JPS5952219A - Electrode for liquid crystal optical element - Google Patents

Electrode for liquid crystal optical element

Info

Publication number
JPS5952219A
JPS5952219A JP16351282A JP16351282A JPS5952219A JP S5952219 A JPS5952219 A JP S5952219A JP 16351282 A JP16351282 A JP 16351282A JP 16351282 A JP16351282 A JP 16351282A JP S5952219 A JPS5952219 A JP S5952219A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
optical
electrode substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16351282A
Other languages
Japanese (ja)
Inventor
Hiroshi Terui
博 照井
Morio Kobayashi
盛男 小林
Takao Edahiro
枝広 隆夫
Juichi Noda
野田 「じゆ」一
Masao Kawachi
河内 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16351282A priority Critical patent/JPS5952219A/en
Publication of JPS5952219A publication Critical patent/JPS5952219A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals

Abstract

PURPOSE:To prevent a liquid crystal optical switch from having a shift in transmission wave optical path, by leading out the lead line of an electrode for orientation control over a liquid crystal layer laminated on a light guide film to the electrode substrate surface opposite to the liquid crystal layer side through a through hole provided at a desired position of the electrode substrate. CONSTITUTION:Through-holes are formed in said electrode substrate 9 of, for example, a 2X2 light guide type liquid crystal switch for a liquid crystal optical element for optical information processing and optical communication at positions (black dot) except light guide optical paths of liquid crystal side electrodes 5, 6, 7, and 8 on the electrode substrate 9. Internal walls of those through-holes are plated chemically with, for example, Cu 10 and then the electrodes 5-8 and their lead lines 12 are connected together by melting and filling an alloy (solder, etc.) 11 consisting essentially of Sn, Pb, etc., having good wettability with Cu 10. Consequently, when voltages are applied from ports I1 and I2 to the liquid crystal layer, guided light is reflected totally by the lower parts of the electrodes 5 and 6 to travel in the order of I1-O2 and I2-O2, and in this case, a shift in optical patch due to the lead lines 12 of the electrodes 7 and 8 is prevented.

Description

【発明の詳細な説明】 本発明は光情報処理や光通信に用いられる液晶光素子の
電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode for a liquid crystal optical element used in optical information processing and optical communication.

従来の液晶光素子用電極の一例として、特願昭56−1
67912で提案された導波形液晶光スイッチに用いら
れている電極について述べる。説明の便宜上、前記光ス
ィッチの動作についても、−緒に述べるう 第1図は従来の液晶光素子用電極を用いた2×2導波形
液晶スイツチの構成図であり、また第2図は、第1図の
I、−M、で紙面に垂直に切断した断面図である。この
スイッチは、第2図に示すように、図の下から順に下部
電極1、バッファ層2、光導波層8、ネマチック液晶層
4および第1図、第2図に示すように、液晶層に接する
側に、互いに平行で、導波光に対して所定の角度を有す
る第1電極5、第2電極6、第3電極7および第4電極
8と、これらへのリード線が付着せしめられた上部電極
基板9から成る。光導波層3および上部電極基板9の液
晶側の表面には、図のX軸方向への平行配向処理が施さ
れており、液晶分子は電圧無印加時には、第2図に示す
ように、光導波層3に平行でX軸方向にその長軸を向け
て平行配向している。
As an example of conventional electrodes for liquid crystal optical elements, Japanese Patent Application No. 56-1
The electrodes used in the waveguide type liquid crystal optical switch proposed in No. 67912 will be described below. For convenience of explanation, the operation of the optical switch will also be described. FIG. 1 is a block diagram of a 2×2 waveguide type liquid crystal switch using conventional electrodes for liquid crystal optical elements, and FIG. FIG. 2 is a cross-sectional view taken perpendicularly to the plane of the paper at lines I and -M in FIG. 1; As shown in FIG. 2, this switch consists of a lower electrode 1, a buffer layer 2, an optical waveguide layer 8, a nematic liquid crystal layer 4, and a liquid crystal layer as shown in FIGS. A first electrode 5, a second electrode 6, a third electrode 7, and a fourth electrode 8, which are parallel to each other and have a predetermined angle with respect to the guided light, and an upper part to which lead wires to these electrodes are attached on the contact sides. It consists of an electrode substrate 9. The surfaces of the optical waveguide layer 3 and the upper electrode substrate 9 on the liquid crystal side are subjected to parallel alignment treatment in the X-axis direction in the figure, and when no voltage is applied, the liquid crystal molecules are aligned in the light guide as shown in Figure 2. It is parallel to the wave layer 3 and is oriented in parallel with its long axis facing the X-axis direction.

前記構成において、電界振動面が光導波層3の面内にあ
るような導波光がボート■、および■2から入射した場
合を考える。電圧無印加時には、これらの導波光は直進
し、ボートM0およびM2に到る。一方、下部電極1と
第1電極5〜第4電極8のいずれかに交番電圧を印加す
ると、第2図に示すように、電圧印加部では液晶が垂直
配向し、電界の液晶層へのしみ出しが小さくなり、等価
屈折率が低下する。第2図は第1電極5への電圧印加時
の様子を示している。その結果、11ポートから入射し
た導波光は、第1電極5の下部で全反射され、第1図に
示すように、ボート0□に到る。
In the above configuration, let us consider a case where guided light whose electric field vibration surface is within the plane of the optical waveguide layer 3 is incident from the boats ① and ②2. When no voltage is applied, these guided lights travel straight and reach boats M0 and M2. On the other hand, when an alternating voltage is applied to the lower electrode 1 and any of the first to fourth electrodes 8, as shown in FIG. The output becomes smaller and the equivalent refractive index decreases. FIG. 2 shows the situation when voltage is applied to the first electrode 5. As a result, the guided light incident from the port 11 is totally reflected at the lower part of the first electrode 5, and reaches the boat 0□, as shown in FIG.

さてこのような状態において、ボート■2から入射した
導波光をボート0□に出力しようとすると、第4電極8
に電圧を印加することになる。すると、第4電極8への
リード部の下部においても、液晶層に電圧が印加される
ので、この部分の等価屈折率も低下する。従って第1図
に示すように、第4電極8へのリード部の下部で光路ず
れを生じることとなる。
Now, in this state, when trying to output the guided light incident from boat □2 to boat 0□, the fourth electrode 8
A voltage will be applied to. Then, since a voltage is applied to the liquid crystal layer also at the lower part of the lead portion to the fourth electrode 8, the equivalent refractive index of this part also decreases. Therefore, as shown in FIG. 1, an optical path shift occurs at the lower part of the lead portion to the fourth electrode 8.

前記のように、従来形の液晶光素子用電極を用いた場合
には、導波形液晶光スイッチによってマトリクスを組も
うとすると、電極リード部での光路ずれが生じ、従って
出力ポートに光ファイバを接続したり、または受光器を
設置しようとする場合に、結合効率が悪化するという問
題があった。
As mentioned above, when conventional electrodes for liquid crystal optical devices are used, when trying to assemble a matrix using a waveguide type liquid crystal optical switch, optical path deviation occurs at the electrode leads, and therefore it is difficult to connect optical fibers to the output ports. There is a problem in that the coupling efficiency deteriorates when connecting or installing a light receiver.

ここでは最も単純な2×2マトリクスを組む場合につい
て述べたが、3×8以上の高次マトリクスを組むことは
、電極リード部を出射光が横切る回数が増加して、光路
ずれが増加するので、事実上不可能であった。
Here, we have described the case of constructing the simplest 2 × 2 matrix, but constructing a higher-order matrix of 3 × 8 or more increases the number of times the emitted light crosses the electrode lead part, which increases optical path deviation. , which was virtually impossible.

本発明は前述の電極リード部での光路ずれの問題を解決
するため、上部電極のリード線を上部電極基板の液晶層
に接する面と反対側の面に取り出すようにしたものであ
る。以下図面により本発明の詳細な説明する。
In order to solve the above-mentioned problem of optical path deviation at the electrode lead portion, the present invention is arranged so that the lead wire of the upper electrode is taken out to the surface of the upper electrode substrate opposite to the surface in contact with the liquid crystal layer. The present invention will be explained in detail below with reference to the drawings.

第3図は本発明の液晶光素子用電極の断面図である。ガ
ラス、セラミック等の絶縁物から成る上部電極基板9の
導波光の経路以外の部位に貫通孔があけられており、こ
の貫通孔には金属lO〜11が充填されている。この金
属が充填された貫通孔の液晶層側には、パターン化され
た上部電極yなわち第1電極5〜第4電極8の端部が接
しており、またその反対側にはリード線12が接続され
ている。
FIG. 3 is a sectional view of an electrode for a liquid crystal optical device according to the present invention. A through hole is formed in an upper electrode substrate 9 made of an insulating material such as glass or ceramic at a portion other than the path of guided light, and this through hole is filled with metal lO-11. The ends of the patterned upper electrode y, that is, the first electrode 5 to the fourth electrode 8, are in contact with the liquid crystal layer side of the through hole filled with metal, and the lead wire 12 is in contact with the other side of the through hole. is connected.

第8図(alでは、リード線12が線とし【取り出され
ている場合であり、一方、第8図(b)ではリード線が
パターン化されている場合である。
FIG. 8(al) shows the case where the lead wire 12 is taken out as a wire, while FIG. 8(b) shows the case where the lead wire is patterned.

このような上部電極構造は、−例として以下のようにす
れば作製し得る。まず絶縁性基板の所望の位置に、ドリ
ルまたは超音波加工によって貫通孔をあける。次にこの
貫通孔に金属10−11を充填するわけであるが、一般
にガラス、およびセラミックなどの絶縁性基板は、金属
とのぬれが悪く、溶融金属を貫通孔付近に接触させても
、貫通孔内部に流入しない。そこであらかじめ貫通孔の
内壁に金属をメッキしておけばよい。メッキ法としては
、銅の無電解メッキが適当である。この方法では、特殊
ペーストを塗布した試料をメッキ液中に浸漬しておくと
、ペーストを塗布した部分にのみ選択的に銅が析出する
。従って貫通孔の内壁(4) に特殊ペーストを塗布して、壁面に銅を析出させ、孔壁
にまず金属10として、銅メッキを施す。次にこの貫通
孔に銅のリード線12を通し、この間隙に金属11とし
て銅とぬれの良い金属である錫、鉛またはこれ等を主成
分とする合金(ハンダなど)を溶融して接触させれば、
極めて容易に貫通孔は金属11で充填される。その後に
液晶層側の面を研磨整形し、パターン化した第1電極5
〜第4電極8を接触させれば、第3図(a)の構造が形
成される。また第3図(b)のようにするには、金属1
0でメッキされた貫通孔に金属11を充填し、次に上部
電極基板90両面を研磨整形し、液晶層側に第1電極5
〜第4電極8を、その反対側にリード線12をパターン
化して付着せしめればよい。
Such an upper electrode structure can be produced, for example, as follows. First, a through hole is made in a desired position of an insulating substrate by a drill or ultrasonic machining. Next, this through hole is filled with metal 10-11, but insulating substrates such as glass and ceramics generally have poor wettability with metal, so even if molten metal comes into contact with the vicinity of the through hole, the metal 10-11 will not penetrate. Does not flow into the hole. Therefore, the inner wall of the through hole may be plated with metal in advance. As the plating method, electroless copper plating is suitable. In this method, when a sample coated with a special paste is immersed in a plating solution, copper is selectively deposited only in the areas where the paste has been coated. Therefore, a special paste is applied to the inner wall (4) of the through hole to deposit copper on the wall surface, and the hole wall is first plated with copper as metal 10. Next, a copper lead wire 12 is passed through this through hole, and a metal 11 that has good wettability with copper, such as tin, lead, or an alloy mainly composed of these (solder, etc.), is melted and brought into contact with the through hole. If so,
The through holes are filled with metal 11 very easily. After that, the surface on the liquid crystal layer side was polished and shaped, and the first electrode 5 was patterned.
~If the fourth electrode 8 is brought into contact, the structure shown in FIG. 3(a) is formed. Also, to make it as shown in Figure 3(b), metal 1
The through holes plated with metal 11 are filled with metal 11, and then both sides of the upper electrode substrate 90 are polished and shaped, and the first electrode 5 is placed on the liquid crystal layer side.
- The fourth electrode 8 may be attached on the opposite side thereof by patterning the lead wire 12.

このような構造の液晶光素子用電極を用いた導波形液晶
光スイッチの例を第4図に示す。スイッチ状態は第1図
と同じく、I、−0,、I、−〇□接続である。第1図
の従来形式と比較して明らかなように、電極リード線1
2を上部電極基板9の上方から取り出す形式となってい
るので、リード線12は液晶配向に何らの影響を及ぼさ
ず、従って光路ずれが全く生じない構造となっている。
FIG. 4 shows an example of a waveguide type liquid crystal optical switch using an electrode for a liquid crystal optical element having such a structure. The switch states are I, -0,, I, -〇□ connections as in Fig. 1. As is clear from the comparison with the conventional type shown in Figure 1, the electrode lead wire 1
Since the lead wires 12 are taken out from above the upper electrode substrate 9, the lead wires 12 do not have any influence on the alignment of the liquid crystal, and therefore the structure is such that no optical path deviation occurs at all.

以上説明したように、本発明の液晶光素子用電極を用い
れば、電極リード線部が液晶配向に何らの影響を及ぼさ
ないので、液晶光素子に適用すれば有効である。特に前
述したように、導波形液晶光スイッチに用いた場合、光
路ずれが生じないので、出力部における高い結合効率を
得ることができ、大規模マトリクススイッチの実現に極
めて有効である。
As explained above, if the electrode for a liquid crystal optical device of the present invention is used, the electrode lead wire portion does not have any influence on the liquid crystal alignment, so it is effective when applied to a liquid crystal optical device. In particular, as described above, when used in a waveguide type liquid crystal optical switch, no optical path deviation occurs, so high coupling efficiency can be obtained at the output section, and it is extremely effective in realizing a large-scale matrix switch.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液晶光素子用電極を用いた導波形液晶光
スイッチの構成図、第2図は恕1図に示す導波形液晶光
スイッチのI、−M、における断面図、第8図は本発明
の液晶光素子用電極の断面図、第4図は本発明の液晶光
素子用電極を用いた導波形液晶光スイッチの一実施例の
構成図である。 1・・・下部電極基板、2・・・バッファ層、3・・・
光導波層、4・・・液晶層、5・・・第1電極、6・・
・第2電極、7・・・第8電極、8・・・第4電極、9
・・・上部電極基板。 10・・・金属、11・・・金属、12・・・リード線
。 特許出願人 日本電信電話公社 第1F 第2図 第8図 (a) (b・ 第4図
Figure 1 is a configuration diagram of a waveguide type liquid crystal optical switch using conventional electrodes for liquid crystal optical elements, Figure 2 is a cross-sectional view at I and -M of the waveguide type liquid crystal optical switch shown in Figure 1, and Figure 8. 4 is a sectional view of an electrode for a liquid crystal optical device of the present invention, and FIG. 4 is a configuration diagram of an embodiment of a waveguide type liquid crystal optical switch using the electrode for a liquid crystal optical device of the present invention. 1... Lower electrode substrate, 2... Buffer layer, 3...
Optical waveguide layer, 4... Liquid crystal layer, 5... First electrode, 6...
・Second electrode, 7... Eighth electrode, 8... Fourth electrode, 9
...Top electrode substrate. 10...Metal, 11...Metal, 12...Lead wire. Patent applicant Nippon Telegraph and Telephone Public Corporation 1st floor Figure 2 Figure 8 (a) (b, Figure 4)

Claims (1)

【特許請求の範囲】 L 光導波膜上に積層された液晶層の配向を制御するた
めの液晶光素子用電極において、電極基板の液晶層側に
付着せしめられた制御電極のリード線が、当該電極基板
の所望の位置にあけられた貫通孔を通して、液晶層側と
反対の電極基板面上に取り出されていることを特徴とす
る液晶光素子用電極。 & 特許請求の範囲第1項記載の液晶光素子用電極にお
いて、前記貫通孔の内壁に銅がメッキされており、さら
に当該貫通孔が錫、鉛もしくはこれらを主成分とする合
金で充填されていることを特徴とする液晶光素子用電極
[Scope of Claims] L In an electrode for a liquid crystal optical device for controlling the orientation of a liquid crystal layer laminated on an optical waveguide film, a lead wire of a control electrode attached to the liquid crystal layer side of an electrode substrate is 1. An electrode for a liquid crystal optical device, characterized in that the electrode is taken out onto the surface of the electrode substrate opposite to the liquid crystal layer side through a through hole drilled at a desired position of the electrode substrate. & In the electrode for a liquid crystal optical device according to claim 1, the inner wall of the through hole is plated with copper, and the through hole is further filled with tin, lead, or an alloy containing these as main components. An electrode for a liquid crystal optical element characterized by:
JP16351282A 1982-09-20 1982-09-20 Electrode for liquid crystal optical element Pending JPS5952219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16351282A JPS5952219A (en) 1982-09-20 1982-09-20 Electrode for liquid crystal optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16351282A JPS5952219A (en) 1982-09-20 1982-09-20 Electrode for liquid crystal optical element

Publications (1)

Publication Number Publication Date
JPS5952219A true JPS5952219A (en) 1984-03-26

Family

ID=15775268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16351282A Pending JPS5952219A (en) 1982-09-20 1982-09-20 Electrode for liquid crystal optical element

Country Status (1)

Country Link
JP (1) JPS5952219A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140124A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Optical device
EP1725908A2 (en) * 2004-01-22 2006-11-29 Vescent Photonics, Inc. Liquid crystal waveguide having refractive shapes for dynamically controlling light
US7570320B1 (en) 2005-09-01 2009-08-04 Vescent Photonics, Inc. Thermo-optic liquid crystal waveguides
US8463080B1 (en) 2004-01-22 2013-06-11 Vescent Photonics, Inc. Liquid crystal waveguide having two or more control voltages for controlling polarized light
US8860897B1 (en) 2004-01-22 2014-10-14 Vescent Photonics, Inc. Liquid crystal waveguide having electric field orientated for controlling light
US8989523B2 (en) 2004-01-22 2015-03-24 Vescent Photonics, Inc. Liquid crystal waveguide for dynamically controlling polarized light
US8995038B1 (en) 2010-07-06 2015-03-31 Vescent Photonics, Inc. Optical time delay control device
US9829766B2 (en) 2009-02-17 2017-11-28 Analog Devices, Inc. Electro-optic beam deflector device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140124A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Optical device
US8989523B2 (en) 2004-01-22 2015-03-24 Vescent Photonics, Inc. Liquid crystal waveguide for dynamically controlling polarized light
EP1725908A2 (en) * 2004-01-22 2006-11-29 Vescent Photonics, Inc. Liquid crystal waveguide having refractive shapes for dynamically controlling light
EP1725908A4 (en) * 2004-01-22 2007-12-05 Vescent Photonics Inc Liquid crystal waveguide having refractive shapes for dynamically controlling light
US8311372B2 (en) 2004-01-22 2012-11-13 Vescent Photonics, Inc. Liquid crystal waveguide having refractive shapes for dynamically controlling light
US8380025B2 (en) 2004-01-22 2013-02-19 Vescent Photonics, Inc. Liquid crystal waveguide having refractive shapes for dynamically controlling light
US8463080B1 (en) 2004-01-22 2013-06-11 Vescent Photonics, Inc. Liquid crystal waveguide having two or more control voltages for controlling polarized light
US8860897B1 (en) 2004-01-22 2014-10-14 Vescent Photonics, Inc. Liquid crystal waveguide having electric field orientated for controlling light
US7570320B1 (en) 2005-09-01 2009-08-04 Vescent Photonics, Inc. Thermo-optic liquid crystal waveguides
US9829766B2 (en) 2009-02-17 2017-11-28 Analog Devices, Inc. Electro-optic beam deflector device
US9880443B2 (en) 2009-02-17 2018-01-30 Analog Devices, Inc. Electro-optic beam deflector device having adjustable in-plane beam control
US9885892B2 (en) 2009-02-17 2018-02-06 Analog Devices, Inc. Electro-optic beam deflector device
US8995038B1 (en) 2010-07-06 2015-03-31 Vescent Photonics, Inc. Optical time delay control device

Similar Documents

Publication Publication Date Title
KR0147308B1 (en) Display board having wiring with three-layered structure and display device including the display board
US4710592A (en) Multilayer wiring substrate with engineering change pads
EP1136851A1 (en) Optical waveguide with encapsulated liquid upper cladding
US4758063A (en) Optical device and circuit board set
JPS5952219A (en) Electrode for liquid crystal optical element
JPH0818187A (en) Electronic device and manufacture thereof
JPS6155792B2 (en)
KR20020056622A (en) Reflective or semi-transparent type liquid crystal display and manufacturing method of the same
KR20080026656A (en) Optical waveguide device and method for fabricating optical waveguide device
US20220302362A1 (en) Display panel and manufacturing method thereof, display apparatus and splicing display apparatus
JP2004013155A (en) Single mode optical switch, thin film optical switch, optical switch, and method for manufacturing single mode optical switch
US7577321B2 (en) Hybrid electro-optical circuit board and method for fabricating the same
JPH08162755A (en) Electric connector
JP3343837B2 (en) Manufacturing method of electro-optical hybrid module
JP4422464B2 (en) Connector chip and manufacturing method thereof
JPS60220317A (en) Liquid crystal display element
JPH10270796A (en) Photonic component with electrical conduction paths
JPH0434418A (en) Liquid crystal panel
JP3204486B2 (en) Optical hybrid circuit
WO2023230923A1 (en) Wiring substrate and preparation method therefor, back plate, and display device
JPS6384053A (en) Coaxial wiring structure
JP3798379B2 (en) Optical module and manufacturing method thereof
JPH02259728A (en) Liquid crystal display device
CN115453779A (en) Optical waveguide device and method for manufacturing the same
JPH0641216Y2 (en) Liquid crystal element