due to the lamination, which leads to an electrical problem. There is also a problem with the reliability of the connection. Further, when the electrode bumps are formed in a drum shape, the distance between the semiconductor device 2 and the mounting substrate 7 is appropriately set with the electrode bumps 5 melted and once connected to the terminal electrodes 4'of the mounting substrate 7. In order to make the bumps have a drum-shape by separating them, it is said that if the separation is not properly performed according to the amount of solder forming the electrode bumps, connection failure may occur or a required drum-shape cannot be formed. There's a problem.

【0007】一方、前記半導体装置のフリップチップ接
続ないし実装は、いわゆるフェースダウン実装で、半導
体装置2の動作に伴い発熱する素子領域面が実装用基板
7面に対向するため、その発熱量が半導体装置2に蓄積
され機能の低下もしくは故障を招来し易いという問題も
ある。したがって、前記フェースダウンに実装した構造
において、たとえば半導体装置2外周面を可及的に露出
させ放熱し易いようにすることが望まれる。このような
放熱対策として半導体装置2の裏面に放熱フィンを配置
する手段もあるが、薄形化が大幅に損なわれるという不
都合がある。また、前記電極バンプ5を、たとえばCuな
ど熱伝導性のよい金属を中心と軸とし、その周面に半田
層を配置して成る2層構造にして、中心軸をなす熱伝導
性のよい金属によって放熱させることも試みられている
が、接続強度および電気的な接続性(抵抗増加など)の
点で、信頼性に欠けている。
On the other hand, the flip-chip connection or mounting of the semiconductor device is so-called face-down mounting, and since the element region surface which generates heat due to the operation of the semiconductor device 2 faces the mounting substrate 7 surface, the amount of heat generation is semiconductor. There is also a problem that the function is likely to be accumulated in the device 2 and the function may be deteriorated or a failure may occur. Therefore, in the face-down mounted structure, for example, it is desirable to expose the outer peripheral surface of the semiconductor device 2 as much as possible to facilitate heat dissipation. As a measure against such heat dissipation, there is a means for disposing a heat dissipation fin on the back surface of the semiconductor device 2, but there is a disadvantage that the thinning is significantly impaired. Further, the electrode bump 5 has a two-layer structure in which a metal having good thermal conductivity such as Cu is used as a center and a solder layer is arranged on a peripheral surface of the metal, and a metal having a good thermal conductivity forming a central axis is formed. Although it has been attempted to dissipate heat by means of heat dissipation, it lacks reliability in terms of connection strength and electrical connectivity (increase in resistance, etc.).

【0008】本発明は、上記事情に対処してなされたも
ので、半導体装置の熱膨張係数と熱膨張係数が異なる実
装用基板に、フリップチップ接続(実装)した場合で
も、その後の熱ストレスにより電極バンプ部での破損,
破断現象などが全面的に回避され、かつすぐれた放熱性
を呈し、信頼性の高い機能を保持・発揮する半導体装置
の提供を目的とする。
The present invention has been made in consideration of the above circumstances, and even when flip-chip connection (mounting) is performed on a mounting substrate having a thermal expansion coefficient different from that of a semiconductor device, the subsequent thermal stress causes Damage at the electrode bumps,
An object of the present invention is to provide a semiconductor device in which breakage phenomenon and the like are completely avoided, excellent heat dissipation is exhibited, and highly reliable functions are retained and exhibited.

【0009】[0009]

【課題を解決するための手段】本発明の半導体装置は、
半導体基板と、前記半導体基板の主面に形成された半導
体素子領域と、前記各半導体素子領域に対応して半導体
素子領域の外周囲に配列された第1のボンディングパッ
ドと、前記第1のボンディングパッド面を露出させ少な
くとも半導体素子領域面を被覆する絶縁膜と、前記絶縁
膜上に第1のボンディングパッドと対応して第1のボン
ディングパッドよりも内側に形設された第2のボンディ
ングパッドと、前記第2のボンディングパッド面上に設
けられたバンプ電極と、前記第1のボンディングパッド
に一端が接続し第2のボンディングパッドに他端が接続
して絶縁膜領域に配設された配線とを具備して成り、前
記第2のボンディングパッドの面積が、第1のボンディ
ングパッドの面積よりも大きく設定されていることを特
徴とする。
The semiconductor device of the present invention comprises:
A semiconductor substrate; a semiconductor element region formed on a main surface of the semiconductor substrate; a first bonding pad arranged on the outer periphery of the semiconductor element region corresponding to each semiconductor element region; and a first bonding An insulating film that exposes the pad surface and covers at least the semiconductor element region surface; and a second bonding pad formed on the insulating film inside the first bonding pad corresponding to the first bonding pad. A bump electrode provided on the surface of the second bonding pad, and a wiring arranged in the insulating film region with one end connected to the first bonding pad and the other end connected to the second bonding pad. And the area of the second bonding pad is set to be larger than the area of the first bonding pad.

【0010】上記の構成において、絶縁膜上に形設され
た第2のボンディングパッド数は、第1のボンディング
パッド数に対応しており、第1のボンディングパッドが
配置された領域よりも内側領域に、任意のピッチや位置
に形設・配置されるが、その形設・配置はたとえば縦横
複数列など格子状の規則的な配置が望ましい。また、こ
の格子状の配置において、対角線上の角部(再外周の角
部)を除外した形(角部を第2のボンディングパッドの
配置禁止領域)としておくことが好ましい。
In the above structure, the number of the second bonding pads formed on the insulating film corresponds to the number of the first bonding pads, and the area inside the area where the first bonding pads are arranged. In addition, it is formed / arranged at an arbitrary pitch or position, but it is desirable that the shape / arrangement be a regular grid-like arrangement such as vertical and horizontal plural rows. In addition, in this lattice-shaped arrangement, it is preferable that the diagonal corners (re-peripheral corners) are excluded (the corners are the second bonding pad placement prohibited areas).

