JPH0114709B2 - - Google Patents

Info

Publication number
JPH0114709B2
JPH0114709B2 JP56182330A JP18233081A JPH0114709B2 JP H0114709 B2 JPH0114709 B2 JP H0114709B2 JP 56182330 A JP56182330 A JP 56182330A JP 18233081 A JP18233081 A JP 18233081A JP H0114709 B2 JPH0114709 B2 JP H0114709B2
Authority
JP
Japan
Prior art keywords
wiring
protective film
photoresist
metal
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56182330A
Other languages
Japanese (ja)
Other versions
JPS5884447A (en
Inventor
Kazuyoshi Asai
Katsuhiko Kurumada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18233081A priority Critical patent/JPS5884447A/en
Publication of JPS5884447A publication Critical patent/JPS5884447A/en
Publication of JPH0114709B2 publication Critical patent/JPH0114709B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 本発明は、集積回路製作工程中の素子間配線接
続方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for connecting wiring between elements during an integrated circuit manufacturing process.

従来集積回路の配線技術には、第1図に示す如
く配線金属をエツチングのみにより形成する方法
が一般的であつた。半導体基板11表面の半導体
素子12を絶縁膜13で覆い、接続用穴14を開
口する。絶縁膜13は、素子12の起伏を殆どそ
のまま反映し、絶縁膜13表面も起伏がある。従
つて、全面に被着された配線用金属15も起伏が
ある(第1図a参照)。この状態で、配線用金属
15をエツチングし、素子間配線接続を形成する
と、第1図bの如く、絶縁膜段差下部に配線用金
属15′が残留し、同一配線層間で短絡するとい
う欠点があつた。短絡を防ぐため、絶縁膜を平坦
化する方法として第2図aの如く、絶縁膜23を
厚く被着し、その上のレジスト24を平坦にし、
レジスト及び絶縁膜を適量エツチングして、平坦
化する方法(第2図b)(例えば、A.C.Adams
“Plasma Planarization”Solid State
Technology(1981)vol 4、178−181)がある
が、工程が複雑となる欠点がある。図中21は半
導体基板を示す。
Conventional wiring technology for integrated circuits has generally involved a method of forming wiring metal only by etching, as shown in FIG. The semiconductor element 12 on the surface of the semiconductor substrate 11 is covered with an insulating film 13, and a connection hole 14 is opened. The insulating film 13 almost directly reflects the undulations of the element 12, and the surface of the insulating film 13 also has undulations. Therefore, the wiring metal 15 deposited on the entire surface also has undulations (see FIG. 1a). In this state, if the wiring metal 15 is etched to form a wiring connection between elements, the wiring metal 15' remains under the insulating film step, as shown in FIG. It was hot. In order to prevent short circuits, a method of flattening the insulating film is to deposit a thick insulating film 23 and flatten the resist 24 thereon, as shown in FIG. 2a.
A method of planarizing the resist and insulating film by etching an appropriate amount (Fig. 2b) (for example, ACAdams
“Plasma Planarization”Solid State
Technology (1981) vol 4, 178-181), but it has the disadvantage that the process is complicated. In the figure, 21 indicates a semiconductor substrate.

また第3図の如く配線金属をリフト−オフ法に
より形成する方法もあるが配線金属の厚さが制限
されるため、配線抵抗を低減できないという欠点
がある。図中31は半導体基板、32は半導体素
子、33は絶縁膜、34は接続用穴、35はホト
レジスト、36は配線用金属を示す。
There is also a method of forming wiring metal by a lift-off method as shown in FIG. 3, but there is a drawback that the wiring resistance cannot be reduced because the thickness of the wiring metal is limited. In the figure, 31 is a semiconductor substrate, 32 is a semiconductor element, 33 is an insulating film, 34 is a connection hole, 35 is a photoresist, and 36 is a wiring metal.

