JPH01140652A - Three-dimensional semiconductor device - Google Patents

Three-dimensional semiconductor device

Info

Publication number
JPH01140652A
JPH01140652A JP62300645A JP30064587A JPH01140652A JP H01140652 A JPH01140652 A JP H01140652A JP 62300645 A JP62300645 A JP 62300645A JP 30064587 A JP30064587 A JP 30064587A JP H01140652 A JPH01140652 A JP H01140652A
Authority
JP
Japan
Prior art keywords
chip
semiconductor chip
layer
chips
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62300645A
Other languages
Japanese (ja)
Inventor
Mitsuo Matsunami
松浪 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62300645A priority Critical patent/JPH01140652A/en
Publication of JPH01140652A publication Critical patent/JPH01140652A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To enable high density structure and high speed operation of a chip element, by bonding a semiconductor chip of arbitrary shape on which circuits elements are formed to a lower semiconductor chip region, and connecting circuit elements in the lower semiconductor chip region and circuit elements on the upper semiconductor chip by using electrode, via a chip side surface. CONSTITUTION:When the respective resistors R1-R3 of the respective IC chips 104-106 of a hybrid IC are made to correspond with the respective resistors R1-R3 of the respective IC chip 104-106, and each pad or the like is connected via side surface wirings 108, these become equivalent to each other. Further, by bonding the respective IC chips 104-106, and integrating them in a unified body, from technological concept viewpoint, an IC chip composed of three-layers can be formed, thereby enabling high density structure and high speed operation of a chip element.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は回路素子が形成された半導体単結晶層を多重構
造とした立体型半導体装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in a three-dimensional semiconductor device having a multilayer structure of semiconductor single crystal layers on which circuit elements are formed.

〈従来の技術〉 近年、′電子機器は小型化、システム化、薄型rヒ、軽
量化の指向が強く、機器を構成する電子部品の高密度化
の要求は強い。電子機器の小型化、システム化、薄型化
、軽量化をはかる有力な電子部品として、ハイブリッド
ICがある。
<Prior Art> In recent years, there has been a strong trend toward miniaturization, systemization, thinness, and weight reduction of electronic devices, and there is a strong demand for higher density of electronic components that constitute the devices. Hybrid ICs are a powerful electronic component for making electronic devices smaller, systematized, thinner, and lighter.

通常ハイブリッドICは、第1\図に示すととくセラミ
ック等の基板101上に、Agペースト等よりなる基板
配線102、AgPdペースト等よりなる抵抗等の受動
素子103が形成された後、各々のICチップ104,
105,106がダイボンドされ、ワイヤーポンド10
7等により各々のIC104,105,106の1顆パ
ットと基板悶己線102が接続されて構成される。
Normally, in a hybrid IC, as shown in FIG. chip 104,
105, 106 are die-bonded, wire pound 10
7 etc., one pad of each IC 104, 105, 106 is connected to the substrate wire 102.

〈発明が解決しようとする問題点〉 ところが従来のハイブリッドIC等に於ては、皇 (1)基板10Σ上にそれぞれの抵抗等の受動素子10
3とIC等の能動素子10J’、104゜105が平面
的に配置構成されるため、素子の高密度化は困難で小型
化するにも限度がある。
<Problems to be solved by the invention> However, in conventional hybrid ICs, etc., passive elements 10 such as respective resistors are placed on the substrate 10Σ.
3 and active elements 10J', 104.degree. 105 such as ICs are arranged in a planar manner, so it is difficult to increase the density of the elements and there is a limit to miniaturization.

(2)ICチップ104,105,106等に比較して
かなり大きな基板101が必要で、かつ配線も印刷等に
よるものが多く、線巾も広いため、基板101全構成す
る多くの材料費が必要である゛。
(2) The board 101 is considerably larger than the IC chips 104, 105, 106, etc., and the wiring is often printed, etc., and the line width is wide, so a large amount of material costs are required to construct the entire board 101. It is.

(3)印刷による場合焼成工程等の高温プロセスが必要
で多くの光熱動力費を要す。
(3) Printing requires high-temperature processes such as a firing process, which requires a lot of electricity, heat, and power costs.

(4)基板101上に百2線を作製し、構成する之め、
配線長が長くなり高速化に難点がある。
(4) Producing and configuring 102 lines on the substrate 101,
The wiring length becomes long, making it difficult to increase speed.

(5)  ワイヤーボンド等の接続ポイントが多く、か
つメカニカルな接続となるため、信頼性に問題があると
ともに工数が大でコスト高となる。
(5) Since there are many connection points such as wire bonds and the connection is mechanical, there are problems with reliability and the number of man-hours is large, resulting in high costs.

等の問題点を有していた。It had the following problems.

本発明は、上記の点に鑑みて創案されたものであり、上
記従来の欠点を除去した立体型半導体装置を提供するこ
とを目的としている。
The present invention has been devised in view of the above points, and an object of the present invention is to provide a three-dimensional semiconductor device that eliminates the above-mentioned conventional drawbacks.

〈問題点を解決するための手段〉 上記の目的?達成するため、本発明の立体型半導体装置
は、回路素子の形成された下層半導体チップと、この下
層半導体チップ上に接着層を介して設けられた回路素子
の形成された上層半導体チップと、上記の上層半導体チ
ップの電極と下層半導体チップの電極とを上記の上層半
導体チップの側面を介して接続する導体層とt備えてな
るように構成している。
<Means to solve the problem> The above purpose? In order to achieve this, the three-dimensional semiconductor device of the present invention includes a lower layer semiconductor chip on which a circuit element is formed, an upper layer semiconductor chip on which a circuit element is formed and provided on the lower layer semiconductor chip via an adhesive layer, and the above-mentioned three-dimensional semiconductor device. The semiconductor device is configured to include a conductor layer that connects the electrodes of the upper layer semiconductor chip and the electrodes of the lower layer semiconductor chip through the side surface of the upper layer semiconductor chip.

即ち本発明に於ける立体型半導体装置は、回路素子が形
成された下層半導体チップ領域の上層に、別個に回路素
子が形成さ7′1.た上l−半導体チツブを少なくとも
1ヶ以上接着し、かつその上梗半導体チップの側面を介
して下層半導体チップ領域に形成された回路素子と上層
半導体チップに形成された回路素子とを電極層にて接1
読し之ことを特徴とし、父上層半導体チップが下層半導
体チップ領域に接着する時は、下層半導体領域は、ウェ
ハ内に含まルるように構成している。
That is, in the three-dimensional semiconductor device according to the present invention, circuit elements are separately formed in an upper layer of a lower semiconductor chip region in which circuit elements are formed. On top of that, at least one semiconductor chip is bonded, and the circuit element formed in the lower layer semiconductor chip region and the circuit element formed on the upper layer semiconductor chip are connected to the electrode layer through the side surface of the semiconductor chip. contact 1
The method is characterized in that when the father layer semiconductor chip is bonded to the lower layer semiconductor chip region, the lower layer semiconductor region is configured to be contained within the wafer.

〈作 用〉 本発明の技術思想概念としては、第12図に示すハイブ
リッドICの各ICチップ104,105゜106の各
抵抗R1−R3等を第10図に示す各ICチップ104
,105,106の各抵抗R】〜R3に対応させ、IC
チップの側面部配線108を介して各パッド部等を接続
すれば・、第12図と第10図とは等価となる。さらに
第10図の各ICチップ104,105.106を接着
し、技術概念的に1体化す九ば第11図に示す3層より
なるICチップを形成することができる。
<Function> The technical concept of the present invention is that each resistor R1 to R3 of each IC chip 104, 105° 106 of the hybrid IC shown in FIG. 12 is connected to each IC chip 104 shown in FIG.
, 105, 106, and the IC
12 and FIG. 10 become equivalent if the pads and the like are connected via the side wiring 108 of the chip. Further, the IC chips 104, 105, and 106 shown in FIG. 10 are bonded together to form an IC chip consisting of three layers shown in FIG. 11, which is integrated from a technical concept.

結果的には第12図に示すハイブリッドICと第11図
に示す多重化したICは等価となる。
As a result, the hybrid IC shown in FIG. 12 and the multiplexed IC shown in FIG. 11 are equivalent.

以下、具体的な本発明に於ける多重化し之半導体チップ
の製造法を説明する。
Hereinafter, a specific method of manufacturing a multiplexed semiconductor chip according to the present invention will be explained.

下層及び上層の各半導体チップの回路素子の形成及び必
要に応じ各半導体チップ上の多層配線、抵抗等の受動素
子の形成は、通常の二次元半導体集積回路が作製される
プロセスと同様の工程で行なう。
The formation of circuit elements for each of the lower and upper layer semiconductor chips and, if necessary, the formation of passive elements such as multilayer wiring and resistors on each semiconductor chip are performed in the same process as that used for manufacturing ordinary two-dimensional semiconductor integrated circuits. Let's do it.

先ず回路素子又は必要に応じ多層配線体及び抵抗等の受
動素子が形成された半導体ウェハの上部側よりチップ境
界部に所定の深さまで溝を形成し、その溝の側面部を5
i02等の絶縁膜で被覆後、表面側に医護基体を形成し
、裏面側より所定の厚み壕で平滑加工して、溝により各
チップを分離する。その後保護基体を切jrff L、
各チップに分割する。
First, a groove is formed to a predetermined depth at the chip boundary from the upper side of the semiconductor wafer on which circuit elements or multilayer wiring bodies and passive elements such as resistors are formed if necessary, and the side surfaces of the groove are
After coating with an insulating film such as i02, a medical base is formed on the front side, and smoothing is performed from the back side with trenches of a predetermined thickness, and each chip is separated by a groove. After that, cut the protective substrate and press
Divide into each chip.

次に回路素子又は必要に応じ多層配線体及び抵抗等の受
動素子が形成されたウェハ内に含まれた状態の下層半導
体チップ領域の表面側、もしくは上層半導体チップの一
方、又は両面に接M層を形成し、上層半導体チップを下
層半導体チップ領域の所定の位置に所定の圧力、温度等
の条件にて誘着する。
Next, the M layer is attached to the surface side of the lower layer semiconductor chip region included in the wafer on which circuit elements or, if necessary, passive elements such as multilayer wiring bodies and resistors are formed, or to one or both sides of the upper layer semiconductor chip. is formed, and the upper layer semiconductor chip is attracted to a predetermined position in the lower layer semiconductor chip area under predetermined conditions such as pressure and temperature.

その褒不要になった保護基体層を除去した後、蒸若等の
薄膜技術、ホトエッチ技術、メツキ技術、選択エツチン
グ技filf等にて上層半導体チップの側面を介して上
層半導体チップと下層半導体チップ全所定の電極パター
ンにて接続する。その後、上層半導体チップに必要に応
じ所定の処置をほどこした後、それを下層半導体領域と
して、さらにその上層に回路素子が組込”よルた上層半
導体チップに上記の工程を繰返すことによ!73層以上
の立体型半導体装置を作製することができる。
After removing the protective base layer that is no longer needed, the upper and lower semiconductor chips are completely removed through the side surface of the upper semiconductor chip using a thin film technique such as evaporation, photoetching, plating, selective etching, etc. Connect using a predetermined electrode pattern. After that, after applying a prescribed treatment as necessary to the upper layer semiconductor chip, it is used as a lower layer semiconductor region, and circuit elements are further incorporated in the upper layer, and the above process is repeated for the ``twisted'' upper layer semiconductor chip! A three-dimensional semiconductor device having 73 or more layers can be manufactured.

〈実施例〉 以下、図面を参照して本発明の実1施例を詳細に説明す
る。
<Embodiment> Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.