【0011】[0011]

【作用】本発明に係る半導体装置においては、図1に要
部構成例を断面的に示すごとく、第1のボンディングパ
ッド8が配置された領域よりも内側で、かつ所要の半導
体素子領域9aが形成されている領域面の絶縁層 10b上
に、露出して第2のボンディングパッド11が配置され、
これらは前記絶縁層 10bおよび層間絶縁層 10aを介し
て、たとえば多層的に配設された配線12で接続されてい
る。つまり、実装用基板7面にフェースダウンで実装・
接続される電極バンプ13は、半導体基板9′の半導体素
子領域9aが形成されている領域面上に配置された構成を
成しているため、実装用基板7面に対する接続に関与す
る領域面(接続に要する実効面積)が低減された形とな
る。したがって、半導体装置9に加わる実効的な熱膨張
も小さくなるので、実装用基板7および半導体装置9の
熱膨張係数の相違に起因する電極バンプ13に加わるスト
レスも軽減され、もって熱ストレスに対する信頼性の向
上が図られる。しかも、この構成では、半導体装置9の
半導体素子9a領域での発熱は、前記第2のボンディング
パッド11面上の電極バンプ13を介して容易に実装用基板
7側へ放熱されることになる。
In the semiconductor device according to the present invention, as shown in the cross-sectional view of the main part configuration example in FIG. 1, the required semiconductor element region 9a is located inside the region where the first bonding pad 8 is arranged. The exposed second bonding pad 11 is disposed on the insulating layer 10b on the formed region surface,
These are connected via the insulating layer 10b and the interlayer insulating layer 10a, for example, by a wiring 12 arranged in multiple layers. In other words, mounting face down on the mounting board 7
Since the electrode bumps 13 to be connected are arranged on the area surface of the semiconductor substrate 9'on which the semiconductor element area 9a is formed, the area surface (the area surface involved in the connection to the mounting board 7 surface ( The effective area required for connection is reduced. Therefore, since the effective thermal expansion applied to the semiconductor device 9 is also reduced, the stress applied to the electrode bumps 13 due to the difference in the thermal expansion coefficient between the mounting substrate 7 and the semiconductor device 9 is also reduced, and the reliability against the thermal stress is also reduced. Is improved. Moreover, in this configuration, heat generated in the semiconductor element 9a region of the semiconductor device 9 is easily dissipated to the mounting substrate 7 side through the electrode bumps 13 on the surface of the second bonding pad 11.

【0012】また、前記第2のボンディングパッド11
は、それぞれ面積が、第1のボンディングパッド8の面
積よりも大きく設定されているため、電極バンプ13も比
較的大きく形成し得ることになるので、フリップ接続
(実装)時の位置合わせを容易に成し得るとともに、接
続強度の改善も図り得る。
Further, the second bonding pad 11
Since the area of each is set to be larger than the area of the first bonding pad 8, the electrode bumps 13 can be formed to be relatively large, which facilitates alignment during flip connection (mounting). It can be achieved and the connection strength can be improved.

【0013】さらに、前記第2のボンディングパッド11
を、対角線上の角部を除外して格子状に配置した構成と
した場合は、実装用基板7面にフェースダウンで実装・
接続した際、その実装・接続部(電極バンプ13の接続
部)に、熱サイクルストレスが加わっても、実装用基板
7および半導体装置9間の変位量が最大となる(したが
って熱ストレスが最も加わる)対角線上の角部に電極バ
ンプ13が存在しないため、全体的にほぼ一様な応力が電
極バンプ13に加わることになって、接続部の信頼性も損
なわれることがなくなる。
Further, the second bonding pad 11
, Is arranged in a lattice pattern excluding the corners on the diagonal line, it is mounted face down on the surface of the mounting substrate 7.
Upon connection, even if thermal cycle stress is applied to the mounting / connecting portion (connection portion of the electrode bump 13), the amount of displacement between the mounting substrate 7 and the semiconductor device 9 is maximized (hence, thermal stress is applied most). ) Since the electrode bumps 13 do not exist at the corners on the diagonal line, a substantially uniform stress is applied to the electrode bumps 13 as a whole, and the reliability of the connection portion is not impaired.

【0014】[0014]

【実施例】以下図2〜図12、および図13を参照して本発
明の実施例を説明する。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 12 and 13.

【0015】図2は本発明に係る半導体装置9の構成例
を平面的に示したもので、9′は半導体基板、9aは前記
半導体基板9′面に形設された半導体素子領域、8は前
記半導体基板9′面の半導体素子領域9aが形設された領
域の外側に配置された第1のボンディングパッド、13は
前記半導体素子領域9a面上に配線12を備えた図示されて
いない絶縁層を介して表面に設けられた第2のボンディ
ングパッド11面上に積層して配置された電極バンプであ
る。そして、この図からも分かるように、前記第1のボ
ンディングパッド8は第2のボンディングパッド11にそ
れぞれ対応しており、前記絶縁層に単層もしくは多層的
に絶縁して配置された配線12によって電気的に接続した
構成を成している。
FIG. 2 is a plan view showing a structural example of a semiconductor device 9 according to the present invention. 9'is a semiconductor substrate, 9a is a semiconductor element region formed on the surface of the semiconductor substrate 9 ', and 8 is a semiconductor element region. A first bonding pad, which is arranged outside the region where the semiconductor element region 9a is formed on the surface of the semiconductor substrate 9 ', 13 is an insulating layer (not shown) having wirings 12 on the surface of the semiconductor element region 9a. The electrode bumps are laminated and arranged on the surface of the second bonding pad 11 provided on the surface of the electrode bump. As can be seen from this figure, the first bonding pads 8 correspond to the second bonding pads 11, respectively, and are formed by the wirings 12 arranged in the insulating layer in a single-layer or multi-layer insulation manner. It is configured to be electrically connected.

【0016】次にこのような構成を成す半導体装置9の
製造方法について、その実施態様を断面的に示す図3〜
図11を参照して説明する。
Next, with respect to a method of manufacturing the semiconductor device 9 having such a structure, FIG.
This will be described with reference to FIG.

