JPH04340255A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04340255A
JPH04340255A JP14145491A JP14145491A JPH04340255A JP H04340255 A JPH04340255 A JP H04340255A JP 14145491 A JP14145491 A JP 14145491A JP 14145491 A JP14145491 A JP 14145491A JP H04340255 A JPH04340255 A JP H04340255A
Authority
JP
Japan
Prior art keywords
film
point metal
melting point
high melting
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14145491A
Other languages
Japanese (ja)
Inventor
Atsushi Ishii
敦司 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14145491A priority Critical patent/JPH04340255A/en
Publication of JPH04340255A publication Critical patent/JPH04340255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To restrain the reflection of an interconnection film at a transfer operation, to prevent a halation and to enhance a patterning accuracy regarding a interconnection film which is composed of a high-melting-point metal film and a low-resistance conductive film. CONSTITUTION:In order to achieve the purpose, the surface of a high-melting- point metal film 5b constituting a interconnection film is oxidized or nitrified. Thereby, a high-melting-point metal oxide film or nitride film 5a is formed; it is used as an antireflection film by utilizing its optical characteristic.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体装置およびその
製造方法に関し、特に改良された配線構造とその容易な
製法を提供できるようにしたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a device capable of providing an improved wiring structure and an easy manufacturing method thereof.

【0002】0002

【従来の技術】図2は従来の半導体装置のうち、特に2
層金属配線膜を形成した半導体装置の要部の断面構造図
である。
[Prior Art] FIG. 2 shows two of the conventional semiconductor devices.
1 is a cross-sectional structural diagram of a main part of a semiconductor device in which a layered metal wiring film is formed; FIG.

【0003】図において、1はシリコン単結晶などから
なる半導体基板(以下、単に基板と呼ぶ)、2は基板1
上に形成された第1の絶縁膜、3は第1の絶縁膜2上に
形成された第1の配線膜であり、4は第1の配線膜3を
被覆するように形成された第2の絶縁膜、5は第2の絶
縁膜4上に形成された第2の配線膜であり、5aは低抵
抗金属膜からなる主たる導電膜(以下、導電膜と呼ぶ)
、5bは導電膜5a上に形成された高融点金属膜である
In the figure, 1 is a semiconductor substrate (hereinafter simply referred to as a substrate) made of silicon single crystal or the like, and 2 is a substrate 1.
A first insulating film formed thereon, 3 a first wiring film formed on the first insulating film 2, and 4 a second wiring film formed to cover the first wiring film 3. 5 is a second wiring film formed on the second insulating film 4, and 5a is a main conductive film made of a low resistance metal film (hereinafter referred to as a conductive film).
, 5b is a high melting point metal film formed on the conductive film 5a.

【0004】次に、前記構成による従来の配線膜構造の
主要な製造工程について述べる。まず、予め所期の素子
部を形成した基板1に対してシリコン酸化膜を形成し、
第1の絶縁膜2とする。次いで、シリサイド、例えばタ
ングステンシリサイド(WSi)からなる金属膜をスパ
ッタ法で0.4μm程度の膜厚に形成し、レジストパタ
ーンをマスクに異方性エッチングし、レジストを除去し
第1の配線膜3とする。
Next, the main manufacturing steps of the conventional wiring film structure having the above structure will be described. First, a silicon oxide film is formed on a substrate 1 on which a desired element portion has been formed in advance,
This is referred to as the first insulating film 2. Next, a metal film made of silicide, for example tungsten silicide (WSi), is formed to a thickness of about 0.4 μm by sputtering, anisotropically etched using the resist pattern as a mask, and the resist is removed to form the first wiring film 3. shall be.

【0005】続いて、第1の配線膜3を覆うように80
0℃程度の高温CVD法でシリコン酸化膜を0.1μm
の膜厚に形成し、さらにボロン,リンを含むシリコン酸
化膜(以下、BPSG膜と呼ぶ)を常圧CVD法で0.
8μm程度の膜厚に形成後、900℃程度の温度で熱処
理,リフローし、その後、再び高温CVD法でシリコン
酸化膜を0.1μm程度の膜厚に形成し、第2の絶縁膜
4とする。
[0005] Next, a film 80 is coated to cover the first wiring film 3.
Silicon oxide film is deposited to a thickness of 0.1 μm using high-temperature CVD method at approximately 0°C.
A silicon oxide film (hereinafter referred to as BPSG film) containing boron and phosphorus is formed to a thickness of 0.0000000000000000000000000000000000000000,0012
After forming the film to a thickness of approximately 8 μm, heat treatment and reflow are performed at a temperature of approximately 900° C., and then a silicon oxide film is again formed to a thickness of approximately 0.1 μm by high-temperature CVD to form the second insulating film 4. .

【0006】さらに、第2の絶縁膜4上にAlもしくは
Al合金、例えばアルミ・銅(AlCu)などからなる
金属膜をスパッタ法で0.4μm程度の膜厚に形成し、
導電膜5aとした後、引き続き、高融点金属、例えばタ
ングステン(W)をスパッタ法で0.1μm程度の膜厚
に形成し、5bとする。その後、レジストパターンをマ
スクに異方性エッチングし、レジストを除去して、第2
の配線膜5とする。
Furthermore, a metal film made of Al or an Al alloy, such as aluminum/copper (AlCu), is formed on the second insulating film 4 to a thickness of about 0.4 μm by sputtering.
After forming the conductive film 5a, a high melting point metal such as tungsten (W) is subsequently formed to a thickness of about 0.1 μm by sputtering to form the conductive film 5b. After that, anisotropic etching is performed using the resist pattern as a mask, the resist is removed, and the second
The wiring film 5 is as follows.

【0007】このとき、高融点金属膜5bはレジストパ
ターニング時の転写光、例えば波長436nm(i線)
に対する反射率が約60%と高いため、高融点金属膜5
aでの反射光でハレーションが生じ、レジストパターン
が所定の線幅より細くなる。このあと、所定の処理を施
すことによって図2に示した構造の半導体装置を得る。
At this time, the high melting point metal film 5b is exposed to transfer light during resist patterning, for example, wavelength 436 nm (i-line).
The high melting point metal film 5 has a high reflectance of about 60%.
Halation occurs due to the reflected light at point a, and the resist pattern becomes thinner than a predetermined line width. Thereafter, a semiconductor device having the structure shown in FIG. 2 is obtained by performing predetermined processing.

【0008】[0008]

【発明が解決しようとする課題】従来の半導体装置は以
上のように構成されているので、第2の絶縁膜では下地
の第1の配線膜3のため必然的に段差部を生じる。この
段差部で第2の配線膜を写真製版する際、転写光が第2
の配線膜で反射する方向は段差の形状によって一定では
なく、特に反射率が高い場合、反射光でレジストが感光
するため、下地段差によってレジストパターンが変形し
(以下、ハレーションと呼ぶ)、第2の配線膜の仕上が
り加工精度が悪くなるという問題があった。
Since the conventional semiconductor device is constructed as described above, a stepped portion is inevitably formed in the second insulating film due to the underlying first wiring film 3. When photoengraving the second wiring film at this stepped portion, the transfer light is applied to the second wiring film.
The direction of reflection on the wiring film is not constant depending on the shape of the step, and when the reflectance is particularly high, the resist is exposed to the reflected light, so the resist pattern is deformed by the underlying step (hereinafter referred to as halation), and the second There was a problem in that the finishing accuracy of the wiring film deteriorated.

【0009】この問題を解決するために高融点金属の材
料を反射率の低い材料、例えば窒化チタン(TiN)等
に変更することが考えられるが、積層配線構造の本来の
目的であるストレスマイグレーション耐性及びエレクト
ロマイグレーション耐性の向上の観点から選択されるべ
き材料の選択技を限定する制約要因となり、材料の持つ
本来の特性を十分に生かせていなかった。
In order to solve this problem, it may be possible to change the high-melting point metal material to a material with low reflectivity, such as titanium nitride (TiN), but this would reduce stress migration resistance, which is the original purpose of the layered wiring structure. This has become a constraining factor that limits the selection technique of materials that should be selected from the viewpoint of improving electromigration resistance, and the original characteristics of the materials cannot be fully utilized.

【0010】この発明は上記のような問題点を解消する
ためになされたもので、第2の配線膜での反射、つまり
高融点金属膜での反射を抑え、加工精度の高い半導体装
置およびその製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and suppresses reflection on the second wiring film, that is, reflection on the high-melting point metal film, and provides a semiconductor device with high processing precision and its semiconductor device. The purpose is to provide a manufacturing method.

【0011】[0011]

【課題を解決するための手段】この発明に係る半導体装
置は、高融点金属膜と低抵抗金属膜からなる配線構造に
おいて、高融点金属膜の表面が反射防止膜となる高融点
金属酸化物で被覆されるようにしたものである。
[Means for Solving the Problems] A semiconductor device according to the present invention has a wiring structure consisting of a high melting point metal film and a low resistance metal film, in which the surface of the high melting point metal film is made of a high melting point metal oxide that serves as an antireflection film. It is designed to be covered.

【0012】また、この発明に係る半導体装置の製造方
法は、高融点金属膜と低抵抗金属からなる配線構造を形
成する方法において、低抵抗金属膜を形成する工程と高
融点金属膜を形成する工程と高融点金属膜を酸化する工
程とを含むものである。
[0012] The method for manufacturing a semiconductor device according to the present invention also includes a step of forming a low-resistance metal film and a step of forming a high-melting-point metal film in a method of forming a wiring structure made of a high-melting point metal film and a low-resistance metal. and a step of oxidizing the high melting point metal film.

【0013】[0013]

【作用】この発明における半導体装置は、高融点金属膜
の表面を高融点酸化膜で被覆したことにより、光学的特
性から反射率が低くなるので、下地からの反射によるハ
レーションが防止でき、精度の高い配線加工が可能とな
る。
[Function] In the semiconductor device of the present invention, the surface of the high-melting point metal film is coated with a high-melting point oxide film, which lowers the reflectance due to its optical properties, so it is possible to prevent halation due to reflection from the base, and improve precision. High-quality wiring processing becomes possible.

【0014】また、この発明における半導体装置の製造
方法においては、高融点金属膜を形成する工程の後、高
融点金属膜自身を酸化するようにしたので、製造工程を
1つ追加するだけで容易にその反射率を低減でき、かつ
転写する光の波長に合わせ、最適な反射率を選択できる
ため、下地からの反射によるハレーションが防止され、
パターニング精度が向上する。
In addition, in the method for manufacturing a semiconductor device according to the present invention, the high melting point metal film itself is oxidized after the step of forming the high melting point metal film, so that the manufacturing process can be easily performed by adding one manufacturing step. The reflectance can be reduced, and the optimal reflectance can be selected according to the wavelength of the light to be transferred, preventing halation caused by reflection from the substrate.
Patterning accuracy is improved.

【0015】[0015]

【実施例】以下、この発明の一実施例を図について説明
する。なお、従来の技術の説明と重複する部分は、適宜
その説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Note that the description of parts that overlap with the description of the conventional technology will be omitted as appropriate.

【0016】図1はこの発明の一実施例の半導体装置の
主要構造を示す断面図である。図において、1〜5,5
a,5bは従来のものと同じものである。5cは高融点
金属膜5b上に形成された高融点金属酸化膜等からなる
低反射膜である。
FIG. 1 is a sectional view showing the main structure of a semiconductor device according to an embodiment of the present invention. In the figure, 1 to 5,5
a and 5b are the same as the conventional one. 5c is a low reflection film made of a high melting point metal oxide film or the like formed on the high melting point metal film 5b.

【0017】以下、このような構造の半導体装置の製造
方法を説明する。まず、基板1上にシリコン酸化膜を形
成し、第1の絶縁膜2とする。次いで、シリサイド膜を
0.4μm程度の膜厚に形成してパターニングし、第1
の配線膜3とする。さらに、高温CVD法によるシリコ
ン酸化膜,BPSG膜を所定の膜厚に形成し、第2の絶
縁膜とする。
A method of manufacturing a semiconductor device having such a structure will be explained below. First, a silicon oxide film is formed on a substrate 1 to serve as a first insulating film 2. Next, a silicide film is formed to a thickness of about 0.4 μm and patterned.
The wiring film 3 is as follows. Furthermore, a silicon oxide film and a BPSG film are formed to a predetermined thickness by high-temperature CVD to serve as a second insulating film.

【0018】続いて、第2の絶縁膜4上にAl合金から
なる金属膜を所定の膜厚に形成し、導電膜5aとした後
、引き続き、高融点金属膜、例えばWを形成し、高融点
金属膜5bとする。この後、酸素プラズマにさらすこと
で、高融点金属膜5bの表面の0.01μm程度を酸化
し、高融点酸化膜、つまり酸化タングステン膜(WO膜
)を形成して低反射膜5cとする。このWO膜はi線の
光に対する反射率は25%程度で、W単体の反射率60
%に比べると半分以下となり、低反射膜として広く用い
られているアモルファスシリコン膜の30%,TiN膜
の20%と比較して十分に低い反射率となる。その後、
レジストパターンをマスクとして異方性エッチングし、
レジスト除去後、第2の配線膜5とする。以上の工程を
経て、図1に示す半導体装置が完成する。
Next, a metal film made of an Al alloy is formed to a predetermined thickness on the second insulating film 4 to form a conductive film 5a, and then a high melting point metal film, for example W, is formed to form a high melting point metal film. A melting point metal film 5b is used. Thereafter, by exposing to oxygen plasma, about 0.01 μm of the surface of the high melting point metal film 5b is oxidized to form a high melting point oxide film, that is, a tungsten oxide film (WO film), thereby forming the low reflection film 5c. This WO film has a reflectance of about 25% for i-line light, and the reflectance of W alone is 60%.
%, and the reflectance is sufficiently low compared to 30% for amorphous silicon films and 20% for TiN films, which are widely used as low-reflection films. after that,
Anisotropic etching is performed using the resist pattern as a mask.
After removing the resist, a second wiring film 5 is formed. Through the above steps, the semiconductor device shown in FIG. 1 is completed.

【0019】このような本実施例では、導電膜5aおよ
び高融点金属膜5bからなる第2の配線膜上に低反射膜
5cを形成したので、第2の配線膜のパターニング時に
下地反射の影響が小さくなり、下地段差によらない高い
精度のパターニングが実施できる。
In this embodiment, since the low reflection film 5c is formed on the second wiring film made of the conductive film 5a and the high-melting point metal film 5b, the influence of the reflection of the base layer is eliminated when patterning the second wiring film. becomes smaller, and highly accurate patterning can be performed without depending on the level difference between the substrates.

【0020】また、上記実施例の製造方法によれば、高
融点金属膜を形成した後、それ自身を酸化するようにし
たので、反射率を低減するために新たに増す工程数を最
小限にすることができ、しかも、この低反射膜の存在に
よってパターニング精度が大きく向上する。
Furthermore, according to the manufacturing method of the above embodiment, after forming the high-melting point metal film, the film itself is oxidized, so that the number of newly added steps for reducing the reflectance can be minimized. Furthermore, the presence of this low-reflection film greatly improves patterning accuracy.

【0021】なお、上記実施例では、高融点金属膜とし
てタングステンをあげたが、チタン(Ti),モリブデ
ン(Mo)であってもよく、適宜選択されればよい。
In the above embodiments, tungsten is used as the high-melting point metal film, but titanium (Ti) or molybdenum (Mo) may be used as appropriate.

【0022】また、低反射膜を形成する方法として、酸
素プラズマで酸化する例をあげたが、炉中での酸化,酸
化イオン注入,待機中でのホットプレートベークなどの
方法であってもよく、その方法はこれに限定されず、そ
の膜厚も転写光の波長に合わせて適宜決定されればよい
[0022]Although oxidation with oxygen plasma has been given as an example of a method for forming a low-reflection film, other methods such as oxidation in a furnace, oxide ion implantation, and hot plate baking during standby may also be used. However, the method is not limited to this, and the film thickness may be appropriately determined according to the wavelength of the transfer light.

【0023】さらに、上記実施例では、低反射膜5cと
して高融点金属酸化膜のものを示したが、高融点金属を
窒化した高融点金属窒化膜、例えば窒化タングステン(
WN),窒化チタン(TiN)でもよく、窒化モリブデ
ン(MoN)でも同様の効果を期待できる。
Further, in the above embodiment, a high melting point metal oxide film was used as the low reflection film 5c, but a high melting point metal nitride film obtained by nitriding a high melting point metal, such as tungsten nitride (
WN), titanium nitride (TiN), and molybdenum nitride (MoN) can also be expected to produce similar effects.

【0024】また、高融点金属酸化膜の形成方法,窒化
等の処理方法により、その膜厚で転写する光の波長に対
する反射率が異なるため、表面処理を変えるだけで転写
光に対し最適な反射率を選択することもできる。
Furthermore, depending on the method of forming the high melting point metal oxide film and the treatment method such as nitriding, the reflectance for the wavelength of the transferred light varies depending on the thickness of the film, so simply changing the surface treatment can achieve the optimum reflection for the transferred light. You can also choose the rate.

【0025】さらに、低反射膜5cは水素雰囲気下で高
融点金属を熱処理しても得られ、低反射膜5cの材料,
形成方法は、加工しやすさ,転写光の波長に合わせ適宜
選択されればよい。
Furthermore, the low reflection film 5c can be obtained by heat treating a high melting point metal in a hydrogen atmosphere, and the material of the low reflection film 5c,
The forming method may be appropriately selected depending on the ease of processing and the wavelength of the transfer light.

【0026】さらに、また上記実施例では、配線膜のパ
ターニングについて説明したが、さらに絶縁膜を介し、
上層の配線膜と接続するためのコンタクトホールのパタ
ーニングの際も下層の配線膜からの反射が影響するため
上記実施例と同様の効果を奏する。
Furthermore, in the above embodiment, the patterning of the wiring film was explained, but furthermore, the patterning of the wiring film through the insulation film,
When patterning a contact hole for connection to an upper wiring film, the same effects as in the above embodiments can be achieved because the reflection from the lower wiring film affects the patterning.

【0027】[0027]

【発明の効果】以上のように、この発明に係る半導体装
置によれば、高融点金属膜と低抵抗金属膜からなる積層
配線の高融点金属膜の上を、反射率の低い高融点金属酸
化膜または高融点金属窒化膜で被覆する構造としたので
、配線膜からの反射が抑制され、下地段差の形状によら
ないパターニングが可能となる効果がある。
As described above, according to the semiconductor device of the present invention, a high melting point metal film having a low reflectance is coated on a high melting point metal film of a laminated wiring consisting of a high melting point metal film and a low resistance metal film. Since the structure is coated with a film or a high melting point metal nitride film, reflection from the wiring film is suppressed and patterning can be performed without depending on the shape of the underlying step.

【0028】また、この発明に係る半導体装置の製造方
法によれば、高融点金属膜と低抵抗金属膜からなる積層
配線構造を形成する製造方法において、高融点金属膜を
形成後、それ自身を酸化もしくは窒化して低反射膜を形
成するようにしたので、反射率を低減するために新たに
増す工程数を最小限にすることができ、しかも、この低
反射膜の存在によってパターニング精度が向上するとい
う大きな効果がある。
Further, according to the method for manufacturing a semiconductor device according to the present invention, in the method for forming a laminated wiring structure consisting of a high melting point metal film and a low resistance metal film, after forming the high melting point metal film, the semiconductor device itself is Since a low-reflection film is formed by oxidation or nitridation, the number of additional steps required to reduce reflectance can be minimized, and the presence of this low-reflection film improves patterning accuracy. This has a big effect.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による2層金属配線膜を形
成した半導体装置の主要部を示す断面図である。
FIG. 1 is a sectional view showing the main part of a semiconductor device in which a two-layer metal wiring film is formed according to an embodiment of the present invention.

【図2】従来の半導体装置の製造方法を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

5    第2の配線膜 5a  導電膜 5b  高融点金属膜 5c  低反射膜 5 Second wiring film 5a Conductive film 5b High melting point metal film 5c Low reflection film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上に形成された高融点金属
膜と低抵抗導電膜とからなる積層配線構造を有する半導
体装置において、前記積層配線膜上に、高融点金属酸化
膜、もしくは高融点金属窒化膜が形成され、当該膜はパ
ターニング時の反射光を低減するものであることを特徴
とする半導体装置。
1. A semiconductor device having a laminated wiring structure consisting of a high melting point metal film and a low resistance conductive film formed on a semiconductor substrate, wherein a high melting point metal oxide film or a high melting point metal film is formed on the laminated wiring film. A semiconductor device characterized in that a nitride film is formed, and the film reduces reflected light during patterning.
【請求項2】  半導体基板上に形成された高融点金属
膜と低抵抗導電膜とからなる積層配線構造を有する半導
体装置を製造する方法において、低抵抗導電膜を形成す
る工程と、高融点金属膜を形成する工程と、前記高融点
金属膜を酸化する工程、もしくは窒化する工程を含むこ
とを特徴とする半導体装置の製造方法。
2. A method for manufacturing a semiconductor device having a stacked wiring structure consisting of a high melting point metal film and a low resistance conductive film formed on a semiconductor substrate, including the steps of: forming a low resistance conductive film; A method for manufacturing a semiconductor device, comprising the steps of forming a film and oxidizing or nitriding the high melting point metal film.
JP14145491A 1991-05-16 1991-05-16 Semiconductor device and manufacture thereof Pending JPH04340255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14145491A JPH04340255A (en) 1991-05-16 1991-05-16 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14145491A JPH04340255A (en) 1991-05-16 1991-05-16 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04340255A true JPH04340255A (en) 1992-11-26

Family

ID=15292285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14145491A Pending JPH04340255A (en) 1991-05-16 1991-05-16 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04340255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274149B1 (en) * 1997-12-22 2000-12-15 정선종 Metal thin film patterning method
KR100382999B1 (en) * 1995-12-31 2003-07-07 주식회사 하이닉스반도체 Method for forming metal interconnection of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382999B1 (en) * 1995-12-31 2003-07-07 주식회사 하이닉스반도체 Method for forming metal interconnection of semiconductor device
KR100274149B1 (en) * 1997-12-22 2000-12-15 정선종 Metal thin film patterning method

Similar Documents

Publication Publication Date Title
JP2915828B2 (en) Semiconductor wiring structure and method of manufacturing the same
JPH01252763A (en) Formation of metal silicide
JPS63301548A (en) Manufacture of semiconductor device
JPS616822A (en) Method and structure for inhibiting external diffusion of dopant
JP2000040671A (en) Method for forming metallic wiring of semiconductor element using titanium aluminum nitride anti-reflection film
JPH0658946B2 (en) Method of manufacturing thin film resistor
JPH04340255A (en) Semiconductor device and manufacture thereof
JPH08124926A (en) Formation of wiring
JPH11261059A (en) Manufacture of polymetal gate electrode
JP2001110782A (en) Method of manufacturing semiconductor device
JPH0837145A (en) Fabrication of semiconductor integrated circuit dvice
JPH041497B2 (en)
KR0137813B1 (en) Metal wiring method of mosfet
KR100355861B1 (en) manufacturing method of semiconductor devices
JPH05308057A (en) Manufacture of semiconductor device
JPS59210653A (en) Manufacture of semiconductor device
JPH10270553A (en) Manufacture of semiconductor device
JPH0964184A (en) Forming method of wiring for contact hole of semiconductor device
JP3104441B2 (en) Semiconductor device and its manufacturing method.
JPH09181077A (en) Semiconductor device and manufacturing method thereof
KR100340859B1 (en) Method for fabricating contact hole of semiconductor device
JPH0513364A (en) Manufacture of semiconductor device
JP3048919B2 (en) How to form wiring patterns
JPH05136137A (en) Manufacture of semiconductor device
JPH0410572A (en) Semiconductor integrated circuit device and manufacture thereof