KR100274149B1 - Metal thin film patterning method - Google Patents

Metal thin film patterning method Download PDF

Info

Publication number
KR100274149B1
KR100274149B1 KR1019970071609A KR19970071609A KR100274149B1 KR 100274149 B1 KR100274149 B1 KR 100274149B1 KR 1019970071609 A KR1019970071609 A KR 1019970071609A KR 19970071609 A KR19970071609 A KR 19970071609A KR 100274149 B1 KR100274149 B1 KR 100274149B1
Authority
KR
South Korea
Prior art keywords
metal film
photoresist
film
thickness
metal
Prior art date
Application number
KR1019970071609A
Other languages
Korean (ko)
Other versions
KR19990052160A (en
Inventor
최상수
차한선
김종수
정해빈
김보우
Original Assignee
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정선종, 한국전자통신연구원 filed Critical 정선종
Priority to KR1019970071609A priority Critical patent/KR100274149B1/en
Publication of KR19990052160A publication Critical patent/KR19990052160A/en
Application granted granted Critical
Publication of KR100274149B1 publication Critical patent/KR100274149B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks

Abstract

PURPOSE: A method for patterning a metal layer is provided to form a metal layer of a uniform width by forming and patterning an anti-reflective layer on the metal layer. CONSTITUTION: A metal layer(4) is formed on a semiconductor substrate(5). The metal layer(4) is formed by one of TiW, Al, W, W-Si, Cr, and Ml. An anti-reflective oxide layer(6) and an anti-reflective metal layer(7) are formed sequentially on the metal layer(4). A photoresist(2) is applied on the anti-reflective metal layer(7). A photolithography process is performed. The anti-reflective oxide layer(6) has a thickness of 850 to 1050 angstroms. The anti-reflective oxide layer(7) has a thickness of 20 to 220 angstroms.

Description

금속막 패터닝 방법Metal film patterning method

본 발명은 금속막 패터닝 방법에 관한 것으로, 특히 금속막상에 반사 방지막을 형성하여 패터닝하는 방법에 관한 것이다.The present invention relates to a metal film patterning method, and more particularly, to a method of forming and patterning an antireflection film on a metal film.

근래들어 반도체 산업의 급속한 발전은 메모리 소자의 집적도를 향상시키게 되었고, 이에 따라 금속배선 선폭의 미세화가 더욱 요구되고 있으나, 반도체 소자가 고집적화됨에 따라 기판상에 형성되는 물질층이 다층화되고 있으며, 이에 따라 기판상에 형성되는 금속배선 선폭의 미세화(≤0.35㎛)는 패터닝을 하고자 하는 금속층의 단차 및 반사도에 따라 선폭의 변화가 심하며 공정 여유도를 감소시키는 문제점이 있다.In recent years, the rapid development of the semiconductor industry has improved the density of memory devices, and as a result, the miniaturization of the metal wiring line width is required. However, as the semiconductor devices have been highly integrated, the material layers formed on the substrates have been multilayered. Miniaturization (≤0.35㎛) of the metal wiring line width formed on the substrate has a problem in that the line width is severely changed according to the step height and reflectivity of the metal layer to be patterned, and the process margin is reduced.

도 1 은 종래의 기술에 의한 금속막의 패터닝 방법을 나타낸 단면도로서, 반도체 기판(5)상에 소자를 제조하는 공정 과정에서 생성되는 단차를 형성하는 패턴(3)이 형성되어 있는 기판(5)상에 금속배선을 형성하기 위해 금속막(4)을 증착하면, 상기 패턴(3)에 의해 금속막(4)의 표면에 단차가 형성된다.FIG. 1 is a cross-sectional view showing a patterning method of a metal film according to the related art, on a substrate 5 on which a pattern 3 for forming a step generated in a process of manufacturing an element is formed on a semiconductor substrate 5. When the metal film 4 is deposited in order to form metal wiring on the surface, a step is formed on the surface of the metal film 4 by the pattern 3.