【0017】先ず、所要の半導体領域9aが所定面に形設
された半導体基板9′を用意し、前記半導体領域9aの各
半導体素子を接続する所要の配線,半導体領域9aの外周
部への対応する第1ボンディングパッド8形成,パッシ
ベーション膜14の形成を行う。その後、前記パッシベー
ション膜14上に、たとえばポリイミド前駆体 UR-3140
(商品名,東レ製)をスピンコートし、選択露光,現像
液 DV-505 (商品名,東レ製)による現像処理を施し
て、前記第1ボンディングパッド8面を開口・露出させ
てから、 400℃にて加熱しポリイミド前駆体 UR-3140膜
をイミド化させて第1の絶縁層 10aを形成する(図
3)。
First, a semiconductor substrate 9'on which a required semiconductor region 9a is formed on a predetermined surface is prepared, and required wiring for connecting each semiconductor element in the semiconductor region 9a and correspondence to the outer peripheral portion of the semiconductor region 9a are prepared. Then, the first bonding pad 8 and the passivation film 14 are formed. Then, on the passivation film 14, for example, a polyimide precursor UR-3140.
After spin-coating (trade name, manufactured by Toray), selective exposure, and developing treatment with a developing solution DV-505 (trade name, manufactured by Toray) to expose and expose the first bonding pad 8 surface, 400 The polyimide precursor UR-3140 film is heated at ℃ to imidize to form the first insulating layer 10a (FIG. 3).

【0018】次に、前記形成した第1の絶縁層 10a面上
に、たとえば蒸着法によって Al/Ti層を全面的に被着・
形成してから、この Al/Ti層上にエッチングレジスト O
FPR-800 (商品名,東京応化製)をスピンコートし、プ
リベーク,選択露光,現像処理を施して、前記第1ボン
ディングパッド8に接続するエッチングレジストパター
ンを形成する。こうして、所要のエッチングレジストパ
ターンを形成した後、リン酸/酢酸/硝酸の混合溶液で
Al層を、またEDTA/NH3 / H2 O2 でTi層を順次エッチ
ングしてから、エッチングレジストを剥離・除去して配
線12を形成する(図4)。
Next, an Al / Ti layer is entirely deposited on the surface of the formed first insulating layer 10a by, for example, a vapor deposition method.
After formation, etching resist O is formed on this Al / Ti layer.
FPR-800 (trade name, manufactured by Tokyo Ohka Co., Ltd.) is spin-coated, pre-baked, selectively exposed, and developed to form an etching resist pattern connected to the first bonding pad 8. After forming the required etching resist pattern in this way, use a mixed solution of phosphoric acid / acetic acid / nitric acid.
The Al layer and the Ti layer are sequentially etched with EDTA / NH 3 / H 2 O 2 , and then the etching resist is peeled and removed to form the wiring 12 (FIG. 4).

【0019】前記配線12を形成した上に、前記の第1の
絶縁層 10aを形成する手段に準じて、第2の絶縁層 10b
を形成する。この第2の絶縁層 10b形成に当たっては、
前記配線12にそれぞれ接続する形で、所要のスルホール
を形成する。しかる後、この第2の絶縁層 10b面上に、
前記配線12を形成する手段に準じて、 Al/Ti層の被着・
形成,この Al/Ti層の選択的なエッチング処理して第2
の配線パターン12′を形成する(図5)。
The second insulating layer 10b is formed according to the above-mentioned means for forming the first insulating layer 10a on the wiring 12.
To form. In forming the second insulating layer 10b,
Required through-holes are formed so as to be connected to the wirings 12, respectively. Then, on this second insulating layer 10b surface,
In accordance with the method for forming the wiring 12, the deposition of Al / Ti layer
Forming and etching the Al / Ti layer selectively
A wiring pattern 12 'is formed (FIG. 5).

【0020】次いで、前記第2の配線パターン12′形成
面上に、前記の第1の絶縁層 10aを形成する手段に準じ
て、第3の絶縁層 10cを形成する。この第3の絶縁層 1
0c形成に当たっては、前記半導体領域9a面上に位置する
領域で、第2の配線パターン12′の少なくとも一部がそ
れぞれ露出する形に(第2のボンディングパッド11を成
す)スルホールを形成する(図6)。
Then, a third insulating layer 10c is formed on the surface on which the second wiring pattern 12 'is formed, according to the means for forming the first insulating layer 10a. This third insulating layer 1
In forming 0c, through holes (forming second bonding pads 11) are formed so that at least a part of second wiring pattern 12 'is exposed in a region located on the surface of semiconductor region 9a (see FIG. 6).

【0021】前記第2のボンディングパッド11面を、た
とえば 100μm 程度を露出させて第3の絶縁層 10cを
設けた後、この第3の絶縁層 10c面上に、Cu/Ti 層15を
蒸着法によって全面的に被着・形成してから(図7)、
厚膜レジストAZ4903(商品名,ヘキストジャパン社製)
をスピーンコートし、膜厚さ50μm 程度のレジスト層を
形成して、このレジスト層16に選択露光,現像処理を施
して、前記第2のボンディングパッド11面に対応するCu
/Ti 層15領域を、たとえば60μm 程度露出させる(図
8)。
After exposing the surface of the second bonding pad 11 to, for example, about 100 μm to provide a third insulating layer 10c, a Cu / Ti layer 15 is vapor-deposited on the surface of the third insulating layer 10c. After being completely deposited and formed by the method (Fig. 7),
Thick film resist AZ4903 (trade name, manufactured by Hoechst Japan)
Is spun-coated to form a resist layer having a film thickness of about 50 μm, and the resist layer 16 is subjected to selective exposure and development to form a Cu film corresponding to the second bonding pad 11 surface.
The / Ti layer 15 region is exposed, for example, by about 60 μm (FIG. 8).

【0022】このようにして、第2ボンディングパッド
11にに対応する開口領域( 100μm)よりも小さな寸
法でレジスト層16を開口(60μm )させた半導体基板
9′を、無紫外光下で硫酸銅250g/l,硫酸(比重 1.84)
50g/l からなる溶液に浸漬し、浴温度25℃に設定して、
前記Cu/Ti 層15を陰極とする一方高純度銅板を陽極と
し、電流密度 5 A/dm2 印加して緩やかに攪拌しながら
銅を厚さ35μm 程度メッキする(バリアメタル層の形
成)。
In this way, the second bonding pad
A semiconductor substrate 9'having an opening (60 μm ) in the resist layer 16 having a size smaller than the opening area (100 μm ) corresponding to 11 was copper sulfate 250 g / l, sulfuric acid (specific gravity 1.84) under non-ultraviolet light.
Immerse in a solution consisting of 50 g / l, set the bath temperature to 25 ° C,
Using the Cu / Ti layer 15 as a cathode and a high-purity copper plate as an anode, a current density of 5 A / dm 2 is applied and copper is plated to a thickness of about 35 μm with gentle stirring (formation of a barrier metal layer).

