JPS60140850A - Manufacture of laminated integration type semiconductor circuit device - Google Patents

Manufacture of laminated integration type semiconductor circuit device

Info

Publication number
JPS60140850A
JPS60140850A JP58246926A JP24692683A JPS60140850A JP S60140850 A JPS60140850 A JP S60140850A JP 58246926 A JP58246926 A JP 58246926A JP 24692683 A JP24692683 A JP 24692683A JP S60140850 A JPS60140850 A JP S60140850A
Authority
JP
Japan
Prior art keywords
hole
micropores
chip
semiconductor
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58246926A
Other languages
Japanese (ja)
Inventor
Mitsunori Ketsusako
光紀 蕨迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58246926A priority Critical patent/JPS60140850A/en
Publication of JPS60140850A publication Critical patent/JPS60140850A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02372Disposition of the redistribution layers connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a new method of forming a semiconductor chip having a through hole coated with an insulation film with a structure more suitable for laminated integration, by a method wherein the through hole is formed by two steps. CONSTITUTION:An SiO2 film 601 is formed on the surface of an Si crystal substrate 600, which is then provided with an aperture 602, and a fine hole 603 is formed by using the oxide film 601 as a mask. An insulation film 604 is formed on the inner wall of this fine hole 603 and coated with polycrystalline Si605, and the Si605 is removed with the fine hole part left. Next, an Al607 is formed on the back, and a fine hole 608 is provided by etching until the bottom of the hole 603 is exposed. Then, a CVD-SiO2 609 is deposited, and the bottom of the fine hole is provided with an aperture 610. A multilayer metal film 614 is patterned by vapor deposition, and a solder layer is formed by plating and then patterned again with the same shape as the metal film 614 of the base; then, the solder layer becomes spherical by heating, resulting in the formation of solder bumps 611 and 612.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体集積回路チップを積層して成る積層集積
型半導体回路装置を構成するに好適なチップ構造の製法
に係り、特に積層構成の基本となる配線用貫通孔の製法
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a chip structure suitable for constructing a stacked integrated semiconductor circuit device formed by stacking semiconductor integrated circuit chips, and particularly relates to the basics of the stacked structure. The present invention relates to a method for manufacturing a wiring through hole.

〔発明の背景〕[Background of the invention]

電子計算機のような高度の電子回路システムは従来高密
度集積回路(LSI)のパッケージを単位とし、これを
多数プリント配線基板上に配列し、さらにプリント基板
’に?Jj数接続させる実装法により構成されていた。
Advanced electronic circuit systems such as computers have traditionally been made up of high-density integrated circuit (LSI) packages, which are arranged in large numbers on printed wiring boards, and then printed circuit boards. It was constructed using a mounting method that connects Jj numbers.

さらに進んだシステムでは。In more advanced systems.

第1図に例示するような複チップモジュールを構成し、
配線長を短縮して集積度の向上全図るとともに配線遅延
を縮少して高速化が図られていた。
Configuring a multi-chip module as illustrated in FIG. 1,
In addition to shortening the wiring length to improve the degree of integration, wiring delays were also reduced to increase speed.

第1図に示す複チップモジュールでは、各LSIチップ
11.11’、 11’ は素子の形成された層12を
下向きにし、チップの周縁部に設けられたボンティジグ
パッド13を、多層配線セラミック基板14の上に設け
られたポンディングパッド15に対向させ、公知のフェ
ースタ“ランボンディング技術により接続されている。
In the multi-chip module shown in FIG. 1, each LSI chip 11, 11', 11' has the layer 12 on which the element is formed facing downward, and the bonding pad 13 provided at the periphery of the chip is connected to the multilayer wiring ceramic substrate. The bonding pad 15 is opposed to the bonding pad 15 provided on the top of the bonding pad 14, and is connected by the known Fester run bonding technique.

この複チップモジュールでは、ボンディングのための金
属細+Wは不要であり、各チップは半田により多層配線
基板に固定され、実装密度、システムの信頼性等、多く
の利点がある。
This multi-chip module does not require metal wire +W for bonding, and each chip is fixed to the multilayer wiring board by solder, which has many advantages such as packaging density and system reliability.

しかし、これら従来の冥装法では、完成したLSIチッ
プより出発しており、ポンディングパッドは各チップの
周縁部のみに設けられ、チップ間の接続は−は多層配線
基板を介して行なわれていたため、配線長の短縮にも限
界かあった。すなわちこの方式では、チップを平面的に
配列して得ら才する配線長よりも短い距離でチップ間の
信号伝達1行なうことはできなかった。
However, in these conventional hidden methods, the starting point is a completed LSI chip, bonding pads are provided only on the periphery of each chip, and connections between chips are not made through a multilayer wiring board. Therefore, there was a limit to the reduction in wiring length. That is, with this method, it was not possible to transmit signals between chips over a distance shorter than the wiring length that could be obtained by arranging the chips in a planar manner.

チップ分平面的に配列して得られる配線長よりも短い距
離でチップ間の信号伝達を行わしめる方式として第2図
に例示するチップ積層形集積技術がある。この例では、
LSIチップ21.21’、21″等の片面に、素子群
の形成された層22.22’、−22″等が設けられ、
素子層22の上に設けられたポンディングパッド26と
、チップ21′の裏面に設けられたポンディングパッド
24とが接続され、順次このような形でチップが積層・
接続されて、基板25にマウントされている。
There is a chip stacking type integration technique illustrated in FIG. 2 as a method for transmitting signals between chips over a distance shorter than the wiring length obtained by arranging the chips in a plane. In this example,
On one side of the LSI chips 21.21', 21'', etc., layers 22.22', -22'', etc. on which element groups are formed are provided,
The bonding pad 26 provided on the element layer 22 and the bonding pad 24 provided on the back surface of the chip 21' are connected, and the chips are sequentially stacked and stacked in this manner.
are connected and mounted on the substrate 25.

このような構成で積層形集積回路分形成するためには、
チップの表裏面全信号伝達するための構造が必要であり
、そのために、これまでに第3図で示すような構造が提
案されていた。すなわち、半導体基板30.30’には
表の主面31.31’には素子群が形FJ’Zされ、裏
の主面32.32’にも例えば受動素子群が形成される
。その素子群間の給電、もしくは信号配線會、貫通孔3
3.33’を介して行うため、基板の導電型とは反対導
電型の高a度のドーピングを貫通孔内壁に施し、低抵抗
領域34−.34.’、3db、 34b’等を形成す
る。この低抵抗領域の表および裏の主面側に露出した部
分で導電層35−.35b、35c、35a、35a’
In order to form a stacked integrated circuit with such a configuration,
A structure for transmitting signals from both the front and back surfaces of the chip is required, and for this purpose a structure as shown in FIG. 3 has been proposed. That is, in the semiconductor substrate 30.30', element groups are formed in the shape FJ'Z on the front main surface 31.31', and passive element groups, for example, are also formed on the back main surface 32.32'. Power supply or signal wiring between the element groups, through hole 3
3.33', the inner wall of the through hole is doped with a high a degree of conductivity type opposite to that of the substrate, and the low resistance region 34-. 34. ', 3db, 34b', etc. Conductive layers 35-. 35b, 35c, 35a, 35a'
.

35 b’、 35 c’、 35 d’等と接触する
様に構成し、表裏面間の配線接続を可能としていた。こ
こで断面形状の(イ)、 (0)の相違は貫通孔の形成
方法により、(イ)はアルゴン等によるスパッタによっ
て裏面側]より穿孔して得られるものであり、1口)は
裏面側よりエツチング等によって開口せられたものであ
る。
35 b', 35 c', 35 d', etc., to enable wiring connections between the front and back surfaces. Here, the difference between the cross-sectional shapes (A) and (0) is due to the method of forming the through hole; (A) is obtained by drilling from the back side by sputtering with argon, etc.; The openings were made by etching or the like.

しかし、この様な構造には難点がいくつかあった。まず
、貫通孔を介する導体が高濃度拡散層で。
However, such a structure had several drawbacks. First, the conductor passing through the through hole is a highly concentrated diffusion layer.

しかも基板とは接合分離された構造であり、このため、
この様な構造全利用するためにいくつかの制約が出るこ
とである。1゛なわち、貫通孔部を利用する場合には常
に基板に対して逆バイアスされた状態で用いる必要があ
り、また寄生バイポーラ素子によるラッチアップ現象が
生じぬ様、貫通孔の配首分工夫する必要かあり、高集積
化には妨げとなっていた。また、絶縁分離が接合の空乏
層全利用しているため、寄生容量が大きく、信号線の配
線に利用するためには著るしい信号遅延ケ伴うこと?前
提にするため、高速化にはあまり有効ではなかった。
Moreover, it has a structure in which the junction is separated from the substrate, so
There are some restrictions to make full use of such a structure. 1. In other words, when using a through-hole, it must always be used in a reverse biased state with respect to the substrate, and the arrangement of the through-hole must be carefully arranged to prevent latch-up caused by parasitic bipolar elements. This has hindered high integration. Also, since the insulation isolation uses the entire depletion layer of the junction, the parasitic capacitance is large, and if it is used for signal wiring, there will be a significant signal delay. Because this is a prerequisite, it was not very effective in speeding up the process.

この様な欠点全改善したものとして、第4図に示すよう
な貫通孔が絶縁膜で覆われた構造が提案されている。第
4図はチップ相互の接続1行なう前の個別チップの断面
を示すものである。チップ全構成する半導体基板41.
41′の各々の表面には選択ドーピングにより素子群が
設けられ、一部にはチップ貫通孔112.42’等が設
けられている。
In order to overcome all of these drawbacks, a structure in which the through hole is covered with an insulating film as shown in FIG. 4 has been proposed. FIG. 4 shows a cross section of an individual chip before interconnection between the chips is made. Semiconductor substrate 41 that makes up the entire chip.
Element groups are provided on the surface of each of 41' by selective doping, and chip through holes 112, 42', etc. are provided in some parts.

貫通孔42.B’の表面は酸化膜等による絶縁膜43.
43’等が設けられ、さらにその上部に設けられる導電
性被膜44,4.、i’と基板1.41’ とを電気的
に分離している。配線層の上にはチップ間の相互接続全
するために用いられる半田バンプ45.45’が形成さ
れており、下層チップのバンプ45′は上層チップの開
孔部から延在するボンデイングパツド44に正対してい
る。この例に示される半田バンプの大きさは20μm径
程度であり、これは、多層配線の施さね、kチップに存
在する表面の凹凸およびチップの反りよりも大きく、半
田溶解時にチップ上の全バンブがそれぞれ対向するポン
ディングパッドに接触した状態が実現する様配慮さねて
いる。才た、熱圧接による半田溶解時ニ、半田がポンデ
ィングパッドからの圧し出しによって接触することがな
いように貫通孔の容積全半田バンブの体積よりも大とな
る様に工夫されていた。
Through hole 42. The surface of B' is an insulating film 43 made of an oxide film or the like.
43' etc. are provided, and conductive coatings 44, 4 . , i' and the substrate 1.41' are electrically isolated. Solder bumps 45, 45' used for interconnection between chips are formed on the wiring layer, and the bumps 45' of the lower chip are connected to bonding pads 44 extending from the openings of the upper chip. is facing directly. The size of the solder bump shown in this example is approximately 20 μm in diameter, which is larger than the multilayer wiring, the surface unevenness existing on the K-chip, and the warpage of the chip. Care has been taken to ensure that the pads are in contact with the opposing bonding pads. The volume of the through hole was designed to be larger than the total volume of the solder bump so that the solder would not come into contact with the solder pressed out from the bonding pad when melting the solder by hot pressure welding.

この様な構造では、貫通孔の内壁が8102等の絶縁膜
で覆われており、その誘電率が81の約1Aで、またそ
の厚さも任意にできるため、空乏層による分離方式に比
べて貫通配線に寄生する浮遊容量を著るしく低減させる
ことができる。さらに、絶縁物膜によって基板とは完全
に分離されるため、電圧や、極性に余り留意することな
(多層デバイスが設計でき、応用上からもきわめて有利
な構造となっている。
In such a structure, the inner wall of the through hole is covered with an insulating film such as 8102, which has a dielectric constant of about 1A of 81, and its thickness can be set arbitrarily. Stray capacitance parasitic to wiring can be significantly reduced. Furthermore, since it is completely separated from the substrate by the insulating film, it is possible to design a multilayer device without paying too much attention to voltage or polarity, making it an extremely advantageous structure from an application standpoint.

しかしながら、例示した構造では、貫通孔の内容積全天
きくとるために、例えば50 μm厚さの半導体基板の
場合には10μm以上の径の貫通孔全形成する必要があ
り、集vR度の向上全阻害していた。また、半田バンプ
が半導体基板の片面にのみ形成されるため、対向するポ
ンディングパッドの表面状態によっては熱IE着時の接
続に不良が生ずることがあり、信頼性には若干の問題分
有していに0 〔発明の目的〕 本発明は、かかる絶縁膜で被覆された貫通孔全有する半
導体チップを、撹層集!*により適した構造で提供する
ための新規な製造方法を与えることを目的とする。
However, in the illustrated structure, in order to take up the entire internal volume of the through hole, for example, in the case of a 50 μm thick semiconductor substrate, it is necessary to form all the through holes with a diameter of 10 μm or more, which improves the concentration of VR. It was totally inhibited. In addition, since the solder bumps are formed only on one side of the semiconductor substrate, a connection failure may occur during thermal IE bonding depending on the surface condition of the opposing bonding pad, which may cause some reliability problems. [Objective of the Invention] The present invention provides a semiconductor chip having all through holes covered with such an insulating film, which can be assembled into an agitated layer! *The aim is to provide a new manufacturing method to provide a more suitable structure.

〔発明の概要〕[Summary of the invention]

本発明は、チップ相互の接@全確実にかつ自己整合的に
行なうために、対向するポンディングパッドの両方に半
田バンプ?設け、かつバンプノ横漏れ全防止するために
、に通孔に関しテップの裏面側に表面側よりも大きな開
口部を設けた構造分有するチップ欄造ケ確実に形成する
だめの製造方法全提供するものである。
The present invention uses solder bumps on both opposing bonding pads to ensure reliable and self-aligned chip-to-chip connection. In order to completely prevent lateral leakage of bumps, we provide a complete method for manufacturing a bump that reliably forms a tip rail having a structure in which a larger opening is provided on the back side of the bump than on the front side with respect to the through hole. It is.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例を参照して説明する。 The following will explain one embodiment of the present invention.

第5図は本発明を適用して得られるチップの断面構造模
式図である。なお、図面を簡略にするため、罠通孔1つ
を含む部分を提示しである。この構造について以下簡単
に説明する。
FIG. 5 is a schematic cross-sectional structure diagram of a chip obtained by applying the present invention. Note that in order to simplify the drawing, only a portion including one trap hole is shown. This structure will be briefly explained below.

半導体基板500表面には選択ドーピング等により素子
群が形成されている。基板の一部には貫通孔が設げられ
、その貫通孔は細部51.及び太部52より構成される
。貫通孔の内面は酸化膜等の比較的厚い絶縁膜56で覆
われ、貫通孔内部に形成される導電体層54と半導体基
板50との1川の電気的絶縁を図り、同時に寄生容量全
低減している。貫通孔内部の導電体層は貫通孔細部51
と貫通孔太部52の境界部で、チップ下面に対するポン
ディングパッド55と接続し、−該ボンディングバッド
上に下向きの半田バンプ56が形成される。貫通孔内導
電5体層54は素子群形成面側で多層配線層57を介し
てチップ上面に対するポンディングパッド58に接続さ
れ、該s=゛ンデイングバツド58には上向きの半田バ
ンプ59が形成される。第5図に示す、C,Dは、素子
のゲートに信号を伝えるための多層配線層内の導体部分
全指示している。第5図の例では、K通孔配線は上部の
半田バンプ59と下部の半田バンプ56を接続し、かつ
、素子の1出力に接続された形となっているが、勿論こ
のような構成に限定されるものではなく、多層配線層5
7ケ介して任意の入出力が上下の半田バンプに接続でき
ることは言う壕でもない。
Element groups are formed on the surface of the semiconductor substrate 500 by selective doping or the like. A through hole is provided in a part of the substrate, and the through hole has a detail 51. and a thick portion 52. The inner surface of the through hole is covered with a relatively thick insulating film 56 such as an oxide film, which provides electrical insulation between the conductor layer 54 formed inside the through hole and the semiconductor substrate 50, and at the same time completely reduces parasitic capacitance. are doing. The conductor layer inside the through hole is the through hole detail 51
A bonding pad 55 is connected to the lower surface of the chip at the boundary between the thick portion 52 of the through hole and a downward solder bump 56 is formed on the bonding pad. The conductive five-body layer 54 in the through hole is connected to a bonding pad 58 on the top surface of the chip via a multilayer wiring layer 57 on the element group forming surface side, and an upward solder bump 59 is formed on the bonding pad 58. . C and D shown in FIG. 5 indicate all conductor portions within the multilayer wiring layer for transmitting signals to the gate of the element. In the example of FIG. 5, the K through-hole wiring connects the upper solder bump 59 and the lower solder bump 56, and is also connected to one output of the element, but of course such a configuration Although not limited to, the multilayer wiring layer 5
It is no secret that any input/output can be connected to the upper and lower solder bumps through the 7 pins.

第5図では1つの貫通孔及び1組の上下半田バンプにつ
いて示したか、実際にはこれらの東通孔およびバンブが
多数形成されて成る。
Although FIG. 5 shows one through hole and one set of upper and lower solder bumps, in reality, a large number of these east through holes and bumps are formed.

この様な貫通孔配線構造全形成するに判る本発明の製法
を第6図管用いて説明する。不発明の特徴の1つは貫通
孔の形成を2段階に分けて行なう点である。
The manufacturing method of the present invention, which can be used to completely form such a through-hole wiring structure, will be explained with reference to FIG. 6. One of the features of the invention is that the through-holes are formed in two stages.

まず、同図(イ)では通富の厚さ4DOμm程度で第1
導電形、例えばp形10 cTLのrloo)面シリコ
ン結晶基板600’を出発材料とし、公知の熱酸化法に
より、表面に1μm程度の厚さのS Io 2+16%
601i形成する。これ分ホトリソグラフィにて貫通孔
を設けるべき部分の5i02膜ケ除去して開口部602
會設ける。開口部の大きさは任意であおが、通常は2μ
m乃至5μm 角程度が適当である。次いてイロ)[示
すようにこの酸化膜601をマスクとし、公知のCF4
及び02の混合気体による平行平板型プラズマエツチン
グ法により、側壁のほぼ垂直な微細孔603全深さ約1
5μm形成する。微細孔の縦断面形状は必ずしも(ロ)
に示すように垂直である必要はないが、将来裏面から接
触をとるためには底面の広い構造が好都合であるので、
要すればHFおよびHNO3の混液で微細孔603の側
壁および底部全エツチングして拡大してもよい。微細孔
の深さは更に深くても良いが、ウェーハ厚さ全部に亘っ
て貫通孔全形成するにはより厚いマスク材が必要であり
、また、時間もかかり得策ではない。マスク材とSi 
との耐エツチング比、ウェーハ表面での開口部の大きさ
と加工か容易なアスペクト比等から勘案して、上記15
μm程川。
First, in the same figure (A), the thickness of the Tsutomu is about 4DOμm and the first
Using a silicon crystal substrate 600' of conductivity type, for example p-type (rloo) plane of p-type 10 cTL, as a starting material, S Io 2+16% with a thickness of about 1 μm is deposited on the surface by a known thermal oxidation method.
601i is formed. The 5i02 film in the area where the through hole should be formed is removed by photolithography to form the opening 602.
Set up a meeting. The size of the opening can be determined arbitrarily, but it is usually 2μ.
Appropriately, it has a square size of 5 μm to 5 μm. Then, using this oxide film 601 as a mask as shown, the well-known CF4
By the parallel plate plasma etching method using the mixed gas of
Form 5 μm. The vertical cross-sectional shape of micropores is not necessarily (b)
Although it does not have to be vertical as shown in the figure, it is convenient to have a structure with a wide bottom surface in order to make contact from the back side in the future.
If necessary, the entire side wall and bottom of the micropore 603 may be etched and enlarged using a mixed solution of HF and HNO3. Although the depth of the microholes may be deeper, it is not advisable to use a thicker mask material to form all the through-holes over the entire wafer thickness, and it also takes time. Mask material and Si
Taking into consideration the etching resistance ratio between the
μm Hodgawa.

が用当である。is the business.

次いでこの微細孔の内壁、とくに側壁部に絶縁膜を形成
する。この方法には半導体基板表面に素子群音形成する
工程の選択により、いくつかの方法が可能であるが、こ
こではその1例?示す。
Next, an insulating film is formed on the inner walls of the micropores, particularly on the side walls. Several methods are possible for this method, depending on the process of forming element clusters on the surface of the semiconductor substrate, but here is one example. show.

まず(ロ)の状態で、湿酸素気流中1150℃で2時間
加熱し、微細孔内壁に厚さ約1μmのSiO□1i1i
’5−形成する。次いで公知のドライエッチ法により5
i02膜會微膜孔微細孔底出するまでエッチする。この
エツチングの目的は1則壁にのみ5i02+Igケ残す
ためであり、微細孔底部の酸化膜が若干残っても、また
、表面のSj が露呈するまでエツチング?行なっても
後の工程には差しつかえない。
First, in the state (B), heat was applied at 1150°C for 2 hours in a humid oxygen stream, and SiO
'5- form. Then, using a known dry etching method, 5
Etch the i02 membrane until the bottom of the micropores is exposed. The purpose of this etching is to leave 5i02+Ig only on the regular wall, and even if some oxide film remains at the bottom of the micropore, etching is continued until Sj on the surface is exposed. Even if you do this, it will not interfere with later steps.

次いでHvc示すように全体に低圧気相成長法(LPC
VD法)によりSi3N4膜’!j780 nm形成す
る。ここで微細孔側壁[破着される分については酸化膜
と共に絶縁膜とし2て一体化するので、図では省略しで
ある。
Next, as shown in Hvc, the entire structure was subjected to low pressure vapor phase epitaxy (LPC).
Si3N4 film'! j780 nm is formed. Here, the side wall of the micropore [which is broken and bonded] is not shown in the figure because it is integrated with the oxide film as an insulating film 2.

次いで(ニ)19Iで示すようにCV D法にて多結晶
Si分スパッタエッチと交互に数度に分けて破着する。
Next, as shown in (d) 19I, the polycrystalline Si layer is sputter-etched and ruptured alternately in several steps using the CVD method.

こうすることにより、微細孔内部ヲSlで充填するとと
もに表面?平坦化することができる。多結晶St は破
着、エッチ合・交互に緑り1スすことでも上記の形状が
傅らねるが、公知バイアススパッタ法にて破着すること
で同様の効果が得られる。なお、a細孔の内部に充填さ
れている多結晶S1は。
By doing this, the inside of the micropores is filled with Sl and the surface is filled with Sl. It can be flattened. Although the above-described shape of polycrystalline St 2 can be obtained by breaking, etching, and alternately greening, the same effect can be obtained by breaking and bonding by a known bias sputtering method. Note that the polycrystalline S1 filled inside the a pore is as follows.

将来貫通配#導体の一部に用いられるもの−(・あるか
ら1例えばP等のドーパント11xlO20/鑞3以上
の高#度にドープしておくことが必要である。
Since there are some materials that will be used as part of the through-hole conductor in the future, it is necessary to dope the material with a dopant such as P to a high degree of 11xlO20/solder 3 or more.

多結晶Stの仮着に先立ち、リンガラス(PSG)を全
面に薄く仮着しておくことはこの目的にはより効果的で
ある。
It is more effective for this purpose to temporarily attach a thin layer of phosphor glass (PSG) to the entire surface before temporarily attaching polycrystalline St.

次いで微細孔部分ケ残して、上記の多結晶81を除去し
、(ホ)の形状會傅る。なお、次以降の工程で高温酸化
工程か含捷れるため、多結晶S+ 牙薄いSi3N4 
膜で僅って、多結晶S+ が酸化されないよう保護した
うえで、上記(羽の形状にエツチングする方が望ましい
が、図では省略しである。
Next, the polycrystal 81 is removed, leaving only the micropores, and the shape shown in (e) is obtained. In addition, since the high temperature oxidation process is included in the subsequent steps, polycrystalline S+ thin Si3N4
It is preferable to slightly protect the polycrystalline S+ from oxidation with a film and then perform the above-mentioned etching in the shape of a wing (although this is not shown in the figure).

(ホ)の状態は、従来のLSI製造工程の第1段階であ
る Slの選択酸化を行なうためのSi3N4マスク會
形成1−るためにSi3N4被膜ケ形成した状態と同じ
で、貫通孔となる部分のみ既に加工した形となっている
。従って、従来のLSIN造工程(i−適用することに
よって、表面に素子群が形成される。
The state in (e) is the same as the first step in the conventional LSI manufacturing process, where a Si3N4 mask is formed for selective oxidation of Sl. It is already in a processed form. Therefore, by applying the conventional LSIN fabrication process (i-), elements are formed on the surface.

このように、多層配線の一部が直通孔に充填された高濃
度多結晶Stの、表面に延在する部分に接続され/こ状
況が(へ)の点線606内で実現さねているとして以降
の説明を続ける。
In this way, it is assumed that a part of the multilayer wiring is connected to a portion extending to the surface of the high-concentration polycrystalline St filled in the direct hole, and that this situation is not realized within the dotted line 606 in (). Continue the explanation below.

次に貫通孔を完成させるために裏面から加工するが、そ
れに先立ち基板606分裏面戸ら削減して(チ)K−示
すように全体の厚みを減少させる。この理由は2つあり
、1つはチップ′8−積層する場合の積層厚さ音減少し
、集積密度全土げるためと、他の1つは貫通孔全できる
だけ短かくし、加工ケ容易にするとともに加工時間を短
縮するためである。
Next, in order to complete the through hole, processing is carried out from the back surface, but before that, the back surface of the substrate is reduced by 606 to reduce the overall thickness as shown in (H) K-. There are two reasons for this. One is to reduce the noise due to the thickness of the stacked chips and increase the overall stacking density, and the other is to make all the through holes as short as possible to make processing easier. This is also to shorten the machining time.

この方法としては機械的に平面1vf削したあと、10
μm以下のSt層エツチング管施して機械的損傷層全除
去する方法、メカノケミカル的な研磨及びエツチングの
併用で行なう方法等があり、いずれを採用しても良い。
This method involves mechanically cutting the plane by 1vf, and then
There are two methods, including a method in which the entire mechanically damaged layer is removed by etching the St layer with a diameter of less than .mu.m, and a method in which a combination of mechanochemical polishing and etching is used, and any of these methods may be used.

最終的な仕上りのSt基板厚さi−1:50 μm程度
が好ましい。この程度の厚さがあればチップに成形した
時に、LSI加工に起因する歪みにより大きく変形する
ことが無く、また取扱いも容易である。薄片化の終了し
た基板の厚さは5μm以内で平坦であることが必要であ
り、要すねば、赤外V−ザ干渉等で厚さをモニタ]一つ
つイオンシリング等により基板の厚みをそろえる様、修
正?加える。
The final finished St substrate thickness i-1 is preferably about 50 μm. If the thickness is at this level, when it is formed into a chip, it will not be significantly deformed due to distortion caused by LSI processing, and it will be easy to handle. The thickness of the thinned substrate must be within 5 μm and flat, and if necessary, monitor the thickness using infrared V-za interference, etc.) Adjust the thickness of the substrate one by one using ion silling, etc. Sir, fix it? Add.

次いで裏面にAt607ケ約1μm形成し、20μm角
の大きさで、表面の微細孔に対向する位置に開口部を設
ける。この開口部の大きさにより、。
Next, an At607 layer of about 1 μm thickness is formed on the back surface, and an opening with a size of 20 μm square is provided at a position opposite to the fine hole on the front surface. Due to the size of this opening.

±7μm程度の位置合わせ誤差は許容できる。次にこの
人t607にマスクとしてSiのドライエッチケ施し、
約35μm深さで、前述の微細孔の底部が露出するまで
、細孔608全設ける。(第6図Cカ参照) 裏面のA
tを除去すると共に、微細孔底部の残留酸化膜及びSi
3N4 膜を順次エツチング除去し、微細孔内に充填し
た多結晶Si 605全露出せしめる。
A positioning error of approximately ±7 μm is acceptable. Next, I dry-etched Si as a mask on this person's t607,
The pores 608 are fully formed to a depth of about 35 μm and the bottoms of the aforementioned pores are exposed. (See Figure 6 C) A on the back side
At the same time, the residual oxide film and Si at the bottom of the micropore are removed.
The 3N4 film is sequentially removed by etching to completely expose the polycrystalline Si 605 filled in the micropores.

次いでa4i1VcCV D−8i(h 609 k約
り11m堆撰させ、微細孔底部に14]口部610ケ設
ける。
Next, a4i1VcCV D-8i (h609k, approximately 11 m) was deposited, and 610 14] mouths were provided at the bottom of the micropores.

これは例えば巣東イオンビームヶ用い/こマイクロドリ
リング加工等により容易に形成できる。
This can be easily formed by, for example, using a Suto ion beam/micro drilling process.

さらに、(ヌ)において半田バンプ611.612’に
形成するために、例えばCr −N i −A g等の
多層金属膜を蒸着し、5〜10μm角の形状にパターニ
ングする。次いで半田層全メッキにより形成し。
Furthermore, in order to form solder bumps 611 and 612' in (N), a multilayer metal film such as Cr-Ni-Ag is deposited and patterned into a 5 to 10 μm square shape. Next, the entire solder layer is formed by plating.

再度下地の多層金属膜と同じ形状でパターニングする。Patterning is performed again in the same shape as the underlying multilayer metal film.

ここで半田の融点以上に加熱することにより、(ヌ)[
示すよう知半田層が球形となり半田バンブ6ii、6i
2が形成さ才1.るが、この熱処理は後述する#t)@
融着の工程でなされても良い。
By heating above the melting point of the solder, (nu) [
As shown, the solder layer becomes spherical and the solder bumps 6ii and 6i
2 is formed 1. However, this heat treatment will be described later #t) @
It may also be done in a fusion process.

第7図に本発明によって形成された半導体チップが多数
個積層され、半田パンプにより物理的、電気的に接続さ
れる様子を示す。第6図(ヌ)に等価な半導体チップ7
1.17 l b、 71 c、71 d等が互に表面
及び製部の半田バンプが対向する如く積層され、上層チ
ップ裏面の半田パンプと下層チップ表面の半田パンプと
が融着部72a、72b等全形成する如(なされる。こ
れは例えばこれらのチップを、保持治具等により側面全
規制しつつ位置決めして多数積重し、加圧1一つつ真空
加熱することにより実現される。この場合、球状に形成
される半田パンプの高さの相が1貫通孔大部の側壁高さ
及び、チップの反り及び多層配需層の凹凸等の各マージ
ンを合計したものよりも十分大きく、接続全確実に得る
と共に融着部を溝成する半田の体積が1貫通孔大部の容
積より小さく、圧接した際に「はみ出し」現象が起きぬ
様配慮することが必要である。融着一体化された各LS
Iチップは多層配線層73..73b等により、上下の
各チップ若しくは同一チップの他の素子群、あるいは他
の融着部を介して電気的相互接続がなされ、捷た例えば
セラミック多層配線基板74の如きものを介して外部と
の接続もなされる。
FIG. 7 shows how a large number of semiconductor chips formed according to the present invention are stacked and physically and electrically connected by solder pumps. Semiconductor chip 7 equivalent to Figure 6 (N)
1.17 lb, 71c, 71d, etc. are stacked so that the solder bumps on the surface and the manufacturing part face each other, and the solder bumps on the back surface of the upper layer chip and the solder bumps on the surface of the lower layer chip are bonded at the fused parts 72a, 72b. This is accomplished, for example, by positioning and stacking a large number of these chips while restricting all of their sides using a holding jig, etc., and applying pressure and heating one by one under vacuum. In this case, the height of the solder pump formed in a spherical shape is sufficiently larger than the sum of the side wall height of most of the through hole, the warpage of the chip, the unevenness of the multilayer distribution layer, etc. It is necessary to ensure that the volume of the solder forming the groove in the fused part is smaller than the volume of most of the through-hole, and to prevent the phenomenon of "extrusion" from occurring when pressure is applied.Integrated fusion. Each LS
The I chip has a multilayer wiring layer 73. .. 73b etc., electrical interconnections are made through the upper and lower chips, other element groups of the same chip, or other fusion parts, and connections with the outside are made through a broken ceramic multilayer wiring board 74, for example. Connections are also made.

〔発明の効果〕〔Effect of the invention〕

上記説明から明らかなように、本発明によれば、チップ
積層形集積回路の形成に端適な貫通孔構造?形成するこ
とができる。本発明によって形成される貫通孔構造は、
貫通孔導体と基板とが厚い絶縁膜で隔てられ、かつ直通
孔細部の長さも短かくできるので、それだけ寄生容量も
少なくすることができ、高速化にも妨げになることはな
い。また、実施例では高濃度にドープした多結晶Si全
貫通孔内導体に用いたが、これには例えばW ’PMo
等の高融点金楓やシリサイド合金?用いることも可能で
ある。なお、本発明の主旨に従えば、貫通孔を形成すべ
き半導体はStに限らず、GaAa等の■V化合物半導
体やZnS 等のIIVI化合物半導体等にも適用可能
であり、これらの半導体材料が複合した半導体素子でも
適用が可能であることは言うまでもない。
As is clear from the above description, according to the present invention, the through-hole structure is suitable for forming a chip stacked integrated circuit. can be formed. The through-hole structure formed by the present invention is
Since the through-hole conductor and the substrate are separated by a thick insulating film, and the length of the through hole can be shortened, the parasitic capacitance can be reduced accordingly, and speeding up is not hindered. In addition, in the example, highly doped polycrystalline Si was used for the conductor in all the through-holes, but for example, W'PMo
High melting point gold maple or silicide alloy? It is also possible to use According to the gist of the present invention, the semiconductor in which the through hole should be formed is not limited to St, but can also be applied to ■V compound semiconductors such as GaAa, IIIV compound semiconductors such as ZnS, etc., and these semiconductor materials Needless to say, the present invention can also be applied to composite semiconductor elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のフリップチップ集st會示す断面図、第
2図は本発明の適用対象とすべきチップ積層集積を示す
断面図である。第6図は従来の貫通孔構造紮説明するた
めの菓子断面構造図であり、第4図は改良された貫通孔
構造會示す素子断面図である。第5図は本発明の適用に
より形成される貫通孔構造分有する素子の部分断面図で
あり、第6図は本発明の詳細な説明するための素子断面
欄造ケ示す製造工程図で、第7図は本発明により形成さ
れた貫通孔構造分有する半導体チップを積層一体化した
例を示す断面模式図である。 50・・・半導体基板、51・・・貫通孔細部、52・
・・貫通孔太部、56・・・貫通孔内壁絶縁膜、54・
・・貫通孔内導体、55.59・・・ポンディングパッ
ド、56.59・・・半田バンプ。 第 1 図 第 2 図 第3図 〈イン 第 4− 図 〈イフ 第 5 図 第 4 后へ
FIG. 1 is a sectional view showing a conventional flip chip assembly, and FIG. 2 is a sectional view showing a chip stacking assembly to which the present invention is applied. FIG. 6 is a cross-sectional view of a confectionery to explain the conventional through-hole structure, and FIG. 4 is a cross-sectional view of an element showing an improved through-hole structure. FIG. 5 is a partial cross-sectional view of an element having a through-hole structure formed by applying the present invention, and FIG. FIG. 7 is a schematic cross-sectional view showing an example in which semiconductor chips having a through-hole structure formed according to the present invention are stacked and integrated. 50... Semiconductor substrate, 51... Through hole details, 52...
・Thick part of through hole, 56 ・Insulating film on inner wall of through hole, 54・
...Conductor in the through hole, 55.59...Ponding pad, 56.59...Solder bump. Figure 1 Figure 2 Figure 3 <In Figure 4-> If Figure 5 Figure 4 After

Claims (1)

【特許請求の範囲】 1、電力供給もしくは信号伝達用の貫通孔を有する半導
体集積回路用チップの製造において、上記貫通孔全形成
するにあたり、半導体ウェーハの1主面からその深さが
他の主面に到達しない微細孔を形成する工程、該微細孔
の内壁を絶縁膜で被覆する工程、該絶縁膜で被覆された
微細孔の内壁を更に導電体で被覆するか、もしくは該微
細孔全導電体で充填する工程、上記半導体ウェーハの他
の主面の上記微細孔に対向する位置にその断面の大きさ
が上記微細孔の断面よりも大きな細孔をその底部が上記
微細孔に到達する如く設ける工程、該細孔の内壁を絶縁
膜で被覆する工程、該細孔底部の絶縁膜の一部全上記微
細孔の内部に設けた導電体のみが露出する如く除去する
工程、上記細孔の底部に導電体全被着する工程、を含む
こと全特徴とする積層集積型半導体回路装置の製法。 2、半導体集積回路を構成する素子群の形成に先だち、
まず微細孔を設け、次いで上記素子群全形成し、その後
に細孔を形成すること全特徴とする特許請求の範囲第1
項記載の積層集積型半導体回路装置の製法。 6、素子群の形成後、細孔の形成に先立ち、半導体基板
ケ薄く加工する工程全台むことを特徴とする特許請求の
範囲第2項記載の積層集積型半導体回路装置の製法。
[Claims] 1. In manufacturing a semiconductor integrated circuit chip having through holes for power supply or signal transmission, when forming all the through holes, the depth from one principal surface of the semiconductor wafer to another principal surface is A process of forming micropores that do not reach the surface, a process of coating the inner walls of the micropores with an insulating film, a process of further coating the inner walls of the micropores covered with the insulating film with a conductive material, or a process of completely conducting the micropores. In the step of filling the other main surface of the semiconductor wafer with a pore opposite to the micropore, a pore whose cross section is larger than the cross section of the micropore is formed such that the bottom reaches the micropore. a step of covering the inner wall of the pore with an insulating film; a step of removing a portion of the insulating film at the bottom of the pore so that only the conductor provided inside the pore is exposed; A method for manufacturing a laminated integrated semiconductor circuit device, which includes the step of fully depositing a conductor on the bottom. 2. Prior to forming a group of elements constituting a semiconductor integrated circuit,
Claim 1, characterized in that first, micropores are provided, then the entire element group is formed, and then the micropores are formed.
A method for manufacturing a laminated integrated semiconductor circuit device as described in Section 1. 6. The method for manufacturing a stacked integrated semiconductor circuit device according to claim 2, characterized in that after the formation of the element group, and prior to the formation of the pores, a step of thinning the semiconductor substrate is carried out.
JP58246926A 1983-12-28 1983-12-28 Manufacture of laminated integration type semiconductor circuit device Pending JPS60140850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58246926A JPS60140850A (en) 1983-12-28 1983-12-28 Manufacture of laminated integration type semiconductor circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58246926A JPS60140850A (en) 1983-12-28 1983-12-28 Manufacture of laminated integration type semiconductor circuit device

Publications (1)

Publication Number Publication Date
JPS60140850A true JPS60140850A (en) 1985-07-25

Family

ID=17155807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58246926A Pending JPS60140850A (en) 1983-12-28 1983-12-28 Manufacture of laminated integration type semiconductor circuit device

Country Status (1)

Country Link
JP (1) JPS60140850A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056315A1 (en) * 1998-04-11 1999-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for metallizing an electric component and electric component
EP1573799A1 (en) * 2002-12-20 2005-09-14 International Business Machines Corporation Three-dimensional device fabrication method
FR2901635A1 (en) * 2006-06-09 2007-11-30 Commissariat Energie Atomique Front and rear surfaces three dimensional electrical connection forming method for e.g. silicon substrate, involves engraving lines and trenches, and realising metallization of walls of lines and base of trenches on surfaces by layers
US7633167B2 (en) 2005-09-29 2009-12-15 Nec Electronics Corporation Semiconductor device and method for manufacturing same
JP2010514178A (en) * 2006-12-20 2010-04-30 ウードゥヴェ セミコンダクターズ Connection pad structure for image sensor on thin substrate
US7898086B2 (en) 2005-02-28 2011-03-01 Oki Semiconductor Co., Ltd. Semiconductor device having a package base with at least one through electrode
JP2012015551A (en) * 2007-06-22 2012-01-19 Ind Technol Res Inst Method of manufacturing self-aligning wafer or chip structure
US8174093B2 (en) 1996-12-02 2012-05-08 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
JP2017022223A (en) * 2015-07-09 2017-01-26 大日本印刷株式会社 Through electrode substrate, method of manufacturing the same, and interposer and semiconductor device using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283755B2 (en) 1996-12-02 2012-10-09 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US8174093B2 (en) 1996-12-02 2012-05-08 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
WO1999056315A1 (en) * 1998-04-11 1999-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for metallizing an electric component and electric component
EP1573799A4 (en) * 2002-12-20 2009-02-25 Ibm Three-dimensional device fabrication method
EP1573799A1 (en) * 2002-12-20 2005-09-14 International Business Machines Corporation Three-dimensional device fabrication method
US7898086B2 (en) 2005-02-28 2011-03-01 Oki Semiconductor Co., Ltd. Semiconductor device having a package base with at least one through electrode
US7633167B2 (en) 2005-09-29 2009-12-15 Nec Electronics Corporation Semiconductor device and method for manufacturing same
US7892973B2 (en) 2005-09-29 2011-02-22 Renesas Electronics Corporation Method for manufacturing a semiconductor device
US8183685B2 (en) 2005-09-29 2012-05-22 Renesas Electronics Corporation Semiconductor device
US8456019B2 (en) 2005-09-29 2013-06-04 Renesas Electronics Corporation Semiconductor device
FR2901635A1 (en) * 2006-06-09 2007-11-30 Commissariat Energie Atomique Front and rear surfaces three dimensional electrical connection forming method for e.g. silicon substrate, involves engraving lines and trenches, and realising metallization of walls of lines and base of trenches on surfaces by layers
JP2010514178A (en) * 2006-12-20 2010-04-30 ウードゥヴェ セミコンダクターズ Connection pad structure for image sensor on thin substrate
JP2012015551A (en) * 2007-06-22 2012-01-19 Ind Technol Res Inst Method of manufacturing self-aligning wafer or chip structure
JP2017022223A (en) * 2015-07-09 2017-01-26 大日本印刷株式会社 Through electrode substrate, method of manufacturing the same, and interposer and semiconductor device using the same

Similar Documents

Publication Publication Date Title
US5481133A (en) Three-dimensional multichip package
JP4865197B2 (en) Semiconductor device and manufacturing method thereof
US9287172B2 (en) Interposer-on-glass package method
JP3895595B2 (en) Method for vertically integrating electrical components by back contact
JP3229206B2 (en) Endcap chip with conductive monolithic L-connection for multichip stacks and method of making same
JPS60160645A (en) Laminated semiconductor integrated circuit device
JP4035034B2 (en) Semiconductor device and manufacturing method thereof
JP2004128063A (en) Semiconductor device and its manufacturing method
JPH08213549A (en) Manufacture of integrated circuit
JP2004536449A (en) System on package manufactured on semiconductor or dielectric wafer
JP2001044357A (en) Semiconductor device and manufacture thereof
JP2010074194A (en) Semiconductor device, and method of manufacturing the same
JP2002343924A (en) Semiconductor device and manufacturing method therefor
JP2002319658A (en) Semiconductor device
JP2001135776A (en) Semiconductor device and method of manufacture the same
JP5025922B2 (en) Circuit board, method for manufacturing circuit board, and semiconductor device
JPS60140850A (en) Manufacture of laminated integration type semiconductor circuit device
US6784519B2 (en) Semiconductor device
JPH04356956A (en) Semiconductor device and its manufacture
JPH02199860A (en) High density semiconductor structure and its manufacture
JPH01140652A (en) Three-dimensional semiconductor device
JP4028211B2 (en) Semiconductor device
JP5171726B2 (en) Semiconductor device
JP2003142648A (en) Semiconductor device and method for its manufacture
JPH0714028B2 (en) Method for manufacturing three-dimensional semiconductor device