이와 같이 단차가 형성된 금속막(4)위에 포토레지스트(2)를 도포하고 노광 마스크를 사용하여 포토레지스터를 노광하면, 노광광이 금속막(4)의 단차부분에서 포토 레지스트의 측면으로 반사되어 노광되지 않아야 할 포토레지스트(2)의 측면이 노광되어, 도 2에 도시한 바와 같이, 포토레지스트 패턴(2a)의 측면 부분이 설계치 보다 작은폭으로 형성되어, 후속 패터닝 공정에서 균일한 선폭을 가지는 금속배선을 형성할 수 없게 된다.In this way, when the photoresist 2 is applied on the metal film 4 having the step difference and the photoresist is exposed using an exposure mask, the exposure light is reflected from the stepped portion of the metal film 4 to the side surface of the photoresist to be exposed. The side surface of the photoresist 2 which should not be exposed is exposed, and as shown in FIG. 2, the side portion of the photoresist pattern 2a is formed to have a width smaller than the designed value, so that the metal having a uniform line width in the subsequent patterning process Wiring cannot be formed.

따라서 이러한 문제점을 해결하기 위해 포토리소그래피 공정에서 반사 방지막으로서 TiN, SiOxNy:H 및 유기물을 금속막상에 형성하여 금속막에 대한 패터닝 공정을 수행하고 있으나, 방사 방지막으로 사용되고 있는 TiN이나 SiOxNy:H는 증착시 가스의 조성 및 압력 등 쳄버의 분위기에 따라 굴절율이 달라져 반사 방지막으로서의 역할을 충분히 하기 어려우며, 레지스트 특성을 갖는 유기물 역시 도포 공정시의 두께 변화가 심할뿐만 아니라 도포 공정이 복잡한 문제점이 있다.Therefore, in order to solve this problem, in the photolithography process, TiN, SiOxNy: H and organic materials are formed on the metal film to perform patterning on the metal film, but TiN or SiOxNy: H, which is used as the anti-reflection film, is deposited. The refractive index varies depending on the atmosphere of the chamber, such as the composition and pressure of the gas, and thus it is difficult to sufficiently serve as an anti-reflection film. The organic material having resist properties not only has a large change in thickness during the coating process but also has a complicated coating process.

상기 문제점을 해결하기 위해 본 발명은, 금속막 위에서 패터닝 수행시 필요한 반사방지막 구조를 갖도록 균일한 폭을 가지는 금속 배선을 형성할 수 있는 금속막 패터닝 방법을 제공하는, 것을 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide a metal film patterning method capable of forming a metal wiring having a uniform width so as to have an antireflection film structure necessary for performing patterning on the metal film.

상기 목적을 달성하기 위한 본 발명은, 반도체 기판상에 형성되고, 그의 표면에 단차를 가지는 TiW, Al, W, W-Si, Cr, Mo 중 어느 하나로 형성된 금속막상에 반사방지 산화막과 알루미늄으로 형성된 반사 방지 금속막을 차례로 증착하고, 상기 반사 방지 금속막상에 포토레지스트를 도포한 후 포토리소그래피 공정을 포함하는 것을 특징으로 한다.The present invention for achieving the above object is formed of an antireflection oxide film and aluminum on a metal film formed on a semiconductor substrate and formed of any one of TiW, Al, W, W-Si, Cr, Mo having a step on its surface. And depositing an antireflective metal film in sequence, applying a photoresist on the antireflective metal film, and then performing a photolithography process.

또한 상기 산화막(6)을 850~1050Å, 360~760Å 및 880~1080Å의 두께로, 반사방지 금속막(7)을 20~220Å,70~270Å 및 100~300Å의 두께로 형성하고, 포토레지스트를 Ⅰ-선, KrF(248㎚) 및 ArF(193㎚)로 노광하며, 상기 포토리소그래피 공정을 수행하여 포토레지스트 패턴을 형성하고, 포토레지스트 패턴을 식각 마스크로 이용하여 노출된 상기 반사방지 금속막, 반사방지 산화막 및 금속막을 동일 증착기 안의 동일 챔버 내에서 차례로 건식식각하여 금속 배선을 형성하는 부가 공정을 포함하는 것을 특징으로 한다.In addition, the oxide film 6 is formed to a thickness of 850 ~ 1050Å, 360 ~ 760Å and 880 ~ 1080Å, the antireflective metal film 7 to a thickness of 20 ~ 220Å, 70 ~ 270Å and 100 ~ 300Å, and the photoresist The anti-reflective metal film exposed with I-line, KrF (248 nm) and ArF (193 nm), and subjected to the photolithography process to form a photoresist pattern, and using the photoresist pattern as an etching mask; And an additional step of dry etching the antireflective oxide film and the metal film in the same chamber in the same evaporator to form a metal wiring.