【0023】その後、メッキ浴を全 Sn 40g/l,第1 Sn
35g/l,Pb 44g/l,遊離ホウ酸 40g/l,ホウ酸 25g/l,ニ
カワ 3.0g/l から成る溶液に替えて、前記 Cu/Ti層15を
陰極とする一方40%Snを陽極とし、電流密度 5 A/dm2
印加して緩やかに攪拌しながら、Pb/Sn=40/60 の合金
(半田)を厚さ35μm 程度に連続メッキして電極バンプ
13を形成する(図9)。
After that, the plating bath was set to a total Sn content of 40 g / l and the first Sn content.
35 g / l, Pb 44 g / l, free boric acid 40 g / l, boric acid 25 g / l, glue 3.0 g / l, instead of the Cu / Ti layer 15 as the cathode, 40% Sn as the anode And the current density is 5 A / dm 2
Electrode bumps by continuously plating Pb / Sn = 40/60 alloy (solder) to a thickness of about 35 μm while applying and gently stirring.
13 is formed (FIG. 9).

【0024】上記により第2のボンディングパッド(領
域)11面上に、Pb/Sn 系の電極バンプ13を形成した後、
この半導体基板9′面をアセトンで洗浄処理してレジス
ト層16を除去してから(図10)、前記Pb/Sn 系の電極バ
ンプ13をマスクとして、過硫酸アンモニウム/硫酸/エ
タノールから成る混合溶液を用い、先ず前記Ti/Cu 層15
中のCu層をエッチング除去後、EDTA/アンモニア/過酸
化水素から成る混合液でTi層をエッチング除去すること
によって、所望の半導体装置9を得ることができる(図
11)。
After forming the Pb / Sn-based electrode bumps 13 on the surface of the second bonding pad (region) 11 as described above,
The surface of the semiconductor substrate 9'is washed with acetone to remove the resist layer 16 (FIG. 10), and then a mixed solution of ammonium persulfate / sulfuric acid / ethanol is used with the Pb / Sn based electrode bumps 13 as a mask. First, the Ti / Cu layer 15
After the Cu layer in the inside is removed by etching, the Ti layer is removed by etching with a mixed solution of EDTA / ammonia / hydrogen peroxide to obtain the desired semiconductor device 9 (FIG.
11).

【0025】図12は前記構成の半導体装置9を、実装用
回路基板,たとえばアルミナ基板7面にフェースダウン
で接続・実装した構成の要部を断面的に示したもので、
次のような手段で容易に接続・実装を成し得る。すなわ
ち、予め加熱機構を具備するステージ面に載置され、Cu
の融点よりも低い温度,たとえば 280℃に予備加熱され
ているアルミナ基板7面に対して、半導体装置9をフェ
ースダウンの位置関係に保持し、たとえばハーフミラー
を用いる位置合わせ法によって、相互に対応するアルミ
ナ基板7面の端子電極6と半導体装置9の電極バンプ13
とを位置合わせし、かつ相互に接触させる。この状態
で、前記半導体装置9を保持するコレットの温度が、前
記ステージと同程度の温度,たとえば 280℃に維持され
るように窒素雰囲気中で加熱し、前記電極バンプ13を形
成する半田を溶融させることにより、アルミナ基板7面
に半導体装置9が電気的に接続・実装される。
FIG. 12 is a sectional view showing a main part of a structure in which the semiconductor device 9 having the above structure is connected and mounted face down on a surface of a mounting circuit board, for example, an alumina substrate 7.
Connection and mounting can be easily achieved by the following means. That is, it is placed on the stage surface equipped with a heating mechanism in advance, and Cu
The semiconductor device 9 is held in a face-down positional relationship with respect to the surface of the alumina substrate 7 that has been preheated to a temperature lower than the melting point of, for example, 280 ° C. The terminal electrodes 6 on the surface of the alumina substrate 7 and the electrode bumps 13 of the semiconductor device 9
Align and contact each other. In this state, the temperature of the collet holding the semiconductor device 9 is heated in a nitrogen atmosphere so as to be maintained at the same temperature as the stage, for example, 280 ° C., and the solder forming the electrode bumps 13 is melted. By doing so, the semiconductor device 9 is electrically connected and mounted on the surface of the alumina substrate 7.

【0026】次に、本発明に係る半導体装置の他の構成
例について説明する。
Next, another configuration example of the semiconductor device according to the present invention will be described.

【0027】図13は、本発明に係る半導体装置を平面的
に示したもので、半導体素子領域9a面上に配置される第
2のボンディングパッド11(群)中、相互の距離・間隔
が最大となる対角線上の角部(コーナー部)の少なくと
も一部に、第2のボンディングパッド11を配置・形成し
ないように構成した他は、基本的な構成は前記図2に平
面的に図示した半導体装置9の場合と同様である。した
がって、その製造も前記した製造手段に沿って容易に構
成し得る。
FIG. 13 is a plan view showing a semiconductor device according to the present invention. In the second bonding pads 11 (group) arranged on the surface of the semiconductor element region 9a, the mutual distance / interval is maximum. The semiconductor device shown in FIG. 2 has a basic configuration except that the second bonding pad 11 is not arranged / formed on at least a part of a diagonal corner (corner). This is similar to the case of the device 9. Therefore, its manufacture can be easily configured according to the above-mentioned manufacturing means.

【0028】このように第2のボンディングパッド11
を、対角線上の角部を除外して格子状に配置した構成と
した場合は、さらに次のような特有な作用・効果が認め
られる。すなわち、実装用基板7面にフェースダウンで
実装・接続した際、その実装・接続部(電極バンプ13の
接続部)に、熱サイクルストレスが加わっても、実装用
基板7および半導体装置9間の変位量が最大となる(し
たがって熱ストレスが最も加わる)対角線上の角部に電
極バンプ13が存在しないため、全体的にほぼ一様な応力
が電極バンプ13に加わることになって、接続部の信頼性
も損なわれることがなくなる。
In this way, the second bonding pad 11
When the structure is arranged in a lattice shape excluding the corners on the diagonal line, the following peculiar actions and effects are further recognized. That is, even when thermal cycle stress is applied to the mounting / connecting portion (the connecting portion of the electrode bump 13) when the mounting / connecting is performed face down on the surface of the mounting substrate 7, the mounting substrate 7 and the semiconductor device 9 are connected to each other. Since the electrode bumps 13 do not exist at the corners on the diagonal line where the amount of displacement is maximum (therefore, the heat stress is most applied), almost uniform stress is applied to the electrode bumps 13 as a whole, and Reliability will not be lost.

【0029】たとえば、熱膨張係数がSiの2倍近くある
6.0〜6.5 ×10-6/℃のアルミナ基板7(7.5 ×7.5cm
)面に、第2のボンディングパッド11の配置を図2
(実施例1)および図13(実施例2),さらに比較のた
め図17(従来例)に図示した構成の半導体装置9,2
(7.0 ×7.0cm )…Siの熱膨張係数は3.5 ×10-6/℃…
を、それぞれフリップチップ接続・実装して実装回路装
置を構成した。次いで、これらの実装回路装置につい
て、温度サイクル試験{−55℃(30 min)〜25℃( 5 min)
〜 150℃(30 min)〜25℃( 5 min)}で信頼性を評価した
ところ、この信頼性試験1000回での不良率発生は、比較
例の場合が53/100 であったのに対して、実施例1,2
の場合、 0/100 であった。また、前記信頼性試験を50
00回行った後の不良率発生は、比較例の場合が 100/10
0 であったのに対して、実施例1の場合78/100 ,実施
例2の場合 0/100 であり、従来のフリップチップ実装
(接続)用の半導体装置に比べて、実装(接続)部に対
する熱応力に起因した破損ないし破断現象の発生など大
幅に低減・回避し得る。つまり、本発明に係る半導体装
置は、実装回路装置の構成に用いた場合、構成された実
装回路装置の信頼性などに大きく寄与することになる。
For example, the coefficient of thermal expansion is almost twice that of Si.
Alumina substrate 7 (7.5 x 7.5 cm) at 6.0 to 6.5 x 10 -6 / ° C
2) shows the arrangement of the second bonding pad 11 on the surface of FIG.
(Example 1) and FIG. 13 (Example 2), and for comparison, semiconductor devices 9 and 2 having the configurations shown in FIG. 17 (conventional example).
(7.0 x 7.0 cm) ... The thermal expansion coefficient of Si is 3.5 x 10 -6 / ° C.
Were each flip-chip connected and mounted to form a mounted circuit device. Then, for these mounted circuit devices, a temperature cycle test {-55 ° C (30 min) to 25 ° C (5 min)
When the reliability was evaluated at ~ 150 ° C (30 min) to 25 ° C (5 min)}, the defect rate in this reliability test 1000 times was 53/100 in the comparative example. Examples 1 and 2
In the case of, it was 0/100. In addition, the reliability test
The defect rate after 100 times was 100/10 in the comparative example.
However, compared with the conventional semiconductor device for flip-chip mounting (connection), the mounting (connection) portion is 78/100 in the first embodiment and 0/100 in the second embodiment. It is possible to greatly reduce or avoid the occurrence of breakage or breakage phenomenon due to thermal stress on the. That is, when the semiconductor device according to the present invention is used for the configuration of the mounted circuit device, it greatly contributes to the reliability of the configured mounted circuit device.

【0030】なお、本発明は上記実施例に限定されるも
のでなく、その趣旨を逸脱しない範囲でいろいろの変形
が可能である。たとえば、電極バンプ13の構成はPb/Sn
以外に、前記Pb/Sn にIn,Sb,Bi,Zn,Agなどを添加したも
の、あるいはIn,Sb,Bi,Zn,Agなどを主成分とした合金系
のものであってもよい。また、バリアメタル層を成す金
属の種類,膜の厚さ、その他金属層の形成手段、メッキ
レジストやエッチングレジストの種類,レジスト層
(膜)の形成手段など、いずれも前記例示の場合に限定
されるものでない。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the structure of the electrode bump 13 is Pb / Sn.
Besides, Pb / Sn may be added with In, Sb, Bi, Zn, Ag, or the like, or may be an alloy system containing In, Sb, Bi, Zn, Ag, or the like as a main component. Further, the kind of metal forming the barrier metal layer, the thickness of the film, other means for forming the metal layer, the kind of plating resist or etching resist, the means for forming the resist layer (film), etc. are all limited to the above-mentioned examples. Not something.

【0031】[0031]

【発明の効果】本発明に係る半導体装置においては、第
1のボンディングパッドが配置された領域よりも内側
で、かつ所要の半導体素子領域が形成されている領域面
上の絶縁層上に、露出して第2のボンディングパッドが
配置され、これらは前記絶縁層および層間絶縁層を介し
て、たとえば多層的に配設された配線で接続されてい
る。つまり、実装用基板面にフェースダウンで実装・接
続される電極バンプは、半導体素子領域が形成されてい
る領域面上に配置された構成を成している。したがっ
て、実装用基板面に対する接続に関与する領域面(接続
に要する実効面積)が低減された形となる。換言する
と、半導体装置に加わる実効的な熱膨張も小さくなるの
で、実装用基板および半導体装置の熱膨張係数の相違に
起因する電極バンプに加わるストレスも軽減され、もっ
て熱ストレスに対する信頼性の向上が図られる。
In the semiconductor device according to the present invention, it is exposed inside the region where the first bonding pad is arranged and on the insulating layer on the region surface where the required semiconductor element region is formed. Then, the second bonding pad is arranged, and these are connected to each other through the insulating layer and the interlayer insulating layer, for example, by a wiring arranged in multiple layers. That is, the electrode bumps mounted / connected face down on the mounting substrate surface are arranged on the surface of the area where the semiconductor element area is formed. Therefore, the area surface (effective area required for connection) involved in the connection to the mounting substrate surface is reduced. In other words, since the effective thermal expansion applied to the semiconductor device is also reduced, the stress applied to the electrode bumps due to the difference in the thermal expansion coefficient between the mounting substrate and the semiconductor device is also reduced, thus improving the reliability against thermal stress. Planned.