実施例工 本発明の一実施例を第1図乃至第7図に基づいて説明す
れば、以下の通りである。
EMBODIMENT OF THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

まず、第1図は、−層目となる半導体ウェハの状、態?
示し、単結晶シリコン1に通常の二次元半導体集積回路
を形成する公知の方法にて、MOSFETやバイポーラ
素子を組込み、その上を絶縁膜2で被覆し、所定パター
ンの第−層配線体3を形成し、さらにその上に絶縁膜4
、所定パターンの薄膜抵抗体5、絶縁膜6、第二層配線
体7、表面保護の絶縁膜8を形成すると共にチップ境界
部9全形成して構成している。
First, Figure 1 shows the state of the -th layer semiconductor wafer.
MOSFETs and bipolar elements are incorporated into the single crystal silicon 1 by a known method of forming a normal two-dimensional semiconductor integrated circuit, and then an insulating film 2 is coated thereon, and a third layer wiring body 3 in a predetermined pattern is formed. and then an insulating film 4 is formed thereon.
, a predetermined pattern of a thin film resistor 5, an insulating film 6, a second layer wiring body 7, and a surface protection insulating film 8 are formed, and the chip boundary portion 9 is entirely formed.

より具体的には、先ず単結晶シリコン1に公知のイオン
注入技術や熱拡散技術等?用いた二次元集積回路の通常
の製法にてMOS F ETやバイポーラ素子を組込む
。絶縁膜2はSiO□やSiN等よりなり、素子を組込
む時に熱酸化等によシ、または必要に応じ低温気相成長
法や、プラズマCVD法等により形成する。配線体3は
Al。
More specifically, first of all, what is the known ion implantation technology, thermal diffusion technology, etc. for single crystal silicon 1? MOS FETs and bipolar elements are incorporated using the usual manufacturing method of the two-dimensional integrated circuit used. The insulating film 2 is made of SiO□, SiN, or the like, and is formed by thermal oxidation or the like when the device is assembled, or by low-temperature vapor phase growth, plasma CVD, or the like if necessary. The wiring body 3 is made of Al.

Mo+W、 WSi2.T i S i2等の導電膜よ
りなり、必要に応じ絶縁膜2にホトエッチ技術、選択エ
ツチング技術により窓開けを行った後、ウェハ全面に低
圧CVD法電子電子ビーム蒸着法パッター法等により導
電膜を形成した後、ホトエッチ技術、選択エツチング技
術により所定パターンで作製する。
Mo+W, WSi2. The insulating film 2 is made of a conductive film such as T i S i2, and after opening a window in the insulating film 2 by photo-etching or selective etching as necessary, a conductive film is formed on the entire surface of the wafer by low-pressure CVD, electron beam evaporation, puttering, etc. After forming, a predetermined pattern is produced using photoetching technology and selective etching technology.

配線体3の上の絶縁膜4はS ioz、S iN等より
なり低温気相成長法、低圧CVD法等により形成する。
The insulating film 4 on the wiring body 3 is made of Sioz, SiN, etc., and is formed by low-temperature vapor deposition, low-pressure CVD, or the like.

薄膜抵抗5はNiCr、Cr5iO等よりなり、絶縁膜
4上にスパッター法、電子ヒーム蒸着法等で所定の下地
温度の下でウェハ全面に所望の膜厚で被覆後、ホトエッ
チ技術、選択エツチング技術等により所定のパターンに
形成する。
The thin film resistor 5 is made of NiCr, Cr5iO, etc., and is coated on the entire surface of the wafer with a desired thickness by sputtering, electron beam evaporation, etc. at a predetermined base temperature on the insulating film 4, and then subjected to photoetching, selective etching, etc. to form a predetermined pattern.

しかる後、必要に応じ所定の温度、時間にて、安定化処
理を行う。
Thereafter, stabilization treatment is performed at a predetermined temperature and time as necessary.

絶、1剰漢6は抵抗体5の保護膜及び多層配線体の;會
間絶縁膜となるものであって、S ioz、SiN等よ
りなり、低温気相成長法、低圧CVD法等により形成す
る。その後、ホトエッチ、技術、選択エツチング技術等
により所定のパターンで配線体3上の絶縁膜4.6及び
抵抗体5上の絶縁膜6を除去し、窓開けを行った後、配
線体3上に作製した場合と同様にして、5i02.Si
N等よシなる絶縁膜8′f:形成する。その後パッド部
に相当する部分の配線体3及びチップ境界部9上の絶縁
膜4゜6.8をホトエッチ技術、選択エツチング技術等
により順次除去し、木実施例の一層目つエバを用意する
6 is a protective film for the resistor 5 and an insulating film for the multilayer wiring body, and is made of SiOZ, SiN, etc., and is formed by low-temperature vapor deposition, low-pressure CVD, etc. do. Thereafter, the insulating film 4.6 on the wiring body 3 and the insulating film 6 on the resistor 5 are removed in a predetermined pattern by photoetching, technology, selective etching technology, etc., and after opening a window, the insulation film 4.6 on the wiring body 3 is removed. 5i02. Si
An insulating film 8'f made of N or the like is formed. Thereafter, the portions of the wiring body 3 corresponding to the pad portions and the insulating film 4°6.8 on the chip boundary portion 9 are successively removed by photoetching, selective etching, etc., to prepare the first layer of the wood embodiment.

第2図は第2層目となるチップのウェハを示し、単結晶
シリコン10に一層目つエバと同様に通常の二次元半導
体集積回路を形成するとと(、MOSFET、バイポー
ラ素子を組込み、その上を絶縁膜11で被覆し、その上
に所定パターンの配線体12全形成し、さらにその上に
保護用絶縁膜13を形成し、更にチップ境界部の溝14
を形成し、更に溝14の上等を被覆する。絶縁11々1
5を形成することにより構成している。
FIG. 2 shows a wafer for a second-layer chip, and assumes that a normal two-dimensional semiconductor integrated circuit is formed on the single-crystal silicon 10 in the same way as the first-layer evaporator (with MOSFETs and bipolar elements incorporated therein). is coated with an insulating film 11, a predetermined pattern of wiring bodies 12 is entirely formed thereon, a protective insulating film 13 is formed thereon, and a groove 14 at the chip boundary is formed.
, and further covers the upper part of the groove 14, etc. Insulation 11 1
5.

絶縁膜11及び13ばS ioz 、S iN2等より
なり、配線体12はA6 、Mo、W、WS i2 。
The insulating films 11 and 13 are made of Sioz, SiN2, etc., and the wiring body 12 is made of A6, Mo, W, WS i2.

T i S i2等の導電体よりなシ、第1図に於ける
絶縁膜2,4,6.門己線体3.7を形成した場合と同
様にして作製する。溝14は、ダイシング等のメカニカ
ルな加工により、またil″l:HF、HNO3系の等
方向エツチングにより所定の深さに作製したもので、深
さは0〜200μm程度となしている。絶プ碌膜15は
溝14の側面等を覆うものであって、5iOz、SiN
等よりなり、絶縁膜13等と同様にして作製する。
The insulating films 2, 4, 6, etc. in FIG. It is produced in the same manner as in the case of forming the gate line body 3.7. The groove 14 is made to a predetermined depth by mechanical processing such as dicing or isodirectional etching using il''l:HF, HNO3, and the depth is about 0 to 200 μm. The insulating film 15 covers the side surfaces of the groove 14, and is made of 5iOz, SiN.
It is made in the same manner as the insulating film 13 and the like.

その後第3図に示すごとく、ワックス16でガラス等よ
りなる保持基体17に単結晶シリコン10を接着し、裏
面側よりラッピング、ポリッシング等のメカニカルな手
法により、またばに%H。
Thereafter, as shown in FIG. 3, the single crystal silicon 10 is bonded to a holding base 17 made of glass or the like with wax 16, and %H is applied from the back side by mechanical methods such as lapping and polishing.

N a 亀H+ フッ硝酸等のエッチャントによる化学
的な手法で溝14により各チップが分離する所定の、1
!メさに平滑加工する。
N a Kame H+ A predetermined 1 part in which each chip is separated by a groove 14 by a chemical method using an etchant such as fluoro-nitric acid.
! Smooth finish on the female.

次に保持基板17の溝14に相当する位置をダイシング
等により切断し、各チップに分離後良品千ノブを第4図
に示すごとく、第1層目の単結晶シリコン1の良品チッ
プ領域A部の所定の位置に、エポキシ、アクリル、ポリ
イミド等により、所定の温度、圧力等の条件にて接着層
18を形成し、接着する。このとき、単結晶シリコン1
の不良チップ領域8部には良品チップを接着する必要が
ない。その後所定の方法にてワ□ックス16及び保持基
板17を除去し、必要に応じ接着層18を所定の条件で
再硬化した後、ホトエッチ技術、選択エツチング等によ
り必要に応じ絶縁膜13.15を所定のパターンで窓開
けを行った後、電子ビーム蒸着、抵抗加熱蒸着等により
連続的に所定の条件でT1Ni膜、CrCu膜、AlN
i膜等の多重金属膜19をウェハ全面に形成した後、ホ
トエッチ技術を利用して所定パターンの選択Auメンキ
を行い、Auメツキ膜20を形成し、この膜20をマス
クとして不要となった多重金属層膜19をエンチング等
により除去し、第5図に示すごとき形態にする。このと
きウェハ上に単結晶シリコン10等による段差があるが
、薄いためホトエッチ技術、蒸着技術9選択メツキ技術
等は難なく適用し得た。
Next, the holding substrate 17 is cut at a position corresponding to the groove 14 by dicing or the like, and after separating into each chip, the good chip area A of the first layer single crystal silicon 1 is separated into good quality chips as shown in FIG. An adhesive layer 18 is formed at a predetermined position using epoxy, acrylic, polyimide, etc. under conditions such as predetermined temperature and pressure, and the adhesive layer 18 is bonded. At this time, single crystal silicon 1
There is no need to bond a good chip to the 8 parts of the defective chip area. Thereafter, the wax 16 and the holding substrate 17 are removed by a predetermined method, and the adhesive layer 18 is re-hardened under predetermined conditions if necessary, and then the insulating films 13 and 15 are formed by photoetching, selective etching, etc., if necessary. After opening windows in a predetermined pattern, T1Ni film, CrCu film, AlN film are continuously formed under predetermined conditions by electron beam evaporation, resistance heating evaporation, etc.
After forming a multiple metal film 19 such as an i-film on the entire surface of the wafer, selective Au plating is performed in a predetermined pattern using photoetching technology to form an Au plating film 20, and this film 20 is used as a mask to remove unnecessary multilayer metal films. The heavy metal layer film 19 is removed by etching or the like to obtain a form as shown in FIG. At this time, there is a step on the wafer due to the single crystal silicon 10, etc., but because it is thin, photoetching technology, vapor deposition technology 9, selective plating technology, etc. can be applied without difficulty.

第6図は、本実施例の完成断面図、第7図は完成(既念
図を示すものであって、第6図に従って説明すれば同図
に示す2層目単結晶シリコンlo上に、素子が組込4れ
たチップ状単結晶シリコンを2個き接着し、その後チッ
プ境界部90部分をダイシングし、各チップに分離した
状態ヲ示している。一方のチップは単結晶シリコン21
.5i02゜SiN等よりなる絶縁膜22.ACMo、
W。
FIG. 6 is a completed cross-sectional view of this embodiment, and FIG. 7 is a completed (preliminary) view. The figure shows the state in which two chips of single crystal silicon with integrated elements 4 are glued together, and then the chip border 90 is diced and separated into each chip.One chip is made of single crystal silicon 21
.. 5i02° Insulating film 22 made of SiN or the like. ACMo,
W.

WS i2.T iS i2等の導電体よシなる12線
体23、SiO2、SiN等よりなる保護用絶縁膜24
、チップの側面等ケ被覆するS i02 、 SiN等
よりなる絶縁膜25で構成し、エポキシ、アクリル、ポ
リイミド等の樹脂よりなる接着層26により接着した後
、所定位置にTiN1l摸、Cr Cu1漢等の多重金
属膜27 、A uメツキ漠28よりなるパッド又はチ
ップ上配線をなしている。
WS i2. A 12-wire body 23 made of a conductor such as T iS i2, a protective insulating film 24 made of SiO2, SiN, etc.
, an insulating film 25 made of Si02, SiN, etc., covers the side surfaces of the chip, and is bonded with an adhesive layer 26 made of resin such as epoxy, acrylic, polyimide, etc., and then a layer of TiN, Cr, Cu, etc. is placed at a predetermined position. A multilayer metal film 27 and an Au metal layer 28 form a pad or wiring on the chip.

又、他方のチップは単結晶シリコン21のチップと同様
に素子を組込んだ単結晶シリコン29、絶縁膜30.絶
縁膜31.絶縁膜321等により4)4成し、接着m3
3により接着した・後、多重金属1漠34.Auメツキ
嘆35よりなる配線を形成した状態を示している。
The other chip includes a single crystal silicon 29 incorporating elements, an insulating film 30 . Insulating film 31. 4) 4 is formed by insulating film 321 etc., and adhesive m3
3. After gluing by 3, multiple metals 1 and 34. This shows a state in which wiring made of Au plating 35 is formed.

この場合に於ても、1層目単結晶シリコン1に2層目の
単結晶シリコン10を接着したときと同様にして27會
目の単結晶シリコン10上に順次単饋晶シリコン21.
単結晶シリコン29を接着して構成し得る。
In this case as well, monocrystalline silicon 21.
It can be constructed by bonding single crystal silicon 29.

かぐして本実施例に於ては、本発明所望の立体型半導体
装置を得た。
In this example, a three-dimensional semiconductor device desired by the present invention was obtained.

本実施例装置と作製するに際しては、第1層目の単結晶
1上の良品部に順次良品チップを接着し、多数のチップ
をウェハパッチ処理的に取扱えるため、効率的に作製し
得た。
When fabricating with the device of this embodiment, good chips were sequentially bonded to the good parts on the first layer of single crystal 1, and a large number of chips could be handled like a wafer patch process, so it was possible to fabricate efficiently. .

また、本実施例に於ては、チップ接着後のチップ上の配
線の作製として、蒸着及びAu電解メツキにより作製し
たが、この作製方法に限定されるものではなく、蒸着の
み、又は無電解メツキ、印刷法等の種々の方法を用い得
るとともに材料等も種々変形し得ることは明白である。
In addition, in this example, the wiring on the chip after bonding the chip was fabricated by vapor deposition and Au electrolytic plating, but the fabrication method is not limited to this. It is obvious that various methods such as , printing, etc. can be used, and materials etc. can also be modified in various ways.

本実施例では受動素子である抵抗は第一1・A目シリコ
ン上のみに形成する場合について述べたが、任意の層の
チップに抵抗等の受動素子の形成が可能であることも明
白である。
In this example, we have described the case where the resistor, which is a passive element, is formed only on the 1st and A-th silicon, but it is also clear that it is possible to form a passive element such as a resistor on a chip of any layer. .

実施例■ 実施例■では、貼付ける単結晶シリコンチップ端面が垂
直形の場合について述べた。
Example (2) In Example (2), the case where the end face of the single crystal silicon chip to be pasted was vertical was described.

本実施例■では貼付ける結晶としてシリコン(100)
’に用いチップ端面が煩斜状をなし、チップ間を接続す
る電極金属膜に断線もなく、容易に作製し得る場合につ
いて述べる。
In this example ■, silicon (100) is used as the crystal to be pasted.
A case will be described in which the end face of the chip has an oblique shape, there is no disconnection in the electrode metal film connecting the chips, and it can be easily manufactured.

第8図は本実施例に於ける完成概略図を示し、主には第
1層目単結晶シリコン36と、その上に接着したチップ
状の第2層目単結晶シリコン37と、その上にfJ3層
目単結晶シリコン38、単結晶シリコン39及び電極パ
ッド40及びそれらをつなぐチップ上記m41等より構
成している。
FIG. 8 shows a completed schematic diagram of this embodiment, mainly consisting of a first layer single crystal silicon 36, a chip-shaped second layer single crystal silicon 37 bonded thereon, and a fJ is composed of the third layer single crystal silicon 38, single crystal silicon 39, electrode pad 40, and the chip m41 mentioned above that connects them.

実施例Iの場合、第1図に示すごとくダイシング等によ
り凹状の溝14を形成し、裏面平滑加工により各チップ
を分離したが、不実施例に於ては所定の金属膜等による
マスク全利用してNaOH5又はKOHにより異方性エ
ツチング2行い、V字型の溝全形成した後、裏面平滑加
工により各チップの分離を行ったため、第2層目単結晶
シリコン37及び第3層目単結晶シリコン38.39の
チップ側面は傾斜状になし得た。
In the case of Example I, as shown in FIG. 1, a concave groove 14 was formed by dicing, etc., and each chip was separated by smoothing the back surface, but in non-Example, a mask made of a predetermined metal film, etc. was fully utilized. After that, anisotropic etching was performed twice using NaOH5 or KOH to completely form a V-shaped groove, and each chip was separated by smoothing the back surface. The sides of the silicon 38,39 chip could be sloped.

上記工程以外は、実施例■の場合と同様にして実施例■
に於ける第8図に示すごとき立体型半導体装置を形成し
得る。
Except for the above steps, the procedure was the same as in Example ■.
A three-dimensional semiconductor device as shown in FIG. 8 can be formed.

本実施例に於ては、貼付けるチップ側面が傾斜状となっ
ているため、ホトエッチ等の工程も進めやすく、かつ配
線41の断線等もなく歩留の向上となった。
In this example, since the side surface of the chip to be pasted is sloped, steps such as photo-etching can be easily carried out, and there is no disconnection of the wiring 41, resulting in an improvement in yield.

実施例■ 実施例■、■に於ては、貼付ける上部チップは下部のチ
ップよシ小さい場合について述べた。
Example ■ In Examples ■ and ■, the case where the upper chip to be pasted is smaller than the lower chip was described.

本実施例では貼付ける上部チップと下部チップが同様の
大きさの形状の場合、又は端面が同−而l/i:なる場
合について述べる。
In this embodiment, a case will be described in which the upper and lower chips to be pasted have the same size and shape, or the end faces are the same.

第9図は本実施例に於ける完成概略図の一部を示してお
り、素子を組込んだチップ状の第−層目単結晶シリコン
42と、単結晶シリコン42上のパッド部43,431
と、素子を組込んだチップ状の第二層目(100)単結
晶シリコン44と、穴45,451と、単結晶シリコン
44上\バツド部46,461と、パッド部46.46
1とパッド部43,431とを接続する配線体47゜4
71と、素子を組込んだ第三層目(100)単結晶シリ
コン48、穴49と、パッド部50と、パッド部50と
パッド部46とを接続する配線体51等より構成してい
る。
FIG. 9 shows a part of a completed schematic diagram of this embodiment, showing a chip-shaped first layer single crystal silicon 42 incorporating an element, and pad portions 43, 431 on the single crystal silicon 42.
, a chip-shaped second layer (100) single crystal silicon 44 incorporating an element, holes 45, 451, top portions 46, 461 of the single crystal silicon 44, and pad portions 46, 46.
Wiring body 47° 4 connecting 1 and pad portions 43, 431
71, a third layer (100) single crystal silicon 48 incorporating an element, a hole 49, a pad portion 50, a wiring body 51 connecting the pad portion 50 and the pad portion 46, and the like.

実施例■の場合、第2図に示すごとくダイシング等によ
り、凹状の溝14を形成し、裏面平滑加工によフ各チッ
プを分離し念が、本実施例の第二層目単結晶シリコン4
4の穴45.451は実施例Iの凹状の溝14に相当す
る溝を形成する前に、所定パターンの金属マスクによ!
7 KOH、NaOHによる異方性エツチングによりV
字形状の穴45゜451を形成した後、第2図の溝14
に相当する溝を形成し、裏面より平滑加工により各チッ
プを分離する。
In the case of Example 2, as shown in FIG. 2, a concave groove 14 was formed by dicing, etc., and each chip was separated by back surface smoothing.
The holes 45 and 451 of No. 4 were formed using a metal mask with a predetermined pattern before forming grooves corresponding to the concave grooves 14 of Example I.
7 V by anisotropic etching with KOH and NaOH
After forming the 45° 451-shaped hole, the groove 14 in Fig. 2 is formed.
A groove corresponding to the size is formed, and each chip is separated by smoothing from the back side.

又第三層目単結晶シリコン48の側面は、傾斜状形態と
なっているが、実施例■で説明したごとぐ実施例Iの第
2図の溝14に相当する部分を、所定のパターンでKO
H又はNaOHによる異方性エツチングによりV字型の
溝?形成し、裏面より平滑加工により各チップを分離す
る。
Further, the side surface of the third layer single crystal silicon 48 has a sloped shape, but as explained in Example 2, the portion corresponding to the groove 14 in FIG. 2 of Example I is formed in a predetermined pattern. K.O.
V-shaped grooves created by anisotropic etching with H or NaOH? Then, each chip is separated by smoothing from the back side.

この待人49は、V字型の溝を形成する時に所定のパタ
ーンを形成しておき同時に形成する。
This waiter 49 is formed at the same time as a predetermined pattern is formed when forming the V-shaped groove.

上記の工程以外は、実施例Iの工程と同様のため、順次
工程全通めることにより実施例mに於ける第9図ごとく
、所望の立体型半導体装@を得ることができる。
The steps other than the above are the same as those of Example I, and by sequentially passing through all the steps, a desired three-dimensional semiconductor device @ as shown in FIG. 9 in Example M can be obtained.

本実施例の第9図に於ては、穴45,451゜49はい
ずれもアルカリの異方性エツチングによる傾斜形状の側
壁を形成したが、フッ硝酸等のエツチング液により垂直
壁の穴を作製しても良いことは言う1でもない。
In FIG. 9 of this embodiment, the holes 45, 451 and 49 all had sloped side walls formed by anisotropic etching with alkali, but holes with vertical walls were formed using an etching solution such as hydrofluoric nitric acid. There's nothing wrong with saying that.

実施例r、n、mに於て、3重のLSIとなしたが、貼
付けるチップの段数、同−而に貼付けるチップの数、形
状は任意になし得る着ことは明白である。
In Examples r, n, and m, a triple LSI was used, but it is clear that the number of stages of chips to be pasted, as well as the number and shape of chips to be pasted, can be arbitrarily determined.

又、上層チップと下層チップを接、読する配線を形成す
るチップの側壁は、実施例■では垂直実施例■、■では
傾斜形状をなしていたが、必要に応じ垂直及び傾斜の形
状をとりまぜて作製し得ることは明白である。
In addition, the side wall of the chip that forms the wiring that connects and reads the upper layer chip and the lower layer chip has a vertical shape in Example 2 and an inclined shape in Examples 2 and 2, but it can have a vertical and slanted shape as necessary. It is clear that it can be made using

更に、実施例r、n、mでは材料としてシリコンのみを
使用する場合について述べたが、本発明はこれに限定さ
れるものではなく、GaAs等の111V族半導体をも
使用することが可能であることは言うまでもない。
Further, in Examples r, n, and m, the case where only silicon was used as the material was described, but the present invention is not limited to this, and it is also possible to use 111V group semiconductors such as GaAs. Needless to say.

〈発明の効果〉 以上のように、本発明に係る立体型半導体装置は、回路
素子が形成された任意形状の半導体チップを下層半導体
チップ領域に接着し、チップ側面?介して下層半導体チ
ップ′項域の回路素子と上層半導体チップの回路素子と
を電極にて接続したfat成であるため、平面的に半導
体チップ等が基板等に配置さルたハイブリッドIC等と
等価となし得る。しかも従来に比類なくチップ素子の高
密度(ヒが可能であり、高速度化が可能となる。
<Effects of the Invention> As described above, in the three-dimensional semiconductor device according to the present invention, a semiconductor chip of an arbitrary shape on which a circuit element is formed is bonded to a lower semiconductor chip region, and the side surface of the chip is bonded to a semiconductor chip of an arbitrary shape on which a circuit element is formed. Since it is a fat structure in which the circuit elements of the lower layer semiconductor chip and the circuit elements of the upper layer semiconductor chip are connected by electrodes, it is equivalent to a hybrid IC, etc., in which semiconductor chips, etc. are arranged on a two-dimensional substrate, etc. It can be done. Furthermore, it is possible to achieve a higher density of chip elements than ever before, making it possible to achieve high speeds.

又ハイブリッドICのごとく大きな基板及びその上の基
板配線等の必要もなく、材料費の大巾な低減になるとと
もに、チップ接層等、低温プロセスで行なうことが出来
るため、チップの素子特性VC悪影響を及ぼすこともな
く、又その作製に際しては動力光熱費の削減が可能であ
る。
In addition, unlike hybrid ICs, there is no need for large substrates and substrate wiring on the substrate, resulting in a significant reduction in material costs, and because chip bonding and other processes can be performed at low temperatures, there is no adverse effect on the chip's element characteristics VC. Moreover, it is possible to reduce power and heating costs during its production.

又ワイヤポンド等のメカニカルによる接続ポイントが減
るため、良好な信頼性を得ることができる。さらに同一
チップ上に複数のチップの搭載ができるため、設計が簡
単になり、かつチップ素子■島密度化?さらに促進し得
る。
Furthermore, since the number of mechanical connection points such as wire pounds is reduced, good reliability can be obtained. Furthermore, multiple chips can be mounted on the same chip, which simplifies the design and increases the density of chip elements. It can be further promoted.

又この立体型半導体装置は、その作製に限して、−i目
チップを有するウェハ上の良品チップ部に、2層目以後
のチップを順次貼付は作製し得るため、多数のチップを
一度にウェハバッチ処理的に処理することができ、労務
費を少なくし得る。
In addition, this three-dimensional semiconductor device can be fabricated by sequentially attaching chips from the second layer to the non-defective chip portion of the wafer containing the -i-th chip, so it is possible to fabricate a large number of chips at once. Wafers can be processed in batches, reducing labor costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は、それぞれ本発明の一実施例装置の
作製過程を示す縦断面部分正面図、宕6図は不発明の一
実施例装置の縦断面部分正面図、第7図は本発明の一実
施例装置の完成概念を示す図、第8図は本発明の他の実
施例装置の完成概念を示す図、第9図は本発明の更に他
の実施例装置の完成概念図の一部分を示す図、第10図
及び第11図は本発明を説明するための図、第12図は
従来装置の構成例を示す図である。 1.10.21.29・・・単結晶シリコン、18.2
6.33・・・接着層、 5・・・薄膜抵抗体、2.4
.6.8.11.13,15.22,24゜25.30
,31.32・・・絶縁膜、 3.7゜12.23・・
・配線体、 19,27.34・・・多重金属膜。
1 to 5 are longitudinal cross-sectional partial front views showing the manufacturing process of a device according to an embodiment of the present invention, FIG. 6 is a vertical cross-sectional partial front view of a device according to an embodiment of the invention, and FIG. A diagram showing a completed concept of a device according to one embodiment of the present invention, FIG. 8 is a diagram showing a completed concept of another embodiment device of the present invention, and FIG. 9 is a diagram showing a completed concept of a device according to still another embodiment of the present invention. FIG. 10 and FIG. 11 are diagrams for explaining the present invention, and FIG. 12 is a diagram showing an example of the configuration of a conventional device. 1.10.21.29...Single crystal silicon, 18.2
6.33... Adhesive layer, 5... Thin film resistor, 2.4
.. 6.8.11.13, 15.22, 24°25.30
, 31.32... Insulating film, 3.7°12.23...
・Wiring body, 19,27.34...Multiple metal film.

Claims (1)

【特許請求の範囲】 1、回路素子の形成された下層半導体チップと、該下層
半導体チップ上に接着層を介して設けられた回路素子の
形成された上層半導体チップと、 上記上層半導体チップの電極と下層半導体チップの電極
とを上記上層半導体チップの側面を介して接続する導体
層と を備えてなることを特徴とする立体型半導体装置。
[Claims] 1. A lower semiconductor chip on which a circuit element is formed, an upper semiconductor chip on which a circuit element is formed and provided on the lower semiconductor chip via an adhesive layer, and an electrode of the upper semiconductor chip. A three-dimensional semiconductor device comprising: and a conductor layer that connects an electrode of a lower semiconductor chip through a side surface of the upper semiconductor chip.
JP62300645A 1987-11-26 1987-11-26 Three-dimensional semiconductor device Pending JPH01140652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62300645A JPH01140652A (en) 1987-11-26 1987-11-26 Three-dimensional semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62300645A JPH01140652A (en) 1987-11-26 1987-11-26 Three-dimensional semiconductor device

Publications (1)

Publication Number Publication Date
JPH01140652A true JPH01140652A (en) 1989-06-01

Family

ID=17887355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62300645A Pending JPH01140652A (en) 1987-11-26 1987-11-26 Three-dimensional semiconductor device

Country Status (1)

Country Link
JP (1) JPH01140652A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259375A (en) * 1991-07-09 1993-10-08 Hughes Aircraft Co Multi-layer chip assembly and manufacture therefor
JPH07183455A (en) * 1993-12-24 1995-07-21 Nec Corp Semiconductor device and its manufacture
JP2003521125A (en) * 2000-01-28 2003-07-08 アンテルユニヴェルシテール・ミクロ−エレクトロニカ・サントリュム・ヴェー・ゼッド・ドゥブルヴェ Method for moving and stacking semiconductor devices
JP2006165286A (en) * 2004-12-08 2006-06-22 Seiko Epson Corp Method of manufacturing semiconductor substrate, semiconductor substrate method of manufacturing semiconductor device, semiconductor device and method of manufacturing electro-optical device
JP2007523482A (en) * 2004-02-18 2007-08-16 インフィネオン テクノロジーズ アクチエンゲゼルシャフト SEMICONDUCTOR ELEMENT HAVING LAMINATED SEMICONDUCTOR CHIP AND METHOD FOR MANUFACTURING SAME
US7326639B2 (en) 2004-04-22 2008-02-05 Seiko Epson Corporation Method for manufacturing a semiconductor substrate and method for manufacturing an electro-optical device with electroless plating
US7564118B2 (en) 2001-12-19 2009-07-21 International Business Machines Corporation Chip and wafer integration process using vertical connections
JP2010232702A (en) * 2010-07-20 2010-10-14 Toshiba Corp Laminated semiconductor device
JP2010534949A (en) * 2007-07-31 2010-11-11 シーメンス アクチエンゲゼルシヤフト Electronic module manufacturing method and electronic module
JP2011009653A (en) * 2009-06-29 2011-01-13 Seiko Epson Corp Semiconductor device and method of manufacturing the same
FR3070091A1 (en) * 2017-08-08 2019-02-15 3Dis Technologies ELECTRONIC SYSTEM COMPRISING A LOWER REDISTRIBUTION LAYER AND METHOD FOR MANUFACTURING SUCH ELECTRONIC SYSTEM

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834283B2 (en) * 1991-07-09 1996-03-29 ヒューズ・エアクラフト・カンパニー Multilayer chip assembly and manufacturing method thereof
JPH05259375A (en) * 1991-07-09 1993-10-08 Hughes Aircraft Co Multi-layer chip assembly and manufacture therefor
JPH07183455A (en) * 1993-12-24 1995-07-21 Nec Corp Semiconductor device and its manufacture
JP2003521125A (en) * 2000-01-28 2003-07-08 アンテルユニヴェルシテール・ミクロ−エレクトロニカ・サントリュム・ヴェー・ゼッド・ドゥブルヴェ Method for moving and stacking semiconductor devices
JP5022549B2 (en) * 2000-01-28 2012-09-12 アイメック Method for moving and stacking semiconductor devices
US7564118B2 (en) 2001-12-19 2009-07-21 International Business Machines Corporation Chip and wafer integration process using vertical connections
JP2007523482A (en) * 2004-02-18 2007-08-16 インフィネオン テクノロジーズ アクチエンゲゼルシャフト SEMICONDUCTOR ELEMENT HAVING LAMINATED SEMICONDUCTOR CHIP AND METHOD FOR MANUFACTURING SAME
US7326639B2 (en) 2004-04-22 2008-02-05 Seiko Epson Corporation Method for manufacturing a semiconductor substrate and method for manufacturing an electro-optical device with electroless plating
JP4581664B2 (en) * 2004-12-08 2010-11-17 セイコーエプソン株式会社 Semiconductor substrate manufacturing method, semiconductor element manufacturing method, and electro-optical device manufacturing method
JP2006165286A (en) * 2004-12-08 2006-06-22 Seiko Epson Corp Method of manufacturing semiconductor substrate, semiconductor substrate method of manufacturing semiconductor device, semiconductor device and method of manufacturing electro-optical device
JP2010534949A (en) * 2007-07-31 2010-11-11 シーメンス アクチエンゲゼルシヤフト Electronic module manufacturing method and electronic module
JP2011009653A (en) * 2009-06-29 2011-01-13 Seiko Epson Corp Semiconductor device and method of manufacturing the same
JP2010232702A (en) * 2010-07-20 2010-10-14 Toshiba Corp Laminated semiconductor device
FR3070091A1 (en) * 2017-08-08 2019-02-15 3Dis Technologies ELECTRONIC SYSTEM COMPRISING A LOWER REDISTRIBUTION LAYER AND METHOD FOR MANUFACTURING SUCH ELECTRONIC SYSTEM
US11133264B2 (en) 2017-08-08 2021-09-28 3Dis Technologies Electronic system comprising a lower redistribution layer and method for manufacturing such an electronic system

Similar Documents

Publication Publication Date Title
US5087585A (en) Method of stacking semiconductor substrates for fabrication of three-dimensional integrated circuit
JP3895595B2 (en) Method for vertically integrating electrical components by back contact
US20020047199A1 (en) Semiconductor device, manufacturing method of semiconductor device, stack type semiconductor device, and manufacturing method of stack type semiconductor device
JPH0357618B2 (en)
JP2002134658A (en) Semiconductor device and its manufacturing method
JPH01140652A (en) Three-dimensional semiconductor device
JP2001135776A (en) Semiconductor device and method of manufacture the same
JPH08125120A (en) Semiconductor device and production thereof
JPH04356956A (en) Semiconductor device and its manufacture
US4596069A (en) Three dimensional processing for monolithic IMPATTs
JPS60140850A (en) Manufacture of laminated integration type semiconductor circuit device
JPH01140753A (en) Three-dimensional semiconductor device
JP3468132B2 (en) Method for manufacturing semiconductor device
JPH01258457A (en) Semiconductor integrated circuit package structure and manufacture thereof
JP3651362B2 (en) Manufacturing method of semiconductor device
US20100203680A1 (en) Method for manufacturing semiconductor
JP2529087B2 (en) Method of manufacturing thermally matched IC chip device
JPH0198253A (en) Manufacture of solid type semiconductor device
US20080268210A1 (en) Manufacturing method of electronic component
JPH0410649A (en) Manufacture of semiconductor substrate for three-dimensional packaging
JP2506383B2 (en) Large-scale integrated circuit and manufacturing method thereof
JP4289217B2 (en) Manufacturing method of semiconductor device
JP3934011B2 (en) Semiconductor device and manufacturing method thereof
JPH0719797B2 (en) Semiconductor device mounting tool
JPH0194651A (en) Semiconductor device and manufacture thereof