제1도는 종래의 기술에 의한 금속막 패터닝 방법을 설명하기 위한 개략 단면도.1 is a schematic cross-sectional view for explaining a metal film patterning method according to the prior art.

제2도는 종래기술에 의한 제1도의 평면 구조도.2 is a plan view of FIG. 1 according to the prior art.

제3도는 본 발명에 의한 금속막 패터닝 방법을 설명하기 위한 개략 단면도.3 is a schematic cross-sectional view for explaining the metal film patterning method according to the present invention.

제4도는 본 발명에 의한 제3도의 평면 구조도.4 is a plan view of FIG. 3 according to the present invention.

제5도는 본 발명에 의한 금속막 패터닝 공정을 순서대로 나타낸 공정 단면도.5 is a cross sectional view of a metal film patterning process according to the present invention in order.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1 : 노광 광 2 : 포토레지스트1: exposure light 2: photoresist

2a : 포토레지스트 패턴 3 : 단차를 형성하는 패턴2a: photoresist pattern 3: pattern forming step

4 : 금속막 5 : 반도체 기판4: metal film 5: semiconductor substrate

6 : 반사방지 산화막 7 : 반사방지 금속막6: antireflection oxide film 7: antireflection metal film

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention;

도 3 은 본 발명의 실시예에 의한 금속막 패터닝 공정을 설명하기 위한 단면구조도를 나타내고, 도 4 는 도 3 의 평면 구조를 나타낸 구조도이다.3 is a cross-sectional structural view for explaining a metal film patterning process according to an embodiment of the present invention, Figure 4 is a structural diagram showing a planar structure of FIG.

본 발명은 상기 도 3에 도시되어 있는 바와 같이, 반도체 소자의 제조 과정을 거쳐 그의 표면상에 단차를 형성하는 패턴(3)이 형성되어 있는 반도체 기판(5)상에 금속막(4)이 형성되어 있고, 상기 금속막(4)상에 반사방지 산화막(6) 및 반사방지 금속막(7)이 반사 방지막으로서 형성되어 있으며, 상기 금속막(7)상에 소정의 폭을 가지는 포토레지스트(2)가 형성되어 있다.As shown in FIG. 3, the metal film 4 is formed on a semiconductor substrate 5 on which a pattern 3 for forming a step is formed on a surface of the semiconductor device. The antireflection oxide film 6 and the antireflection metal film 7 are formed as an antireflection film on the metal film 4, and the photoresist 2 having a predetermined width on the metal film 7 is formed. ) Is formed.

즉 상기 반도체 소자의 기본 구조는, 배선 금속막/산화막/반사방지 금속막의 구조(high reflection layer/low reflection layer/high reflection layer, H/L/H)로 되어 금속막 위에 패터닝을 할 때 필요한 반사방지막 구조로 광의 보강 간섭의 원리에 의해 반사방지막으로 사용된 Al 위에는 반사도를 영(zero)까지 만들 수 있도록 하였다.That is, the basic structure of the semiconductor device is a structure of a wiring metal film / oxide film / antireflection metal film (high reflection layer / low reflection layer / high reflection layer (H / L / H), so that reflection necessary when patterning on the metal film is performed. By the principle of constructive interference of light with the anti-reflective structure, the reflectivity can be made up to zero on Al used as the anti-reflective film.

도 4 는 도 3의 평면 구조를 나타낸 단면도로서, 포토레지스트 패턴(2a)이 균일한 폭으로 형성되어 있음을 나타내고 있다.4 is a cross-sectional view showing the planar structure of FIG. 3, showing that the photoresist pattern 2a is formed in a uniform width.

이하, 본 발명의 실시예를 순서대로 나타낸 도 5의 공정 단면도를 참조하여 본 발명의 실시예를 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described with reference to the process cross-sectional view of FIG. 5 showing an embodiment of the present invention in order.

먼저, 도 5a에 도시된 바와 같이, 반도체 소자를 제조하기 위한 공정을 차례로 진행하여 반도체 기판(5)상에 단차를 형성하는 패턴(3)이 형성되어 있고, 기판의 전면에 금속배선을 형성하기 위한 금속막(4)으로서 TiW, Al, W, W-Si, Cr, Mo 중 어느 하나의 금속이 형성되어 있으며, 상기 패턴(3)에 의해 금속막(4)의 표면상에 단차가 형성된 상태의 기판에서, 상기 금속막(4)을 패터닝하여 금속 배선을 형성하기 위한 공정을 실시한다.First, as shown in FIG. 5A, a pattern 3 for forming a step on the semiconductor substrate 5 is formed by sequentially performing a process for manufacturing a semiconductor device, and forming metal wiring on the entire surface of the substrate. The metal film 4 is formed of any one of TiW, Al, W, W-Si, Cr, and Mo, and a step is formed on the surface of the metal film 4 by the pattern 3. In the substrate, the metal film 4 is patterned to form a metal wiring.

도 5b 는 반도체 기판(5)상에 반사 방지막(6,7)과 포토레지스트(2)가 형성된 반도체 기판의 단면을 나타낸 것으로서, 금속막(4)상에 반사 방지막으로서 산화막(6)을 증착하고, 산화막(6)상에 TiW, Al, W, W-Si, Cr, Mo 중 어느 하나의 금속, 바람직하게는 알루미늄(Al)을 증착하여 반사방지 금속막(7)을 형성한다.FIG. 5B is a cross-sectional view of the semiconductor substrate on which the antireflection films 6 and 7 and the photoresist 2 are formed on the semiconductor substrate 5, and the oxide film 6 is deposited as the antireflection film on the metal film 4. The antireflective metal film 7 is formed by depositing any one of TiW, Al, W, W-Si, Cr, and Mo, preferably aluminum (Al), on the oxide film 6.

이때, 상기 반사방지 금속막(7)상에 형성되는 포토레지스트를 Ⅰ-선(365㎚)으로 노광하고자 할 경우에는 상기 산화막(6)의 두께를 850~1050Å의 두께로 형성하고, 반사방지 금속막(7)을 20~220Å의 두께로 형성하며, 상기 포토레지스트를 KrF(248㎚)을 이용하여 노광할 경우에는 상기 산화막(6)의 두께를 360~760Å의 두께로 형성하고, 반사방지 금속막(7)을 70~270Å의 두께로 형성하며, 상기 포토레지스트를 ArF(193㎚)로 노광하고자 할 경우에는 상기 산화막(6)의 두께를 880~1080Å의 두께로 형성하고, 반사방지 금속막(7)을 100~300Å의 두께로 형성한 후 상기 금속막(4)을 패터닝하기 위한 식각 마스크 패턴을 형성하기 위한 물질로서 포토레지스트(2)를 도포하고, 금속 배선 패턴용 포토 마스크를 이용하여 상기 포토레지스트(2)를 노광광(1)으로 노광한다.At this time, in the case where the photoresist formed on the antireflective metal film 7 is to be exposed to I-line (365 nm), the oxide film 6 is formed to a thickness of 850 to 1050 GPa, and the antireflective metal is formed. The film 7 is formed to a thickness of 20 to 220 GPa, and when the photoresist is exposed using KrF (248 nm), the thickness of the oxide film 6 is formed to a thickness of 360 to 760 GPa, and the antireflection metal The film 7 is formed to a thickness of 70 to 270 GPa, and when the photoresist is to be exposed to ArF (193 nm), the thickness of the oxide film 6 is formed to be 880 to 1080 GPa, and the antireflective metal film is formed. After forming (7) to a thickness of 100 to 300 kPa, the photoresist 2 is applied as a material for forming an etch mask pattern for patterning the metal film 4, and then a photomask for metal wiring pattern is used. The photoresist 2 is exposed to the exposure light 1.

이때 상기 포토레지스트(2)는 노광 공정시 금속막(4)상에 형성된 반사 방지막에 의해 단차부분에서 노광광의 반사가 방지되어 금속막(4)의 단차 부분에서 포토레지스트(2)의 측면으로의 반사가 발생하지 않음으로서 포토레지스트(2)는 포토 마스크의 패턴 형상에 따라 균일한 폭으로 노광된다.At this time, the photoresist 2 is prevented from reflecting the exposure light at the stepped portion by the anti-reflection film formed on the metal film 4 during the exposure process, so that the photoresist 2 is moved from the stepped portion of the metal film 4 to the side surface of the photoresist 2. Since no reflection occurs, the photoresist 2 is exposed to a uniform width according to the pattern shape of the photo mask.

이어서, 도 5c에 도시한 바와 같이, 노광광에 의해 노광된 포토레지스트의 부분을 제거하여 소정의 폭을 가지는 포토레지스트 패턴(2a)을 형성한다.Subsequently, as shown in Fig. 5C, a portion of the photoresist exposed by the exposure light is removed to form a photoresist pattern 2a having a predetermined width.

이어서, 도 5d에 도시한 바와 같이, 상기 포토레지스트 패턴(2a)을 식각 마스크로 사용하여 노출된 반사방지 금속막(7), 산화막(6) 및 금속막(4)을 차례로 식각하여 상기 포토레지스트 패턴(2a)과 동일한 폭을 가지는 금속 배선(4a)을 형성하고, 도 5e에 도시한 바와 같이, 포토레지스트 패턴(2a)을 제거하고, 금속 배선(4a)상에 잔존하는 반사방지 금속막(7)과 산화막(6)을 제거한다. 이때, 상기 반사방지 금속막(7)을 Al로 형성하였을 경우에는 인산 : 칠산 : 초산 : 순수 = 16 : 1 : 1 :2의 식각 용액을 사용하여 Al을 식각한다.Subsequently, as shown in FIG. 5D, the exposed antireflective metal film 7, the oxide film 6, and the metal film 4 are sequentially etched using the photoresist pattern 2a as an etching mask. The metal wiring 4a having the same width as the pattern 2a is formed, as shown in FIG. 5E, the photoresist pattern 2a is removed, and the antireflective metal film remaining on the metal wiring 4a ( 7) and the oxide film 6 are removed. In this case, when the anti-reflective metal film 7 is formed of Al, Al is etched using an etching solution of phosphoric acid: chilic acid: acetic acid: pure water = 16: 1: 1: 1.

상기한 공정 방법에서 반사방지 금속막(7)으로서 알루미늄을 증착하고, Ⅰ-선 노광공정을 적용한 경우, 단차 부분에서도 0.5㎛의 폭을 가지는 금속 배선이 이상적으로 형성되었지만, 반사 방지막이 적용되지 않은 경우는 0.5㎛의 선폭을 가지는 금속 배선이 형성되지도 않았으며, 단차부분에서 1.0㎛ 선폭은 형성되었지만 단차 부위에서 선폭의 변화가 심하여 공정 여유도가 없었다.In the above process method, when aluminum was deposited as the antireflective metal film 7 and the I-ray exposure process was applied, a metal wiring having a width of 0.5 μm was ideally formed even in the stepped portion, but the antireflective film was not applied. In this case, a metal wiring having a line width of 0.5 μm was not formed, and a 1.0 μm line width was formed at the stepped portion, but there was no process margin due to the change of the line width at the stepped portion.

본 발명에서는 반도체 기판(5)상에 알루미늄 금속막(4)/반사방지막 (SiO2/Al)(6,7) /포토레지스트(2)가 차례로 적층된 구조에서 포토레지스트(2)의 노광시 반사가 "0"이 되도록 Al, SiO2의 두께를 최적화하여 공정을 수행하였다.In the present invention, the exposure of the photoresist 2 in a structure in which an aluminum metal film 4, an antireflection film (SiO 2 / Al) (6, 7), and a photoresist 2 are sequentially stacked on the semiconductor substrate 5 The process was performed by optimizing the thicknesses of Al and SiO2 such that the reflection was "0".

상기와 같이 본 발명은 동일 증착기 안에서 금속막(Al)을 증착한 후 산화막 증착 및 다시 동일막 증착을 동일 챔버 내에서 실시할 수 있어 공정이 매우 용이하고, 생산성이 빠른 장점을 갖는다.As described above, the present invention can deposit the metal film Al in the same evaporator, and perform oxide film deposition and the same film deposition in the same chamber, and thus, the process is very easy and the productivity is fast.

본 발명에서 반사 방지막으로 사용한 알루미늄과 산화막의 증착은 기존 반도체 소자 제작에 많이 사용된 장비인 스퍼터나 증착기로 형성이 가능하고, 또한 공정 변수에 따른 굴절율 등의 변화가 적어 반사 방지막으로의 역할을 365㎚, 248㎚ 및 193㎚ 광원에서도 충분히 수행할 수 있어 리소그래피의 공정 여유도를 많이 증가시킬 수 있다.In the present invention, the deposition of the aluminum and the oxide film used as the anti-reflection film can be formed by the sputter or the evaporator, which is a equipment used in the conventional semiconductor device fabrication, and also has a small change in the refractive index according to the process variables, thereby acting as an anti-reflection film 365 It is possible to perform sufficiently even in the nm, 248 nm and 193 nm light sources, which can greatly increase the process margin of lithography.

본 발명은 단차를 가지는 금속막상에 반사 방지막을 형성하고, 식각 마스크로서 사용되는 포토레지스트를 노광함으로서, 금속막의 단차부분에서의 노광광의 반사를 방지하여 균일한 폭을 갖는 금속 배선을 형성할 수 있고, 반사 방지막으로서 사용되는 알루미늄과 산화막을 기존 반도체 소자 제작에 많이 사용되는 장비인 스퍼터나 증착기로 형성이 가능하며, 또한 공정 변수에 따른 굴절율 등의 변화가 적어 반사 방지막의 역활을 365㎚, 248㎚ 및 193㎚ 광원에서도 충분히 수행할 수 있으므로 단차를 가지는 금속막의 패터닝 공정시 여유도를 증가시킬 수 있음에 따라 본 발명은 상기 반사방지막 위에서는 반사율을 영(zero)으로 할 수 있어 반사율 패턴에 큰 잇점을 갖을 수 있는 효과가 있다.According to the present invention, by forming an anti-reflection film on a metal film having a step difference and exposing a photoresist used as an etching mask, reflection of exposure light at the step portion of the metal film can be prevented to form a metal wiring having a uniform width. It is possible to form aluminum and oxide film used as anti-reflection film by sputter or evaporator, which is a equipment commonly used in the fabrication of existing semiconductor devices. Also, since the change of refractive index according to process variables is small, the role of anti-reflection film is 365 nm and 248 nm. And since it can be sufficiently performed even in the 193nm light source can increase the margin in the patterning process of the metal film having a step, the present invention can make the reflectance to zero on the anti-reflection film has a great advantage in the reflectance pattern There is an effect that can have.

Claims (5)

반도체 기판상에 형성되고, 그의 표면에 단차를 가지는 TiW, Al, W, W-Si, Cr, Mo 중 어느 하나로 형성된 금속막상에 반사방지 산화막과 알루미늄으로 형성된 반사 방지 금속막을 차례로 증착하고, 상기 반사 방지 금속막상에 포토레지스트를 도포한 후 포토리소그래피 공정을 수행하는 것을 특징으로 하는 금속막 패터닝 방법.An antireflection oxide film and an antireflection metal film formed of aluminum are sequentially deposited on the metal film formed on the semiconductor substrate and formed of any one of TiW, Al, W, W-Si, Cr, and Mo having a step on the surface thereof, and the reflection A metal film patterning method, characterized by performing a photolithography process after applying a photoresist on a protective metal film. 제 1 항에 있어서, 상기 산화막(6)을 850~1050Å의 두께로, 반사방지 금속막(7)을 20~220Å의 두께로 형성하고, 포토레지스트를 1-선(365㎚)으로 노광하는 것을 특징으로 하는금속막 패터닝 방법.2. The method of claim 1, wherein the oxide film 6 is formed to a thickness of 850 to 1050 GPa, the antireflective metal film 7 is formed to a thickness of 20 to 220 GPa, and the photoresist is exposed to 1-line (365 nm). A metal film patterning method characterized by the above-mentioned. 제 1 항에 있어서, 상기 산화막(6)을 360~760Å의 두께로, 반사 방지 금속막(7)을 70~270Å의 두께로 형성하고, 포토레지스트를 KrF(248㎚)를 이용하여 노광하는 것을 특징으로 하는 금속막 패터닝 방법.2. The method of claim 1, wherein the oxide film 6 is formed to a thickness of 360 to 760 kPa, the antireflective metal film 7 is formed to a thickness of 70 to 270 kPa, and the photoresist is exposed using KrF (248 nm). A metal film patterning method characterized by the above-mentioned. 제 1 항에 있어서, 상기 산화막(6)을 880~1080Å의 두께로, 상기 반사방지 금속막(7)을 100~300Å의 두께로 형성하고, 포토레지스트를 ArF(193㎚)로 노광하는 것을 특징으로 하는 금속막 패터닝 방법.2. The method of claim 1, wherein the oxide film 6 is formed to a thickness of 880 to 1080 GPa, the antireflective metal film 7 is formed to a thickness of 100 to 300 GPa, and the photoresist is exposed to ArF (193 nm). Metal film patterning method. 제 1 항에 있어서, 상기 포토리소그래피 공정을 수행하여 포토레지스트 패턴을 형성하고, 포토레지스트 패턴을 식각 마스크로 이용하여 노출된 상기 반사방지 금속막, 반사방지 산화막 및 금속막을 동일 증착기 안의 동일 챔버 내에서 차례로 건식식각하여 금속 배선을 형성하는 부가 공정을 포함하는 것을 특징으로 하는 금속막 패터닝 방법.The method of claim 1, wherein the photolithography process is performed to form a photoresist pattern, and the exposed antireflective metal film, antireflective oxide film, and metal film are exposed in the same chamber in the same deposition apparatus using the photoresist pattern as an etching mask. A metal film patterning method comprising the step of dry etching in turn to form a metal wiring.
KR1019970071609A 1997-12-22 1997-12-22 Metal thin film patterning method KR100274149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970071609A KR100274149B1 (en) 1997-12-22 1997-12-22 Metal thin film patterning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970071609A KR100274149B1 (en) 1997-12-22 1997-12-22 Metal thin film patterning method