【0032】しかも、この構成では、半導体装置の半導
体素子領域での発熱は、前記第2のボンディングパッド
面上の電極バンプを介して容易に実装用基板側へ放熱さ
れることになる。また、前記第2のボンディングパッド
は、それぞれ面積が、第1のボンディングパッドの面積
よりも大きく設定されているため、電極バンプも比較的
大きく形成し得ることになるので、フリップ接続(実
装)時の位置合わせを容易に成し得るとともに、接続強
度の改善も図り得る。
Moreover, in this structure, the heat generated in the semiconductor element region of the semiconductor device is easily dissipated to the mounting substrate side through the electrode bumps on the second bonding pad surface. In addition, since the area of each of the second bonding pads is set to be larger than the area of the first bonding pad, the electrode bumps can be formed to be relatively large. Can be easily aligned and the connection strength can be improved.

【0033】さらに、前記第2のボンディングパッド
を、対角線上の角部を除外して格子状に配置した構成と
した場合は、実装用基板面にフェースダウンで実装・接
続した際、その実装・接続部(電極バンプの接続部)
に、熱サイクルストレスが加わっても、実装用基板およ
び半導体装置間の変位量が最大となる(したがって熱ス
トレスが最も加わる)対角線上の角部に電極バンプが存
在しないため、全体的にほぼ一様な応力が電極バンプに
加わることになって、接続部の信頼性も損なわれること
がなくなる。かくして本発明に係るフリップチップ接続
型の半導体装置は、信頼性の高い実装回路装置の構成
に、大きく寄与するものといえる。
Further, in the case where the second bonding pads are arranged in a lattice pattern excluding the corners on the diagonal line, when the second bonding pads are mounted and connected face down on the mounting substrate surface, the mounting Connection part (connection part of electrode bump)
In addition, even if thermal cycle stress is applied, the amount of displacement between the mounting substrate and the semiconductor device is maximum (thus, thermal stress is most applied). Such stress is applied to the electrode bumps, so that the reliability of the connection portion is not impaired. Thus, it can be said that the flip-chip connection type semiconductor device according to the present invention greatly contributes to the configuration of a highly reliable mounted circuit device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体装置を実装用基板面に実装
・接続した構造の要部を示す断面図。
FIG. 1 is a sectional view showing a main part of a structure in which a semiconductor device according to the present invention is mounted and connected to a mounting substrate surface.

【図2】本発明に係る半導体装置の構成例を示す平面
図。
FIG. 2 is a plan view showing a configuration example of a semiconductor device according to the present invention.

【図3】本発明に係る半導体装置の製造例の実施態様に
おいて第1の絶縁層を設けた状態を模式的に示す断面
図。
FIG. 3 is a sectional view schematically showing a state in which a first insulating layer is provided in an embodiment of a semiconductor device manufacturing example according to the present invention.

【図4】本発明に係る半導体装置の製造例の実施態様に
おいて配線を設けた状態を模式的に示す断面図。
FIG. 4 is a cross-sectional view schematically showing a state in which wiring is provided in the embodiment of the manufacturing example of the semiconductor device according to the present invention.

【図5】本発明に係る半導体装置の製造例の実施態様に
おいて第2のボンディングパッドの一部を成す金属層を
設けた状態を模式的に示す断面図。
FIG. 5 is a cross-sectional view schematically showing a state in which a metal layer forming a part of the second bonding pad is provided in the embodiment of the manufacturing example of the semiconductor device according to the invention.

【図6】本発明に係る半導体装置の製造例の実施態様に
おいて第2のボンディングパッド領域を開口・露出させ
てレジストマスクを設けた状態を模式的に示す断面図。
FIG. 6 is a cross-sectional view schematically showing a state in which a resist mask is provided by opening and exposing the second bonding pad region in the embodiment of the manufacturing example of the semiconductor device according to the invention.

【図7】本発明に係る半導体装置の製造例の実施態様に
おいて第2のボンディングパッド領域面のバリアメタル
層を成す金属層を設けた状態を模式的に示す断面図。
FIG. 7 is a sectional view schematically showing a state in which a metal layer forming a barrier metal layer on the second bonding pad region surface is provided in the embodiment of the manufacturing example of the semiconductor device according to the invention.

【図8】本発明に係る半導体装置の製造例の実施態様に
おいて電極バンプ形成領域を開口・露出させてレジスト
マスクを設けた状態を模式的に示す断面図。
FIG. 8 is a cross-sectional view schematically showing a state in which a resist mask is provided by opening / exposing an electrode bump forming region in an embodiment of a semiconductor device manufacturing example according to the present invention.

【図9】本発明に係る半導体装置の製造例の実施態様に
おいて電極バンプを電気メッキ形成する状態を模式的に
示す断面図。
FIG. 9 is a cross-sectional view schematically showing a state in which electrode bumps are electroplated in an embodiment of a semiconductor device manufacturing example according to the present invention.

【図10】本発明に係る半導体装置の製造例の実施態様
においてレジストマスクを除去して電極バンプを露出さ
せた状態を模式的に示す断面図。
FIG. 10 is a cross-sectional view schematically showing a state in which the resist mask is removed and the electrode bumps are exposed in the embodiment of the manufacturing example of the semiconductor device according to the invention.

【図11】本発明に係る半導体装置の製造例の実施態様
においてバリアメタル層を成す金属層の不要部分を除去
した状態を模式的に示す断面図。
FIG. 11 is a sectional view schematically showing a state in which an unnecessary portion of the metal layer forming the barrier metal layer is removed in the embodiment of the manufacturing example of the semiconductor device according to the invention.

【図12】本発明に係る半導体装置を実装用基板面に実
装・接続した他の構造の要部を示す断面図。
FIG. 12 is a cross-sectional view showing the main parts of another structure in which the semiconductor device according to the present invention is mounted and connected to the mounting substrate surface.

【図13】本発明に係る半導体装置の他の構成例を示す
平面図。
FIG. 13 is a plan view showing another configuration example of the semiconductor device according to the present invention.

【図14】従来の半導体装置の実装用基板面に対する実
装・接続構造を示す断面図。
FIG. 14 is a sectional view showing a mounting / connecting structure for a mounting substrate surface of a conventional semiconductor device.

【図15】従来の半導体装置の実装用基板面に対する他
の実装・接続構造を示す断面図。
FIG. 15 is a sectional view showing another mounting / connecting structure for a mounting substrate surface of a conventional semiconductor device.

【図16】従来の半導体装置を実装用基板面に実装・接
続した構造の要部を示す断面図。
FIG. 16 is a cross-sectional view showing a main part of a structure in which a conventional semiconductor device is mounted and connected to a mounting substrate surface.

【図17】従来の半導体装置の構成例を示す平面図。FIG. 17 is a plan view showing a configuration example of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1…ボンディングパッド 2,9…半導体装置
2′,9′…半導体基板 2a,9a…半導体素子領域
3,3′,14…パッシベーション膜 4,4′,15
…バリアメタル層 5,13…電極バンプ 6…端子
電極 7…実装用基板 8…第1のボンディングパ
ッド 10a,10b,10c …絶縁層 11…第2のボンディ
ングパッド 12, 12′…配線 16…レジスト層
1 ... Bonding pad 2, 9 ... Semiconductor device
2 ', 9' ... semiconductor substrate 2a, 9a ... semiconductor element region
3, 3 ', 14 ... Passivation film 4, 4', 15
Barrier metal layers 5, 13 Electrode bumps 6 Terminal electrodes 7 Mounting substrate 8 First bonding pads 10a, 10b, 10c Insulating layer 11 Second bonding pads 12, 12 'Wiring 16 Resist layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、前記半導体基板の主面に
形成された半導体素子領域と、前記各半導体素子領域に
対応して半導体素子領域の外周囲に配列された第1のボ
ンディングパッドと、前記第1のボンディングパッド面
を露出させ少なくとも半導体素子領域面を被覆する絶縁
膜と、前記絶縁膜上で第1のボンディングパッドに対応
して第1のボンディングパッドよりも内側に形設された
第2のボンディングパッドと、前記第2のボンディング
パッド面上に設けられたバンプ電極と、前記第1のボン
ディングパッドに一端が接続し第2のボンディングパッ
ドに他端が接続して絶縁膜領域に配設された配線とを具
備して成り、 前記第2のボンディングパッドの面積が、第1のボンデ
ィングパッドの面積よりも大きく設定されていることを
特徴とする半導体装置。
1. A semiconductor substrate, a semiconductor element region formed on a main surface of the semiconductor substrate, and first bonding pads arranged around the outer periphery of the semiconductor element region corresponding to the respective semiconductor element regions. An insulating film that exposes the first bonding pad surface and covers at least the semiconductor element region surface, and a first insulating film formed inside the first bonding pad corresponding to the first bonding pad on the insulating film. A second bonding pad, a bump electrode provided on the surface of the second bonding pad, one end connected to the first bonding pad and the other end connected to the second bonding pad, and the second bonding pad disposed in the insulating film region. And an area of the second bonding pad is set to be larger than an area of the first bonding pad. Semiconductor device.
JP01985592A 1992-02-05 1992-02-05 Semiconductor device Expired - Fee Related JP3285919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01985592A JP3285919B2 (en) 1992-02-05 1992-02-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01985592A JP3285919B2 (en) 1992-02-05 1992-02-05 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH05218042A true JPH05218042A (en) 1993-08-27
JP3285919B2 JP3285919B2 (en) 2002-05-27

Family

ID=12010851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01985592A Expired - Fee Related JP3285919B2 (en) 1992-02-05 1992-02-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3285919B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298264A (en) * 1995-04-27 1996-11-12 Hitachi Ltd Electronic circuit device
JPH09102517A (en) * 1995-10-05 1997-04-15 Nec Corp Semiconductor device
WO2000070670A1 (en) * 1999-05-12 2000-11-23 Hitachi, Ltd. Semiconductor device and method for manufacturing the same, and electronic device
US6501169B1 (en) 1999-11-29 2002-12-31 Casio Computer Co., Ltd. Semiconductor device which prevents leakage of noise generated in a circuit element forming area and which shields against external electromagnetic noise
US6545354B1 (en) 1999-02-15 2003-04-08 Casio Computer Co., Ltd. Semiconductor device having a barrier layer
KR20030068436A (en) * 2002-02-12 2003-08-21 가부시키가이샤 히타치세이사쿠쇼 Semiconductor integrated circuit device
US6831294B1 (en) 1999-01-22 2004-12-14 Renesas Technology Corp. Semiconductor integrated circuit device having bump electrodes for signal or power only, and testing pads that are not coupled to bump electrodes
US6847066B2 (en) 2000-08-11 2005-01-25 Oki Electric Industry Co., Ltd. Semiconductor device
US6963136B2 (en) 2000-12-18 2005-11-08 Renesas Technology Corporation Semiconductor integrated circuit device
JP2006140525A (en) * 2006-01-10 2006-06-01 Dainippon Printing Co Ltd Semiconductor device mounter and its manufacturing method
JP2006295209A (en) * 2006-06-26 2006-10-26 Rohm Co Ltd Semiconductor device
JP2007048802A (en) * 2005-08-08 2007-02-22 Tdk Corp Wiring board
USRE39603E1 (en) 1994-09-30 2007-05-01 Nec Corporation Process for manufacturing semiconductor device and semiconductor wafer
JP2007335888A (en) * 2000-12-18 2007-12-27 Renesas Technology Corp Semiconductor integrated circuit device
JP2008053313A (en) * 2006-08-22 2008-03-06 Denso Corp Semiconductor integrated circuit device
JP2008112878A (en) * 2006-10-31 2008-05-15 Seiko Instruments Inc Semiconductor device
JP2009027185A (en) * 1997-01-17 2009-02-05 Seiko Epson Corp Electronic component and semiconductor device
US7586755B2 (en) 2001-07-12 2009-09-08 Hitachi, Ltd. Electronic circuit component

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39603E1 (en) 1994-09-30 2007-05-01 Nec Corporation Process for manufacturing semiconductor device and semiconductor wafer
JPH08298264A (en) * 1995-04-27 1996-11-12 Hitachi Ltd Electronic circuit device
JPH09102517A (en) * 1995-10-05 1997-04-15 Nec Corp Semiconductor device
US8399999B2 (en) 1997-01-17 2013-03-19 Seiko Epson Corporation Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
JP2009027185A (en) * 1997-01-17 2009-02-05 Seiko Epson Corp Electronic component and semiconductor device
US8629481B2 (en) 1999-01-22 2014-01-14 Renesas Electronics Corporation Semiconductor integrated circuit device
US7910922B2 (en) 1999-01-22 2011-03-22 Renesas Electronics Corporation Semiconductor integrated circuit device and manufacture thereof
US7910960B2 (en) 1999-01-22 2011-03-22 Renesas Electronics Corporation Semiconductor integrated circuit device with a fuse circuit
US6831294B1 (en) 1999-01-22 2004-12-14 Renesas Technology Corp. Semiconductor integrated circuit device having bump electrodes for signal or power only, and testing pads that are not coupled to bump electrodes
US7550763B2 (en) 1999-01-22 2009-06-23 Renesas Technology Corp. Semiconductor integrated circuit device and manufacture thereof
US7247879B2 (en) 1999-01-22 2007-07-24 Renesas Technology Corp. Semiconductor integrated circuit device having particular testing pad arrangement
USRE41511E1 (en) 1999-02-15 2010-08-17 Casio Computer Co., Ltd. Semiconductor device having a thin-film circuit element provided above an integrated circuit
US6870256B2 (en) 1999-02-15 2005-03-22 Casio Computer Co., Ltd. Semiconductor device having a thin-film circuit element provided above an integrated circuit
US6545354B1 (en) 1999-02-15 2003-04-08 Casio Computer Co., Ltd. Semiconductor device having a barrier layer
WO2000070670A1 (en) * 1999-05-12 2000-11-23 Hitachi, Ltd. Semiconductor device and method for manufacturing the same, and electronic device
US6528343B1 (en) 1999-05-12 2003-03-04 Hitachi, Ltd. Semiconductor device its manufacturing method and electronic device
US6501169B1 (en) 1999-11-29 2002-12-31 Casio Computer Co., Ltd. Semiconductor device which prevents leakage of noise generated in a circuit element forming area and which shields against external electromagnetic noise
US6847066B2 (en) 2000-08-11 2005-01-25 Oki Electric Industry Co., Ltd. Semiconductor device
JP2007335888A (en) * 2000-12-18 2007-12-27 Renesas Technology Corp Semiconductor integrated circuit device
US6963136B2 (en) 2000-12-18 2005-11-08 Renesas Technology Corporation Semiconductor integrated circuit device
US7982314B2 (en) 2000-12-18 2011-07-19 Renesas Electronics Corporation Semiconductor integrated circuit device
US7547971B2 (en) 2000-12-18 2009-06-16 Renesas Technology Corp. Semiconductor integrated circuit device
US7808107B2 (en) 2000-12-18 2010-10-05 Renesas Electronics Corporation Semiconductor integrated circuit device
US7586755B2 (en) 2001-07-12 2009-09-08 Hitachi, Ltd. Electronic circuit component
KR20030068436A (en) * 2002-02-12 2003-08-21 가부시키가이샤 히타치세이사쿠쇼 Semiconductor integrated circuit device
US6835971B2 (en) 2002-02-12 2004-12-28 Renesas Technology Corp. Semiconductor integrated circuit device with a plurality of limiter circuits
JP2007048802A (en) * 2005-08-08 2007-02-22 Tdk Corp Wiring board
JP4566915B2 (en) * 2006-01-10 2010-10-20 大日本印刷株式会社 Semiconductor device mounting body and method of manufacturing semiconductor device mounting body
JP2006140525A (en) * 2006-01-10 2006-06-01 Dainippon Printing Co Ltd Semiconductor device mounter and its manufacturing method
JP2006295209A (en) * 2006-06-26 2006-10-26 Rohm Co Ltd Semiconductor device
JP2008053313A (en) * 2006-08-22 2008-03-06 Denso Corp Semiconductor integrated circuit device
JP2008112878A (en) * 2006-10-31 2008-05-15 Seiko Instruments Inc Semiconductor device

Also Published As

Publication number Publication date
JP3285919B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
US5886409A (en) Electrode structure of wiring substrate of semiconductor device having expanded pitch
US7696007B2 (en) Semiconductor package board using a metal base
JP4400802B2 (en) Lead frame, manufacturing method thereof, and semiconductor device
JP3996315B2 (en) Semiconductor device and manufacturing method thereof
JP3918350B2 (en) Manufacturing method of semiconductor device
US6808962B2 (en) Semiconductor device and method for fabricating the semiconductor device
JP3285919B2 (en) Semiconductor device
US20050189636A1 (en) Packaging substrates for integrated circuits and soldering methods
TW200921884A (en) Method for making copper-core layer multi-layer encapsulation substrate
JP2001093928A (en) Semiconductor device and its manufacturing method
US6458627B1 (en) Semiconductor chip package and method of fabricating same
US6936927B2 (en) Circuit device having a multi-layer conductive path
JP3119927B2 (en) Semiconductor device
US20230136788A1 (en) Semiconductor substrate structure and manufacturing method thereof
JPH07201864A (en) Projection electrode formation method
US6883231B2 (en) Method for fabricating a circuit device
JP3823636B2 (en) Semiconductor chip module and manufacturing method thereof
JP2002217354A (en) Semiconductor device
JPH10335337A (en) Semiconductor device and manufacture thereof
JP3422144B2 (en) Semiconductor package manufacturing method
US8062927B2 (en) Wiring board and method of manufacturing the same, and electronic component device using the wiring board and method of manufacturing the same
EP1003209A1 (en) Process for manufacturing semiconductor device
JP4084737B2 (en) Semiconductor device
JP4054672B2 (en) Manufacturing method of semiconductor device
TW202247384A (en) Semiconductor devices and methods of manufacturing semiconductor devices

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees