JPH01140124A - Optical device - Google Patents

Optical device

Info

Publication number
JPH01140124A
JPH01140124A JP62297553A JP29755387A JPH01140124A JP H01140124 A JPH01140124 A JP H01140124A JP 62297553 A JP62297553 A JP 62297553A JP 29755387 A JP29755387 A JP 29755387A JP H01140124 A JPH01140124 A JP H01140124A
Authority
JP
Japan
Prior art keywords
mode
diffraction grating
optical waveguide
vapor
relief type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62297553A
Other languages
Japanese (ja)
Other versions
JP2650931B2 (en
Inventor
Makoto Okai
誠 岡井
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62297553A priority Critical patent/JP2650931B2/en
Publication of JPH01140124A publication Critical patent/JPH01140124A/en
Application granted granted Critical
Publication of JP2650931B2 publication Critical patent/JP2650931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To permit selection of a specified wavelength and to permit also transformation from TE mode to TM mode optionally by prepg. a relief type diffraction grating having periodicity on the surface of an optical waveguide, coating liquid crystals thereon, depositing Al vapor, and interposing the product between glass plates. CONSTITUTION:An optical waveguide 1 is formed by an ion exchange process on the surface of a glass substrate 3 having a rear surface deposited with Al vapor. A photoresist is coated on the front surface, and a diffraction grating pattern of the resist is formed by the interferential exposure after baking the coated photoresist. The formed diffraction grating pattern is masked, and relief type diffraction grating having each specified period and depth is formed on the surface of the optical waveguide by dry etching. Nematic liquid crystals are poured on the surface of the relief type diffraction grating after providing spacers, then the surface is interposed between glass plates 5 having surfaces deposited with Al vapor. By this constitution, an optical waveguide permitting selective transmission of light having a specified wavelength, permitting also optional transformation from TE mode to TM mode is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学装置に係り、特に波長選択と、TE−T
Mモモ−選択を同時に行なうことを特徴とする光学装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical device, and particularly to wavelength selection and TE-T
The present invention relates to an optical device characterized in that M-move selection is performed simultaneously.

〔従来の技術〕[Conventional technology]

従来、イオン交換ガラス導波路上に、方解石を装荷する
ことにより、TEモードと7Mモードを選択する例が、
アプライド・オプテイクス、13巻(1,974年)第
1753頁から第1754頁(^ppHed  Opむ
ics  voJ、  1 3  (1974)  p
p1753−ρρ1754)において論じられている6
〔発明が解決しようとする問題点〕 上記従来技術は、異方性光学結晶の光学軸と、光導波路
方向の相対位置により、TE−TMモード選択性が決ま
り、T E −T Mモード選択性を、任意に切り換え
ることができなかった。さらに、波長選択性を有する素
子との組合せは1作製が困難であった。
Conventionally, an example of selecting between TE mode and 7M mode by loading calcite on an ion-exchange glass waveguide is as follows.
Applied Optics, Vol. 13 (1,974), pp. 1753-1754 (^ppHed Optics voJ, 13 (1974) p.
p1753-ρρ1754)6
[Problems to be Solved by the Invention] In the above prior art, the TE-TM mode selectivity is determined by the relative position between the optical axis of the anisotropic optical crystal and the optical waveguide direction, and the TE-TM mode selectivity is could not be switched arbitrarily. Furthermore, it was difficult to manufacture a combination with an element having wavelength selectivity.

本発明は、上記従来技術の有する問題点を解決し、波長
選択性を有し、さらにTE−7Mモードを任意に選択で
きる光学装置を提供することにある。
An object of the present invention is to solve the problems of the above-mentioned prior art and provide an optical device that has wavelength selectivity and can arbitrarily select the TE-7M mode.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、光導波路表面に周期的構成部分を設け、そ
の表面に液晶等の異方性光学効果を示す物質を形成する
ことにより、達成される。
The above object is achieved by providing a periodic component on the surface of the optical waveguide and forming a material exhibiting an anisotropic optical effect, such as liquid crystal, on the surface.

〔作用〕[Effect]

光導波路表面に、サブミクロンオーダの周期を有する例
えばレリーフ型回折格子を作製し、その上に液晶を塗布
することにより、液晶が第2図(a)のように配向する
。さらにこの液晶をガラスではさんで、電界を印加する
と、第3図(b)のように配向性が変化する。液晶は、
第4図に示すような光学的異方性を有するe nep 
nOは、それぞれの方向に対する屈折率であり、ne>
noである。そこで、先導波路の屈折率nx@no<n
s(n eとすることにより、電界を印加した場合TE
モードを選択的に導波し、7Mモードは液晶中に導波し
て散乱する。逆に、電界を印加しない場合は、7Mモー
ドを選択的に導波し、TEモードは液晶中に導波して散
乱する。
For example, a relief-type diffraction grating having a period on the order of submicrons is fabricated on the surface of the optical waveguide, and by applying liquid crystal thereon, the liquid crystal is oriented as shown in FIG. 2(a). Furthermore, when this liquid crystal is sandwiched between glasses and an electric field is applied, the orientation changes as shown in FIG. 3(b). The liquid crystal is
e nep with optical anisotropy as shown in Figure 4.
nO is the refractive index for each direction, ne>
No. Therefore, the refractive index of the leading waveguide nx@no<n
By setting s(ne e, when an electric field is applied, TE
Modes are selectively guided, and the 7M mode is guided into the liquid crystal and scattered. Conversely, when no electric field is applied, the 7M mode is selectively guided, and the TE mode is guided and scattered in the liquid crystal.

このようにして、波長選択性を有し、さらにTE−7M
モードを任意に選択することができる光導波路を作製す
ることができる。
In this way, it has wavelength selectivity and furthermore the TE-7M
It is possible to fabricate an optical waveguide whose mode can be arbitrarily selected.

〔実施例〕〔Example〕

以下、本発明の第1の実施例を第1図により説明する。 A first embodiment of the present invention will be described below with reference to FIG.

裏面をAQ無蒸着たガラス基板3(波長633Nmの光
に対する屈折率1.512)の表面に、イオン交換法に
より、光導波路1(屈折率1.526)を形成する。次
に、表面にホトレジストを塗布し、ベーク後、干渉露光
法により、レジストの回折格子パターンを形成する。こ
れをマスクにして、ドライエツチングにより、先導波路
表面に、周期が0.2μmで深さが0.1μmのレリー
フ型回折格子を形成する。次に、3〜5μmのスペーサ
を設けて、レリーフ型回折格子表面に、ネマティック液
晶2(nII=1.629.no=1.501)を流し
込んだ後、表面をAQ無蒸着たガラス板5ではさみこん
だ、これにより、〜0.6μmの波長の光を選択的に透
過し、さらにTE−7Mモードを任意に切り変えること
ができる光導波路を作製することができた0選択波長は
1回折格子の周期を変えることにより、任意に選ぶこと
ができる0次に1本発明の第2の実施例を第2図により
説明する。第2の実施例では、ガラス基板3の一部に段
差を設け、その部分に、半導体レーザをハイブリッドに
はめこんだ点が、第1の実施例と異なる。半導体レーザ
は、下部クラッド層11上に、活性M9.上部クラッド
層10を積層した後、p(IIIffi極12およびN
側電極13を上下に設けたファブリペロ−タイプのレー
ザである。
An optical waveguide 1 (refractive index 1.526) is formed by an ion exchange method on the surface of a glass substrate 3 (refractive index 1.512 for light with a wavelength of 633 Nm) whose back surface is not deposited with AQ. Next, a photoresist is applied to the surface, and after baking, a diffraction grating pattern of the resist is formed by interference exposure method. Using this as a mask, a relief type diffraction grating having a period of 0.2 μm and a depth of 0.1 μm is formed on the surface of the leading waveguide by dry etching. Next, after providing a spacer of 3 to 5 μm and pouring nematic liquid crystal 2 (nII=1.629.no=1.501) onto the surface of the relief type diffraction grating, the surface was covered with a glass plate 5 without AQ deposition. As a result, we were able to create an optical waveguide that selectively transmits light with a wavelength of ~0.6 μm and can also arbitrarily switch the TE-7M mode.The selected wavelength is 1 diffraction. A second embodiment of the present invention will be described with reference to FIG. 2, which allows arbitrary selection of the zeroth order by changing the period of the grating. The second embodiment differs from the first embodiment in that a step is provided in a part of the glass substrate 3, and a semiconductor laser is fitted into the step in a hybrid manner. The semiconductor laser has an active M9. After laminating the upper cladding layer 10, p(IIIffi pole 12 and N
This is a Fabry-Perot type laser in which side electrodes 13 are provided at the top and bottom.

半導体レーザからの光は、導波路を通過することにより
、回折格子の周期で決まる特定の波長が選択され、さら
に、導波路部分に電界を印加することにより、TEモー
ドが、印加しないことにより、7Mモードが選択されて
、導波路右側から出力される。このようにして、TE−
7Mモードを任意に選択でき、さらに波長純度のすぐれ
た。ハイブリッド型半導体レーザを得ることができた。
By passing the light from the semiconductor laser through the waveguide, a specific wavelength determined by the period of the diffraction grating is selected. Furthermore, by applying an electric field to the waveguide section, the TE mode is set. 7M mode is selected and output from the right side of the waveguide. In this way, TE-
The 7M mode can be selected arbitrarily, and the wavelength purity is excellent. We were able to obtain a hybrid semiconductor laser.

次に1本発明の第3の実施例を第5図により説明する。Next, a third embodiment of the present invention will be explained with reference to FIG.

第3の実施例では、ガラス板5(屈折率1.512)の
下層に、上部導波路(屈折率1.650)を設けた点が
、第1の実施例と異なる。これにより、7Mモードの光
を、光導波路1の左端から入射すると、電界をかけない
場合、光は光導波路1の右端から出射し、電界をかけた
場合、上部光尊波路14の右端から出射する。このよう
に、電界の有無により光の出射位置を基板の深さ方向に
変化させることができる光スィッチを作製することがで
きた。
The third example differs from the first example in that an upper waveguide (refractive index 1.650) is provided below the glass plate 5 (refractive index 1.512). As a result, when 7M mode light enters from the left end of the optical waveguide 1, the light will be emitted from the right end of the optical waveguide 1 if no electric field is applied, and will be emitted from the right end of the upper optical waveguide 14 if an electric field is applied. . In this way, it was possible to produce an optical switch that can change the light emission position in the depth direction of the substrate depending on the presence or absence of an electric field.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、波長選択性を有し、さらに。 According to the present invention, the present invention has wavelength selectivity;

T E−’r Mモードを任意に切り換えることができ
る先導波路を容易に作製することができる。
A leading waveguide capable of arbitrarily switching the T E-'r M mode can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例を示す図、第2図は本
発明の第2の実施例を示す図、第3図及び第4図は、本
発明の詳細な説明図、第5図は。 本発明の第3の実施例を示す図である。 1・・・光導波路、2・・・液晶、3・・・ガラス基板
、4・・・下部電極、5・・・ガラス板、6・・・上部
電極、7・・・電源、8・・・スイッチ、9・・・活性
層、1o・・・上部クラッド層、11・・・下部クラッ
ド層、12・・・I)側@極、】3・・・p側電極、1
4・・・上部導波路。
FIG. 1 is a diagram showing a first embodiment of the invention, FIG. 2 is a diagram showing a second embodiment of the invention, FIGS. 3 and 4 are detailed explanatory diagrams of the invention, Figure 5 is. It is a figure which shows the 3rd Example of this invention. DESCRIPTION OF SYMBOLS 1... Optical waveguide, 2... Liquid crystal, 3... Glass substrate, 4... Lower electrode, 5... Glass plate, 6... Upper electrode, 7... Power supply, 8...・Switch, 9... Active layer, 1o... Upper cladding layer, 11... Lower cladding layer, 12... I) side @ pole, ]3... P-side electrode, 1
4... Upper waveguide.

Claims (1)

【特許請求の範囲】 1、光を導波するための導波領域が、周期的な凹凸を有
する第1の部分と、この第1の部分に接して形成されか
つ異方性光学効果を有する第2の部分とを有することを
特徴とする光学装置。 2、特許請求の範囲第1項に記載の光学装置において、
前記第2の部分は液晶により形成されることを特徴とす
る光学装置。
[Claims] 1. A waveguide region for guiding light is formed in a first portion having periodic irregularities and in contact with the first portion, and has an anisotropic optical effect. an optical device comprising: a second portion; 2. In the optical device according to claim 1,
An optical device characterized in that the second portion is formed of liquid crystal.
JP62297553A 1987-11-27 1987-11-27 Optical device Expired - Lifetime JP2650931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297553A JP2650931B2 (en) 1987-11-27 1987-11-27 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297553A JP2650931B2 (en) 1987-11-27 1987-11-27 Optical device

Publications (2)

Publication Number Publication Date
JPH01140124A true JPH01140124A (en) 1989-06-01
JP2650931B2 JP2650931B2 (en) 1997-09-10

Family

ID=17848037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297553A Expired - Lifetime JP2650931B2 (en) 1987-11-27 1987-11-27 Optical device

Country Status (1)

Country Link
JP (1) JP2650931B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387354A1 (en) * 1988-08-05 1990-09-19 Matsushita Electric Industrial Co., Ltd. Light deflecting element
JP2000188418A (en) * 1998-10-13 2000-07-04 Sony Corp Optoelectronic integrated circuit device
FR2826133A1 (en) * 2001-06-15 2002-12-20 Nemoptic Liquid crystal optical switch include two liquid crystal regions with electrodes controlling two polarisation components of signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164305A (en) * 1980-05-22 1981-12-17 Nippon Telegr & Teleph Corp <Ntt> Optical fiber dispersively delayed equalizer and its production
JPS5952219A (en) * 1982-09-20 1984-03-26 Nippon Telegr & Teleph Corp <Ntt> Electrode for liquid crystal optical element
JPS59109026A (en) * 1982-12-14 1984-06-23 Seiko Instr & Electronics Ltd Light modulator
JPS59126336A (en) * 1983-01-06 1984-07-20 Tokyo Inst Of Technol Optical delay equalizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164305A (en) * 1980-05-22 1981-12-17 Nippon Telegr & Teleph Corp <Ntt> Optical fiber dispersively delayed equalizer and its production
JPS5952219A (en) * 1982-09-20 1984-03-26 Nippon Telegr & Teleph Corp <Ntt> Electrode for liquid crystal optical element
JPS59109026A (en) * 1982-12-14 1984-06-23 Seiko Instr & Electronics Ltd Light modulator
JPS59126336A (en) * 1983-01-06 1984-07-20 Tokyo Inst Of Technol Optical delay equalizer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387354A1 (en) * 1988-08-05 1990-09-19 Matsushita Electric Industrial Co., Ltd. Light deflecting element
EP0387354A4 (en) * 1988-08-05 1991-04-03 Matsushita Electric Industrial Co., Ltd. Light deflecting element
US5193130A (en) * 1988-08-05 1993-03-09 Matsushita Electric Industrial Co., Ltd. Light deflecting device
JP2000188418A (en) * 1998-10-13 2000-07-04 Sony Corp Optoelectronic integrated circuit device
JP4529194B2 (en) * 1998-10-13 2010-08-25 ソニー株式会社 Optoelectronic integrated circuit device
FR2826133A1 (en) * 2001-06-15 2002-12-20 Nemoptic Liquid crystal optical switch include two liquid crystal regions with electrodes controlling two polarisation components of signal
WO2002103443A1 (en) * 2001-06-15 2002-12-27 Nemoptic Liquid crystal-based electrooptical device forming, in particular, a switch
US6959124B2 (en) 2001-06-15 2005-10-25 Nemoptic Liquid crystal-based electro-optical device forming, in particular, a switch

Also Published As

Publication number Publication date
JP2650931B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
EP0467579B1 (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
EP0670510B1 (en) Liquid crystal spatial light phase modulator
JPS61156003A (en) Production of diffraction grating
EP0445763A2 (en) Operating point trimming method for optical waveguide modulator and switch
US5483609A (en) Optical device with mode absorbing films deposited on both sides of a waveguide
JP2721030B2 (en) Manufacturing method of integrated optical waveguide
US20100182672A1 (en) Optical switch
JP2006106749A (en) Method of manufacturing mold for patterning lower cladding layer of wavelength filter and of manufacturing waveguide-type wavelength filter using the mold
JPH01140124A (en) Optical device
US5835644A (en) TE-pass optical waveguide polarizer using elecro-optic polymers
JPH0616121B2 (en) Fresnel lens and manufacturing method thereof
JP3628963B2 (en) Manufacturing method of optical nonlinear thin film waveguide
KR100288447B1 (en) Optical intensity modulator and its fabrication method
JPS60241019A (en) Optical integrated circuit
JP2004037587A (en) Optical modulator and method for manufacturing the same
JP2739405B2 (en) Electric field sensor
JPH0313907A (en) Production of substrate type optical waveguide
JP2635986B2 (en) Optical waveguide switch
JPH09185025A (en) Optical control element
JPH06194523A (en) Hologram element and its production
JPS62187310A (en) Production of diffraction grating type optical coupler
JPH04265950A (en) Optical directional coupler
JP3024555B2 (en) Optical waveguide device and method of manufacturing the same
JPH0667131A (en) Optical filter
JPH0715528B2 (en) Method for producing tapered optical waveguide