本発明は上記の欠点を改善するために提案され
たもので、その特徴とする点は、半導体基板上に
形成された、複数の半導体素子の配線接続工程に
於いて、半導体素子及び半導体基板上にホトレジ
ストまたはポリイミドよりなる保護膜Aを被覆す
る工程と、配線接続となる部分の保護膜Aを除去
し、配線接続となる部分を露出させる工程と、加
熱処理によりホトレジストまたはポリイミドより
なる前記保護膜Aを熱変形平坦化する工程と、配
線用金属層を主表面に被着する工程と、配線用金
属層表面に、配線領域をおおう保護膜Bを形成す
る工程と該保護膜Bをマスクとして、不要部金属
層をエツチング除去する工程と、保護膜A,Bを
除去する工程とよりなることを特徴とする素子間
配線接続方法にある。
The present invention was proposed in order to improve the above-mentioned drawbacks, and its characteristic point is that in the wiring connection process of a plurality of semiconductor elements formed on a semiconductor substrate, A step of coating the protective film A made of photoresist or polyimide on the surface of the protective film A, a step of removing the protective film A of the portion to be connected to the wiring to expose the portion to be connected to the wiring, and a step of heating the protective film made of photoresist or polyimide. A step of thermally deforming and planarizing A, a step of depositing a wiring metal layer on the main surface, a step of forming a protective film B covering the wiring area on the surface of the wiring metal layer, and using the protective film B as a mask. , an inter-element wiring connection method characterized by comprising a step of etching away an unnecessary metal layer and a step of removing protective films A and B.

換言すれば、本発明の主な特徴点は、(イ)保護膜
Aを形成するためホトレジストまたはポリイミド
を使用すると、(ロ)前記の保護膜を加熱処理により
熱変形平坦化することにある。
In other words, the main features of the present invention are that (a) photoresist or polyimide is used to form the protective film A, and (b) the protective film is thermally deformed and flattened by heat treatment.

次に本発明の実施例について説明する。なお、
実施例は一つの例示であつて、本発明の精神を逸
脱しない範囲で、種々の変更あるいは改良を行い
うることは言うまでもない。
Next, examples of the present invention will be described. In addition,
The embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the invention.

第4図は、本発明方法の実施例を示す。半導体
基板41上に半導体素子42が形成されている。
半導体基板41と半導体素子42との表面に
CVD−SiO2、P−CVD−SiN等の絶縁膜43を
0.3〜1μm程度被着し、素子との接続用穴44を
公知の方法によりエツチングし開口する(第4図
a参照)。
FIG. 4 shows an embodiment of the method of the invention. A semiconductor element 42 is formed on a semiconductor substrate 41.
On the surface of the semiconductor substrate 41 and the semiconductor element 42
Insulating film 43 such as CVD-SiO 2 or P-CVD-SiN
A thickness of about 0.3 to 1 .mu.m is deposited, and a hole 44 for connection with the element is etched by a known method (see FIG. 4a).

次に、表面を平坦化するため保護膜45として
例えばホトレジスト、ポリイミド等を1〜10μm
程度の厚さに全面にわたり平坦に被着し、保護膜
Aを形成する。次に配線領域のホトレジスト又は
ポリイミドを公知のホト工程により除去する(第
4図b参照)。絶縁膜43表面が1〜5μm程度の
起伏を有し、かつ逆台形状の断面を有していても
保護膜45は充分に平坦な表面となる。また、こ
の工程後、130〜300℃で5〜60分間程度の加熱処
理を行うと保護膜45は熱変形し、平坦化がより
進行すると共に、パタン開口部もより鈍角となる
(第4図b′参照)。次に、配線金属46として例え
ば、Al、Mo、Ti/Au、Ti/Pt/Au、Ti/
Mo/Au等を0.5〜5μm程度の厚さで全面で蒸着
またはスパツタにより被着する(第4図c参照)。
このとき、保護膜45の表面が下地の起伏に影響
されずに平坦化されているため、配線金属46の
不要となる領域は、平坦化される。
Next, in order to flatten the surface, a protective film 45 made of, for example, photoresist, polyimide, etc. is applied to a thickness of 1 to 10 μm.
The protective film A is formed by uniformly depositing the protective film A on the entire surface to a certain thickness. Next, the photoresist or polyimide in the wiring area is removed by a known photo process (see FIG. 4b). Even if the surface of the insulating film 43 has undulations of about 1 to 5 μm and has an inverted trapezoidal cross section, the protective film 45 has a sufficiently flat surface. Further, after this step, when heat treatment is performed at 130 to 300°C for about 5 to 60 minutes, the protective film 45 is thermally deformed, flattening progresses further, and the pattern openings also become more obtuse (see Figure 4). b′). Next, as the wiring metal 46, for example, Al, Mo, Ti/Au, Ti/Pt/Au, Ti/
Mo/Au or the like is deposited on the entire surface by vapor deposition or sputtering to a thickness of about 0.5 to 5 μm (see Figure 4c).
At this time, since the surface of the protective film 45 is flattened without being affected by the undulations of the underlying layer, the area where the wiring metal 46 is unnecessary is flattened.

次いで、配線領域を覆うホトレジスト47を公
知のホト工程により形成し、保護層Bとする。次
に不要な金属を反応性イオンエツチング、プラズ
マエツチング、イオンミーリング等により除去す
る(第4図d参照)。このとき、不要な金属領域
は、平坦化されているため、完全に除去され、同
一の配線層で短絡することがない。また、平坦な
金属領域のエツチングであるため、オーバーエツ
チは殆ど不要であり、かつ、絶縁膜43の膜厚は
不変であり、この後更に、配線工程が必要な場合
に、配線容量の増加を妨げる。
Next, a photoresist 47 covering the wiring area is formed by a known photo process to form a protective layer B. Next, unnecessary metal is removed by reactive ion etching, plasma etching, ion milling, etc. (see FIG. 4d). At this time, since the unnecessary metal region is flattened, it is completely removed and no short circuit occurs in the same wiring layer. In addition, since the etching is a flat metal region, over-etching is almost unnecessary, and the thickness of the insulating film 43 remains unchanged, so that if a further wiring process is required after this, an increase in wiring capacitance can be avoided. hinder.

最後に、不要となつたレジスト47及び保護膜
45を除去して素子間配線接続工程を完成する
(第4図e参照)。
Finally, the unnecessary resist 47 and protective film 45 are removed to complete the inter-element wiring connection process (see FIG. 4e).

この実施例では、最終配線層を想定しているた
め、開口した保護膜45に対し重複するようにレ
ジスト47が形成され、配線金属46の断面はオ
ーバーハング状になつている(第4図e参照)
が、更に上層の配線工程を要する場合は、第4図
fの如く、レジスト47′を保護膜45の開口部
内に形成することにより、配線金属46′の断面
はオーバーハングのない形状で短絡のない素子間
配線接続を得ることができる。
In this embodiment, since the final wiring layer is assumed, a resist 47 is formed so as to overlap the open protective film 45, and the cross section of the wiring metal 46 has an overhang shape (Fig. 4e). reference)
However, if a further upper layer wiring process is required, by forming a resist 47' in the opening of the protective film 45 as shown in FIG. It is possible to obtain wiring connections between elements that are not required.

従来のこの種の工程において、本発明の保護膜
Aに相当するものとしてホトレジストを使用して
いる方法があるが、この場合ホトレジストを被覆
した状態で、アルミ電極を形成している。しかし
ながら、アルミ電極を形成する場合、スパツタ
法、蒸着法等が用いられるが、この際、プラズマ
や電子ビームの輻射熱等により、基板表面の温度
は通常100〜200℃程度迄上昇する。真空中でこの
ような高温に曝されたホトレジストは、気泡を発
生し、パタンダレを生じ、電極形成工程に使用で
きないものである。
In a conventional process of this type, there is a method in which a photoresist is used as the protective film A of the present invention, but in this case, an aluminum electrode is formed while being covered with the photoresist. However, when forming an aluminum electrode, a sputtering method, a vapor deposition method, etc. are used, but in this case, the temperature of the substrate surface usually rises to about 100 to 200° C. due to radiant heat of plasma or electron beam. Photoresist exposed to such high temperatures in a vacuum generates bubbles and pattern sag, and cannot be used in the electrode forming process.

しかるに本発明においては、ホトレジストまた
はポリイミドをパタン化したあと、熱変形するま
で(例えば120〜300℃、10〜100分間の条件)、熱
処理するので、上述した金属電極形成時の輻射熱
を受けても、全く気泡発生やパタンダレ等を生じ
なく、安定に配線金属形成を行うことができるも
のである。
However, in the present invention, after patterning the photoresist or polyimide, it is heat-treated until it is thermally deformed (for example, at 120 to 300°C for 10 to 100 minutes), so even if it is exposed to the radiant heat during the metal electrode formation described above, , it is possible to stably form wiring metal without generating any bubbles or pattern sag.

なお本発明において、保護膜形成材質としてポ
リイミド、ホトレジストに限定したのは、パタン
化する必要があるため、感光性を要し、かつ平坦
化のために塗布できて、熱処理(100〜300℃)
で、熱変形し、より一層平坦度を増すためであ
る。
In the present invention, the protective film forming materials are limited to polyimide and photoresist because they need to be patterned, require photosensitivity, can be coated for flattening, and require heat treatment (100 to 300°C).
This is because it is thermally deformed and becomes even more flat.

以上説明したように、本発明によれば、電極形
成工程において、輻射熱を受けても、全く気泡発
生やパタンダレなどを生じなくなり、また、同時
に、ホトレジスト表面が熱変形により平坦化され
るため、配線用金属層のオーバーエツチ時間を大
幅に短縮でき、かつ微細な配線を形成することが
でき、歩留りを向上させることができる。
As explained above, according to the present invention, even when exposed to radiant heat in the electrode forming process, no bubbles or pattern sag occur, and at the same time, the photoresist surface is flattened by thermal deformation, so wiring The over-etching time for the metal layer can be greatly reduced, fine wiring can be formed, and the yield can be improved.

また、本発明によれば、上層の配線形成時の損
傷、汚染等は、下地保護膜の除去とともに払拭さ
れるので電界効果トランジスタの如き表面状態に
敏感な素子の配線工程を行つても、素子特性の変
動を防ぐことができる。また、配線金属の厚さを
充分厚くすることができるため、配線抵抗を小さ
くすることができ、集積回路の動作速度を向上さ
せることができる等の効果を有する。
Furthermore, according to the present invention, damage, contamination, etc. that occur during the formation of upper-layer wiring are wiped away when the underlying protective film is removed, so even if the wiring process is performed for a device that is sensitive to surface conditions such as a field effect transistor, the device Changes in characteristics can be prevented. Furthermore, since the thickness of the wiring metal can be made sufficiently thick, the wiring resistance can be reduced, and the operating speed of the integrated circuit can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは従来技術による配線工程の断面
及び斜視図、第2図a,bは従来技術による層間
絶縁膜の平坦化方法、第3図はリフトオフ技術に
よる配線工程の断面図、第4図a〜fは本発明に
よる配線工程の実施例を示す。 11,21,31,41……半導体基板、1
2,22,32,42……半導体素子、13,2
3,33,43……絶縁膜、14,34,44…
…接続用穴、15,36,46,46′……配線
用金属、15′……配線用金属残滓、24,35,
47,47′……ホトレジスト、45,45′……
平坦化用保護膜。
1A and 1B are cross-sectional and perspective views of the wiring process according to the prior art, FIGS. 4a to 4f show an embodiment of the wiring process according to the present invention. 11, 21, 31, 41...semiconductor substrate, 1
2, 22, 32, 42... semiconductor element, 13, 2
3, 33, 43...Insulating film, 14, 34, 44...
... Connection hole, 15, 36, 46, 46'... Metal for wiring, 15'... Metal residue for wiring, 24, 35,
47,47'...Photoresist, 45,45'...
Protective film for flattening.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に形成された、複数の半導体素
子の配線接続工程に於いて、半導体素子及び半導
体基板上にホトレジストまたはポリイミドよりな
る保護膜Aを被覆する工程と、配線接続となる部
分の保護膜Aを除去し、配線接続となる部分を露
出させる工程と、加熱処理によりホトレジストま
たはポリイミドよりなる前記保護膜Aを熱変形平
坦化する工程と、配線用金属層を主表面に被着す
る工程と、配線用金属層表面に、配線領域をおお
う保護膜Bを形成する工程と該保護膜Bをマスク
として、不要部金属層をエツチング除去する工程
と、保護膜A,Bを除去する工程とよりなること
を特徴とする素子間配線接続方法。
1. In the wiring connection process for a plurality of semiconductor elements formed on a semiconductor substrate, the process of coating the semiconductor elements and the semiconductor substrate with a protective film A made of photoresist or polyimide, and the protective film for the parts where the wiring connections will be made. A step of removing the protective film A to expose a portion to be connected to the wiring, a step of thermally deforming and flattening the protective film A made of photoresist or polyimide by heat treatment, and a step of depositing a wiring metal layer on the main surface. , a step of forming a protective film B covering the wiring area on the surface of the wiring metal layer, a step of etching away unnecessary portions of the metal layer using the protective film B as a mask, and a step of removing the protective films A and B. An inter-element wiring connection method characterized by:
JP18233081A 1981-11-16 1981-11-16 Connecting method for inter-element wiring Granted JPS5884447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18233081A JPS5884447A (en) 1981-11-16 1981-11-16 Connecting method for inter-element wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18233081A JPS5884447A (en) 1981-11-16 1981-11-16 Connecting method for inter-element wiring

Publications (2)

Publication Number Publication Date
JPS5884447A JPS5884447A (en) 1983-05-20
JPH0114709B2 true JPH0114709B2 (en) 1989-03-14

Family

ID=16116414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18233081A Granted JPS5884447A (en) 1981-11-16 1981-11-16 Connecting method for inter-element wiring

Country Status (1)

Country Link
JP (1) JPS5884447A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210716A (en) * 1983-05-13 1984-11-29 Matsushita Electric Ind Co Ltd Substrate for surface wave device
JP4877201B2 (en) * 2007-11-06 2012-02-15 株式会社デンソー Starter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629347A (en) * 1979-08-17 1981-03-24 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629347A (en) * 1979-08-17 1981-03-24 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS5884447A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
JPH0629239A (en) Manufacture of self-aligned diffused barrier in semiconductor element by making use of lift-off process and semiconductor element provided with diffused barrier
JP3157012B2 (en) Semiconductor element wiring forming method
JPH0114709B2 (en)
JPS59175726A (en) Manufacture of semiconductor device
JPS586306B2 (en) Handout Taisouchino Seizouhouhou
JPS5827335A (en) Manufacture of semiconductor device
JPS6262056B2 (en)
JP2856489B2 (en) Method for manufacturing semiconductor device
JP3223533B2 (en) Method for manufacturing semiconductor device
JP2770653B2 (en) Method for manufacturing semiconductor integrated circuit device
KR0137813B1 (en) Metal wiring method of mosfet
JP2991388B2 (en) Method for manufacturing semiconductor device
JPH04288834A (en) Manufacturing for semiconductor device
JP3104441B2 (en) Semiconductor device and its manufacturing method.
JPS6125217B2 (en)
JPS58115835A (en) Formation of buried wirings of semiconductor device
JPH035656B2 (en)
JPH04340255A (en) Semiconductor device and manufacture thereof
JP2504239B2 (en) Method for manufacturing semiconductor device
JPS6161698B2 (en)
JPS582069A (en) Manufacture of semiconductor device
JPS61276324A (en) Manufacture of semiconductor device
JPH04299831A (en) Manufacture of semiconductor device
JP2000311914A (en) Method of manufacturing semiconductor device
JPH0123944B2 (en)