Publications (2)

Publication Number Publication Date
KR19990052160A KR19990052160A (en) 1999-07-05
KR100274149B1 true KR100274149B1 (en) 2000-12-15

Family

ID=19528071

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970071609A KR100274149B1 (en) 1997-12-22 1997-12-22 Metal thin film patterning method

Country Status (1)

Country Link
KR (1) KR100274149B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533967B1 (en) * 2001-12-17 2005-12-07 주식회사 하이닉스반도체 A forming method of pattern using ArF photolithography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429029B (en) * 2019-08-23 2022-02-18 合肥维信诺科技有限公司 Photoresist pattern preparation method and array substrate preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340255A (en) * 1991-05-16 1992-11-26 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340255A (en) * 1991-05-16 1992-11-26 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533967B1 (en) * 2001-12-17 2005-12-07 주식회사 하이닉스반도체 A forming method of pattern using ArF photolithography

Also Published As

Publication number Publication date
KR19990052160A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US5234780A (en) Exposure mask, method of manufacturing the same, and exposure method using the same
KR100242364B1 (en) Photo mask and fabrication process therefor
US6624068B2 (en) Polysilicon processing using an anti-reflective dual layer hardmask for 193 nm lithography
US5902493A (en) Method for forming micro patterns of semiconductor devices
US6410421B1 (en) Semiconductor device with anti-reflective structure and methods of manufacture
KR20050106478A (en) A method of patterning photoresist on a wafer using a reflective mask with a multilayer arc
JPH10186632A (en) Blank for halftone type phase shift mask and halftone type phase shift mask
EP0582308B1 (en) Photomask blank and phase shift photomask
JP3478067B2 (en) Halftone phase shift mask and blank for halftone phase shift mask
KR100274149B1 (en) Metal thin film patterning method
JPH11125896A (en) Photomask blank and photomask
JP4483355B2 (en) Ultraviolet exposure mask blank, mask and transfer method
KR20000006152A (en) Method for fabricating semiconductor devices
CN112034674A (en) Method for preparing phase shift mask
KR100239960B1 (en) Phase shift photomask
JP3542334B2 (en) Method for manufacturing semiconductor device
KR100249726B1 (en) Phase shift photo mask
KR0174951B1 (en) How to form a fine pattern
JP3468226B2 (en) Method for manufacturing semiconductor device
KR100463170B1 (en) Manufacturing method of anti reflection coat in semiconductor device
JPH07281414A (en) Phase shift mask blank and phase shift mask as well as its production
US20020168838A1 (en) Method for performing lithographic process to a multi-layered photoresist layer
KR0177869B1 (en) High Resolution Photolithography Method and Structure
KR100808050B1 (en) A forming method of pattern using ArF photolithography
JP3498066B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070831

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee