JPH04265950A - Optical directional coupler - Google Patents
Optical directional couplerInfo
- Publication number
- JPH04265950A JPH04265950A JP4775391A JP4775391A JPH04265950A JP H04265950 A JPH04265950 A JP H04265950A JP 4775391 A JP4775391 A JP 4775391A JP 4775391 A JP4775391 A JP 4775391A JP H04265950 A JPH04265950 A JP H04265950A
- Authority
- JP
- Japan
- Prior art keywords
- directional coupler
- optical
- substrate
- electrode
- optical waveguides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 104
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 230000008878 coupling Effects 0.000 claims abstract description 40
- 238000010168 coupling process Methods 0.000 claims abstract description 40
- 238000005859 coupling reaction Methods 0.000 claims abstract description 40
- 239000013078 crystal Substances 0.000 claims abstract description 13
- 230000005684 electric field Effects 0.000 claims abstract description 11
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 229910003327 LiNbO3 Inorganic materials 0.000 abstract description 11
- 238000010586 diagram Methods 0.000 description 7
- 238000005342 ion exchange Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 240000002329 Inga feuillei Species 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3132—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、光方向性結合器に関す
る。より詳細には、分岐比、結合比を正確に制御可能な
光方向性結合器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical directional coupler. More specifically, the present invention relates to an optical directional coupler that can accurately control branching ratios and coupling ratios.
【0002】0002
【従来の技術】光方向性結合器は、光導波路の性質を巧
みに利用したもので、光分岐器、光結合器等の光変調器
に広く応用されている。従来の光方向性結合器の概略図
を図4に示す。図4の光方向性結合器は、LiNbO3
基板1にTiを熱拡散させて形成された2本の3次元
光導波路2および3で構成されている。図4に示されて
いるよう、3次元光導波路2および3は、光の伝搬方向
に沿った所定の長さの部分が平行に近接して結合部4を
構成している。3次元光導波路2および3を伝搬する光
は、この結合部4において互いに他の3次元光導波路に
移行するよう構成されている。2. Description of the Related Art Optical directional couplers skillfully utilize the properties of optical waveguides, and are widely applied to optical modulators such as optical splitters and optical couplers. A schematic diagram of a conventional optical directional coupler is shown in FIG. The optical directional coupler in FIG. 4 is LiNbO3
It is composed of two three-dimensional optical waveguides 2 and 3 formed by thermally diffusing Ti onto a substrate 1. As shown in FIG. 4, portions of the three-dimensional optical waveguides 2 and 3 having a predetermined length along the light propagation direction are parallel and close to each other to form a coupling portion 4. The light propagating through the three-dimensional optical waveguides 2 and 3 is configured to mutually transfer to the other three-dimensional optical waveguide at this coupling portion 4.
【0003】上記の光方向性結合器においては、3次元
光導波路2および3の幅、結合部4の長さ、結合部4に
おける3次元光導波路2および3の間の距離、3次元光
導波路2および3の屈折率と基板の屈折率との差等によ
り分岐比、結合比が決定される。しかしながら、これら
の数値は微小であり、僅かに異なるだけでも光方向性結
合器の分岐比、結合比は影響を受ける。一方、製造工程
には不可避の誤差があり、所定の分岐比、結合比の光方
向性結合器を作製することは困難であった。In the above optical directional coupler, the width of the three-dimensional optical waveguides 2 and 3, the length of the coupling part 4, the distance between the three-dimensional optical waveguides 2 and 3 in the coupling part 4, the three-dimensional optical waveguide The branching ratio and the coupling ratio are determined by the difference between the refractive index of 2 and 3 and the refractive index of the substrate. However, these values are minute, and even a slight difference will affect the branching ratio and coupling ratio of the optical directional coupler. On the other hand, there are inevitable errors in the manufacturing process, and it has been difficult to produce an optical directional coupler with a predetermined branching ratio and coupling ratio.
【0004】そのため、特開昭61−241706号公
報には、光方向性結合器の結合部における3次元光導波
路の間の基板の一部にイオン交換を行って屈折率を変化
させて、所定の分岐比、結合比とする方法が開示されて
いる。図3に、特開昭61−241706号公報に開示
されている光方向性結合器の概略図を示す。図3の光方
向性結合器は、図4のものと同様、LiNbO3 基板
1にTiを熱拡散させて結合部4を有する形状に形成さ
れた3次元光導波路2および3を具備する。結合部4の
3次元光導波路2および3の間には、LiNbO3 基
板1のLiイオンの一部をHイオンで置換した領域8が
形成されている。イオン交換領域8の屈折率は、LiN
bO3 基板1の他の部分に比較して小さく、また、イ
オン交換後に行うHイオン熱拡散のための加熱の時間を
調整することにより、イオン交換領域8の大きさ、屈折
率を制御することができる。Therefore, Japanese Patent Application Laid-Open No. 61-241706 discloses that a part of the substrate between the three-dimensional optical waveguides in the coupling part of an optical directional coupler is subjected to ion exchange to change the refractive index to a predetermined value. A method for achieving branching ratios and coupling ratios is disclosed. FIG. 3 shows a schematic diagram of an optical directional coupler disclosed in Japanese Patent Application Laid-Open No. 61-241706. The optical directional coupler of FIG. 3, like the one of FIG. 4, includes three-dimensional optical waveguides 2 and 3 formed in a shape having a coupling portion 4 by thermally diffusing Ti into a LiNbO3 substrate 1. Between the three-dimensional optical waveguides 2 and 3 of the coupling portion 4, a region 8 is formed in which some of the Li ions of the LiNbO3 substrate 1 are replaced with H ions. The refractive index of the ion exchange region 8 is LiN
bO3 is small compared to other parts of the substrate 1, and the size and refractive index of the ion exchange region 8 can be controlled by adjusting the heating time for H ion thermal diffusion performed after ion exchange. can.
【0005】[0005]
【発明が解決しようとする課題】上記のようにイオン交
換で結合部の基板の屈折率を変化させる方法は、イオン
交換を行った後さらにイオン拡散を行う等手間がかかっ
た。また、結合部の基板の屈折率を小さくする場合にし
か適用できない。さらに、GaAs、InP等の半導体
基板を使用した光方向性結合器には応用できない等の問
題がある。Problems to be Solved by the Invention The method of changing the refractive index of the substrate of the bonding portion by ion exchange as described above is time-consuming, as it requires further ion diffusion after ion exchange. In addition, this method can only be applied when reducing the refractive index of the substrate of the bonding portion. Further, there are problems such as the inability to apply the method to optical directional couplers using semiconductor substrates such as GaAs and InP.
【0006】そこで本発明の目的は、上記従来技術の問
題点を解決した分岐比、結合比を正確に制御可能な光方
向性結合器を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an optical directional coupler which solves the problems of the prior art and allows precise control of the branching ratio and coupling ratio.
【0007】[0007]
【課題を解決するための手段】本発明に従うと、基板に
形成された複数の3次元光導波路の、光が伝搬する方向
に沿った所定の長さの部分が、互いに平行に近接されて
構成された結合部を有する光方向性結合器において、前
記結合部の3次元光導波路間の部分の基板に電場を印加
するか、または電流を流して該部分の屈折率を変化させ
ることができるように配置された電極を具備することを
特徴とする光方向性結合器が提供される。[Means for Solving the Problems] According to the present invention, portions of a plurality of three-dimensional optical waveguides formed on a substrate, each having a predetermined length along the direction in which light propagates, are arranged in parallel and close to each other. In an optical directional coupler having a coupling part, the refractive index of the part can be changed by applying an electric field or flowing a current to the substrate in the part between the three-dimensional optical waveguides of the coupling part. An optical directional coupler is provided, the optical directional coupler comprising an electrode disposed in the direction of the directional coupler.
【0008】本発明の光方向性結合器は、前記複数の3
次元光導波路が電気光学結晶基板の光学軸に垂直な表面
に形成され、前記結合部の3次元光導波路間に配置され
た第1の電極と、該第1の電極の直下部分を含む前記電
気光学結晶基板裏面に配置された第2の電極とを具備す
ることが好ましい。[0008] The optical directional coupler of the present invention includes the plurality of three
A dimensional optical waveguide is formed on a surface perpendicular to the optical axis of the electro-optic crystal substrate, a first electrode disposed between the three-dimensional optical waveguides of the coupling portion, and a portion directly below the first electrode. It is preferable to include a second electrode disposed on the back surface of the optical crystal substrate.
【0009】また、本発明の光方向性結合器は、前記複
数の3次元光導波路が、キャリア注入により屈折率変化
を起こす半導体基板表面に形成され、前記結合部の3次
元光導波路間に配置された第1の電極と、該第1の電極
の直下部分を含む前記半導体基板裏面に配置された第2
の電極とを具備する構成であってもよい。Further, in the optical directional coupler of the present invention, the plurality of three-dimensional optical waveguides are formed on the surface of a semiconductor substrate whose refractive index changes due to carrier injection, and the plurality of three-dimensional optical waveguides are arranged between the three-dimensional optical waveguides of the coupling part. a first electrode disposed on the back surface of the semiconductor substrate including a portion immediately below the first electrode;
The configuration may include the following electrodes.
【0010】0010
【作用】本発明の光方向性結合器は、結合部の3次元光
導波路間の基板に電場を印加するか、電流を流してその
部分の屈折率を変化させることができる電極を具備する
ところにその主要な特徴がある。本発明の光方向性結合
器では、基板に電気光学結晶を使用する場合には、結合
部の3次元光導波路間の基板に電場を印加し、InP等
のキャリア注入により屈折率を変化させることが容易な
半導体結晶を基板に使用する場合には、結合部の3次元
光導波路間の基板に電流を流して屈折率を変化させる。[Operation] The optical directional coupler of the present invention is equipped with an electrode that can apply an electric field to the substrate between the three-dimensional optical waveguides of the coupling part or apply a current to the substrate to change the refractive index of that part. has its main characteristics. In the optical directional coupler of the present invention, when an electro-optic crystal is used for the substrate, an electric field is applied to the substrate between the three-dimensional optical waveguides of the coupling part, and the refractive index is changed by injecting carriers such as InP. When a semiconductor crystal that is easily refracted is used for the substrate, a current is passed through the substrate between the three-dimensional optical waveguides of the coupling portion to change the refractive index.
【0011】本発明の光方向性結合器において、LiN
bO3 、GaAs等の電気光学結晶基板を使用した場
合には、電場の効果が大きく発現する結晶方向に電場が
印加できるよう電極を配置することが好ましい。具体的
には、電気光学結晶の光学軸に平行に電場が印加される
ように電極を配置する。そのためには、例えば、電気光
学結晶基板の光学軸に垂直な面に結合部を構成するよう
複数の3次元光導波路を形成し、結合部の3次元光導波
路の間とその下側を含む電気光学結晶基板の裏側に電極
を配置する。In the optical directional coupler of the present invention, LiN
When using an electro-optic crystal substrate such as bO3 or GaAs, it is preferable to arrange the electrodes so that the electric field can be applied in the crystal direction where the effect of the electric field is greatest. Specifically, the electrodes are arranged so that an electric field is applied parallel to the optical axis of the electro-optic crystal. For this purpose, for example, a plurality of three-dimensional optical waveguides are formed so as to form a coupling part on a plane perpendicular to the optical axis of the electro-optic crystal substrate, and an electrical An electrode is placed on the back side of the optical crystal substrate.
【0012】本発明の光方向性結合器では、印加する電
場または電流の方向、大きさにより結合部の3次元光導
波路間の基板の屈折率を制御することが可能である。従
って、従来のものと異なり、実際に組込みを行った状態
で、屈折率を最適値に調整することが可能である。In the optical directional coupler of the present invention, it is possible to control the refractive index of the substrate between the three-dimensional optical waveguides of the coupling portion by changing the direction and magnitude of the applied electric field or current. Therefore, unlike conventional devices, it is possible to adjust the refractive index to the optimum value while actually installing the device.
【0013】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではない
。[0013] The present invention will be explained in more detail with reference to examples below. However, the following disclosure is merely an example of the present invention and is not intended to limit the technical scope of the present invention in any way.
【0014】[0014]
【実施例】図1および図2に、それぞれ本発明の光方向
性結合器の一例の概略図を示す。図1の光方向性結合器
は、電気光学効果を有するLiNbO3基板を使用して
いる。図1(a)は斜視図であり、図1(b)は、図1
(a)B−Bにおける断面図である。図1の光方向性結
合器は、Z軸カットのLiNbO3 基板1に、従来の
光方向性結合器と同様、Tiを熱拡散させて形成した3
次元光導波路2および3を具備する。3次元光導波路2
および3は、図3および図4に示した従来の光方向性結
合器と同様、中央部付近の所定の長さの部分が互いに平
行に近接して結合部4を構成している。結合部4の3次
元光導波路2および3の間には電極5が配置され、Li
NbO3 基板1の裏側の電極5の真下の位置には電極
6が配置されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 each show a schematic diagram of an example of an optical directional coupler of the present invention. The optical directional coupler of FIG. 1 uses a LiNbO3 substrate that has an electro-optic effect. FIG. 1(a) is a perspective view, and FIG. 1(b) is a perspective view of FIG.
(a) It is a sectional view taken along BB. The optical directional coupler shown in FIG. 1 is formed by thermally diffusing Ti on a Z-axis cut LiNbO3 substrate 1, as in the conventional optical directional coupler.
It includes dimensional optical waveguides 2 and 3. 3D optical waveguide 2
and 3, similar to the conventional optical directional coupler shown in FIGS. 3 and 4, portions of a predetermined length near the center are parallel and close to each other to form a coupling portion 4. An electrode 5 is arranged between the three-dimensional optical waveguides 2 and 3 of the coupling part 4, and the Li
An electrode 6 is placed directly below the electrode 5 on the back side of the NbO3 substrate 1.
【0015】上記本発明の光方向性結合器は、以下のよ
うに作製した。最初に、LiNbO3 基板1上にリフ
トオフ法により厚さ70nmのTiの導波路パターンを
形成する。パターンの幅は7μm、結合部の間隔は8μ
m、結合長は10mmとした。導波路パターンを形成し
たLiNbO3 基板1を1000℃で5時間加熱し、
Tiを拡散させて3次元光導波路2、3を形成した。次
に、結合部4の3次元光導波路2および3の間の部分に
フォトリソグラフィーにより、5μm幅のパターニング
を行い、CrおよびAuを蒸着して電極5を形成する。
さらに、LiNbO3 基板1の裏面の電極5の真下の
部分にもパターニングを行ってCrおよびAuを蒸着し
て電極6を形成した。The above optical directional coupler of the present invention was manufactured as follows. First, a Ti waveguide pattern with a thickness of 70 nm is formed on a LiNbO3 substrate 1 by a lift-off method. The width of the pattern is 7μm, and the spacing between the joints is 8μm.
m, and the bond length was 10 mm. The LiNbO3 substrate 1 on which the waveguide pattern was formed was heated at 1000°C for 5 hours,
Three-dimensional optical waveguides 2 and 3 were formed by diffusing Ti. Next, a portion of the coupling portion 4 between the three-dimensional optical waveguides 2 and 3 is patterned to a width of 5 μm by photolithography, and Cr and Au are deposited to form the electrode 5. Furthermore, patterning was performed on the back surface of the LiNbO3 substrate 1 directly below the electrode 5, and Cr and Au were vapor-deposited to form the electrode 6.
【0016】上記のように作製した光方向性結合器は、
電極5および6間に電圧を印加しない状態で理論上の分
岐比が50:50であるが、作製上の誤差から実際には
分岐比は45:55〜55:45の範囲に分布する。し
かながら、LiNbO3 基板1が厚さ250 μmの
場合、電極5および6間に5V以内の電圧を印加して電
場7を発生させることにより、基板1の電極5および6
間の屈折率が変化し、いずれの光方向性結合器もほぼ5
0:50の分岐比を得ることが可能であった。[0016] The optical directional coupler produced as described above is
The theoretical branching ratio is 50:50 when no voltage is applied between the electrodes 5 and 6, but due to manufacturing errors, the branching ratio actually ranges from 45:55 to 55:45. However, when the LiNbO3 substrate 1 is 250 μm thick, by applying a voltage within 5 V between the electrodes 5 and 6 to generate an electric field 7, the electrodes 5 and 6 of the substrate 1 are
The refractive index between each optical directional coupler changes, and each optical directional coupler has a
It was possible to obtain a branching ratio of 0:50.
【0017】一方、図2の光方向性結合器は、キャリア
注入により屈折率が変化するInP基板を使用している
。
図2(a)は斜視図であり、図2(b)は、図2(a)
B−Bにおける断面図である。図2の光方向性結合器は
、InP基板1上にInGaAsP導波層11、InP
クラッド層12、InGaAsPキャップ層13が積層
されて形成されたリッジ型3次元光導波路2および3を
具備する。3次元光導波路2および3は、図3および図
4に示した従来の光方向性結合器と同様、中央部付近の
所定の長さの部分が互いに平行に近接して結合部4を構
成している。結合部4の3次元光導波路2および3の間
には、Zn拡散によりキャリア注入領域14形成され、
その上に電極5が配置されている。InP基板1の裏側
の前面には電極6が配置されている。On the other hand, the optical directional coupler shown in FIG. 2 uses an InP substrate whose refractive index changes by carrier injection. FIG. 2(a) is a perspective view, and FIG. 2(b) is a perspective view of FIG. 2(a).
It is a sectional view taken along BB. The optical directional coupler shown in FIG. 2 has an InGaAsP waveguide layer 11 on an InP substrate 1, an InP
It includes ridge-type three-dimensional optical waveguides 2 and 3 formed by stacking a cladding layer 12 and an InGaAsP cap layer 13. Similar to the conventional optical directional coupler shown in FIGS. 3 and 4, the three-dimensional optical waveguides 2 and 3 have portions of a predetermined length near the center that are close to each other in parallel to form a coupling portion 4. ing. Between the three-dimensional optical waveguides 2 and 3 of the coupling part 4, a carrier injection region 14 is formed by Zn diffusion,
An electrode 5 is arranged thereon. An electrode 6 is arranged on the front surface of the back side of the InP substrate 1 .
【0018】上記本発明の光方向性結合器は、以下のよ
うに作製した。最初に、InP基板1上に液相エピタキ
シャル(LPE)法により厚さ1.0μmのInGaA
sP膜、厚さ0.5μmのInP膜、厚さ0.5 μm
のInGaAsP膜を連続して形成、積層する。次にC
l2ガスを用いた反応性イオンビームエッチングで、リ
ッジ型3次元光導波路2、3を形成した。リッジ型3次
元光導波路2、3の幅は6μm、結合部の間隔は5μm
、リッジ部の高さは1.5 μmとした。次に、結合部
4の3次元光導波路2および3の間の部分にZnを拡散
させてキャリア注入領域14を形成し、その上にCrお
よびAuを蒸着して電極5を形成する。
さらに、InP基板1の裏面にもCrおよびAuを蒸着
して電極6を形成した。The above optical directional coupler of the present invention was manufactured as follows. First, an InGa film with a thickness of 1.0 μm was formed on an InP substrate 1 by liquid phase epitaxial (LPE) method.
sP film, 0.5 μm thick InP film, 0.5 μm thick
InGaAsP films are successively formed and laminated. Next, C
Ridge-type three-dimensional optical waveguides 2 and 3 were formed by reactive ion beam etching using l2 gas. The width of the ridge-type three-dimensional optical waveguides 2 and 3 is 6 μm, and the spacing between the coupling parts is 5 μm.
The height of the ridge portion was 1.5 μm. Next, Zn is diffused into a portion of the coupling portion 4 between the three-dimensional optical waveguides 2 and 3 to form a carrier injection region 14, and Cr and Au are deposited thereon to form the electrode 5. Further, Cr and Au were also deposited on the back surface of the InP substrate 1 to form an electrode 6.
【0019】上記のように作製した光方向性結合器は、
電極5および6間に電流を流さない状態で理論上の分岐
比が50:50であるが、作製上の誤差から実際には分
岐比は45:55〜55:45の範囲に分布する。しか
ながら、InP基板1に最大120 mAの電流を流す
ことにより、キャリア注入領域14の屈折率が変化し、
いずれの光方向性結合器もほぼ50:50の分岐比を得
ることが可能であった。The optical directional coupler produced as described above is
The theoretical branching ratio is 50:50 when no current is passed between the electrodes 5 and 6, but due to manufacturing errors, the branching ratio is actually distributed in the range of 45:55 to 55:45. However, by passing a maximum current of 120 mA through the InP substrate 1, the refractive index of the carrier injection region 14 changes,
It was possible to obtain a branching ratio of approximately 50:50 with each optical directional coupler.
【0020】[0020]
【発明の効果】以上説明したように、本発明の光方向性
結合器では、結合部の3次元光導波路間の基板に電場を
印加するか、または電流を流してその部分の屈折率を変
化させ、分岐比、結合比を制御することができる。本発
明により、精度の高い光分岐・結合器が提供される。As explained above, in the optical directional coupler of the present invention, an electric field is applied to the substrate between the three-dimensional optical waveguides in the coupling part, or a current is applied to the substrate to change the refractive index of that part. It is possible to control the branching ratio and coupling ratio. According to the present invention, a highly accurate optical branching/coupling device is provided.
【図1】本発明の光方向性結合器の一例の概略図である
。FIG. 1 is a schematic diagram of an example of an optical directional coupler of the present invention.
【図2】本発明の光方向性結合器の他の実施例の概略図
である。FIG. 2 is a schematic diagram of another embodiment of the optical directional coupler of the present invention.
【図3】従来の改良された光方向性結合器の概略図であ
る。FIG. 3 is a schematic diagram of a conventional improved optical directional coupler.
【図4】従来の光方向性結合器の概略図である。FIG. 4 is a schematic diagram of a conventional optical directional coupler.
1 基板 2、3 3次元光導波路 4 結合部 5、6 電極 1 Substrate 2, 3 Three-dimensional optical waveguide 4 Connecting part 5, 6 Electrode
Claims (3)
路の、光が伝搬する方向に沿った所定の長さの部分が、
互いに平行に近接されて構成された結合部を有する光方
向性結合器において、前記結合部の3次元光導波路間の
部分の基板に電場を印加するか、または電流を流して該
部分の屈折率を変化させることができるように配置され
た電極を具備することを特徴とする光方向性結合器。Claim 1: A portion of a plurality of three-dimensional optical waveguides formed on a substrate having a predetermined length along the direction in which light propagates,
In an optical directional coupler having coupling parts arranged close to each other in parallel, an electric field or current is applied to the substrate in the part between the three-dimensional optical waveguides of the coupling part to change the refractive index of the part. 1. An optical directional coupler comprising electrodes arranged so as to be able to change.
いて、前記複数の3次元光導波路が、電気光学結晶基板
の光学軸に垂直な表面に形成され、前記結合部の3次元
光導波路間に配置された第1の電極と、該第1の電極の
直下部分を含む前記電気光学結晶基板裏面に配置された
第2の電極とを具備することを特徴とする光方向性結合
器。2. The optical directional coupler according to claim 1, wherein the plurality of three-dimensional optical waveguides are formed on a surface perpendicular to the optical axis of an electro-optic crystal substrate, and the three-dimensional optical waveguides of the coupling portion An optical directional coupler comprising: a first electrode disposed between the two electrodes; and a second electrode disposed on the back surface of the electro-optic crystal substrate including a portion immediately below the first electrode.
いて、前記複数の3次元光導波路が、キャリア注入によ
り屈折率変化が起こる半導体基板表面に形成され、前記
結合部の3次元光導波路間に配置された第1の電極と、
該第1の電極の直下部分を含む前記半導体基板裏面に配
置された第2の電極とを具備することを特徴とする光方
向性結合器。3. The optical directional coupler according to claim 1, wherein the plurality of three-dimensional optical waveguides are formed on a surface of a semiconductor substrate in which a refractive index change occurs due to carrier injection, and the three-dimensional optical waveguides of the coupling portion a first electrode disposed between;
and a second electrode disposed on the back surface of the semiconductor substrate including a portion directly below the first electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4775391A JPH04265950A (en) | 1991-02-20 | 1991-02-20 | Optical directional coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4775391A JPH04265950A (en) | 1991-02-20 | 1991-02-20 | Optical directional coupler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04265950A true JPH04265950A (en) | 1992-09-22 |
Family
ID=12784121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4775391A Withdrawn JPH04265950A (en) | 1991-02-20 | 1991-02-20 | Optical directional coupler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04265950A (en) |
-
1991
- 1991-02-20 JP JP4775391A patent/JPH04265950A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6823094B2 (en) | Interferometer and its fabrication method | |
US5625726A (en) | Optical waveguide substrate, an article comprising the same and a substrate coupled thereto for holding optical fibers | |
US20020159706A1 (en) | Optical device | |
JP2961057B2 (en) | Optical branching device | |
JPH04265950A (en) | Optical directional coupler | |
TW200405048A (en) | Polarization-insensitive planar lightwave circuits and method for fabricating the same | |
JP6084177B2 (en) | Optical waveguide device | |
JPH09211244A (en) | Y-branch optical waveguide | |
JP6260631B2 (en) | Optical waveguide device | |
JP3195033B2 (en) | Optical waveguide and method for forming the same | |
JPH0367204A (en) | Integrated optical device and production thereof | |
JPH0553157A (en) | Optical control device | |
JPH02287408A (en) | Waveguide type optical branching element | |
JPH01246529A (en) | Waveguide type optical switch | |
JP2586572B2 (en) | Refractive index distributed optical coupler and method for producing the same | |
JPH06222403A (en) | Directional coupling type optical waveguide | |
JP2626208B2 (en) | Semiconductor waveguide polarization controller | |
JP3481710B2 (en) | Method for manufacturing optical waveguide body | |
JP2792306B2 (en) | Polarization separation element | |
JPH01140124A (en) | Optical device | |
JPH087371Y2 (en) | Directional coupler device | |
JPH02235030A (en) | Optical directional coupler | |
JPH03200924A (en) | Optical modulator | |
JPS6236608A (en) | Waveguide typemode splitter | |
JP2643927B2 (en) | Manufacturing method of optical branching / optical coupling circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |