JPH01246529A - Waveguide type optical switch - Google Patents

Waveguide type optical switch

Info

Publication number
JPH01246529A
JPH01246529A JP7571888A JP7571888A JPH01246529A JP H01246529 A JPH01246529 A JP H01246529A JP 7571888 A JP7571888 A JP 7571888A JP 7571888 A JP7571888 A JP 7571888A JP H01246529 A JPH01246529 A JP H01246529A
Authority
JP
Japan
Prior art keywords
waveguides
waveguide
wave
optical switch
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7571888A
Other languages
Japanese (ja)
Inventor
Hideaki Okayama
秀彰 岡山
Kiyoshi Nagai
長井 清
Akihiro Matoba
的場 昭大
Ryoko Shibuya
渋谷 良子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP7571888A priority Critical patent/JPH01246529A/en
Publication of JPH01246529A publication Critical patent/JPH01246529A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the waveguide type optical switch which has no difficulty in production, has no dependency on polarized light and has excellent characteristic by setting the element lengths and inter-waveguide spacings of respective waveguides in such a manner that the coupling coeffts. between the waveguides to a TE wave and TM wave attain the values equal to each other. CONSTITUTION:The element lengths, inter-waveguide spacings, and refractive indices, etc., of the conditions for producing the waveguide are so set as to attain the cross state that the light entering form an input port 11a (12a) is outputted to an output port 12b (11b) while the voltage is not impressed to electrodes 14, 15a. An electric field is generated in a direction Y when the prescribed voltage is impressed to the electrodes 14, 15a and the refractive index is changed by a change in the electrooptic constant r22 of this time. The TE wave and TM wave sense the change in the refractive index of the reverse code at the same magnitude with respect to the waveguides 11 and 12 and, therefore, the switching action which does not depend on the polarized light is executed. The production of the waveguides is thereby facilitated and the optical switch having no dependency on the polarized light is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気光学結晶基板の導波路中を伝搬する光の
進行方向を電気的に制御する導波型光スイッチに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a waveguide optical switch that electrically controls the traveling direction of light propagating in a waveguide of an electro-optic crystal substrate.

〔従来の技術〕[Conventional technology]

導波型光スイッチは、例えば光交換器等の構成エレメン
トとして期待されているが、Li Nb 03 にオブ
酸リチウム)異方性結晶等の電気光学結晶基板は偏光状
態に応じて屈折率が異なるという特性を有しており、こ
のことがシステム適用上の制約となっている。そこで、
Li Nb O3異方性結晶の開光依存性をなくするこ
とが重要な課題となっており、これに関する種々の提案
がなきれている。
Waveguide type optical switches are expected to be used as constituent elements of optical exchangers, for example, but electro-optic crystal substrates such as anisotropic crystals (LiNb 03 and lithium oxate) have different refractive indexes depending on the polarization state. This characteristic is a constraint on system application. Therefore,
It has become an important issue to eliminate the dependence on the optical brightness of LiNbO3 anisotropic crystals, and various proposals regarding this have been exhausted.

第2図は斯かる提案の一例を示すもので、昭和62年電
子情報通信学会半導体・材料部門全国大会の講演論文集
、分冊2.2−140頁(昭和62年11月15日発行
)に記載された導波型光スイッチを概略的に示す構成図
である。
Figure 2 shows an example of such a proposal, published in the collection of lecture papers from the 1986 IEICE Semiconductor and Materials Division National Conference, Volume 2.2-140 (published November 15, 1986). FIG. 1 is a block diagram schematically showing the described waveguide optical switch.

同図(a)に示されるものはZ板方向性結合型であり、
Li Nb o3結晶板1のZ板上に2本の導波路2.
3を並置し、この導波路2,3直上位置にそれぞれ電極
4.5を形成している。このようにL i N b O
3結晶板1のZ板上に導波路を形成し、Z方向に電界を
印加した場合には、TE波及びTM波に対しての屈折率
がそれぞれ電気光学定数r 及びr13”ijは三方晶
系の一軸性電気光学結晶における電気光学定数マトリク
ス中の定数を示す)に応じて変化し、r33は’13の
3倍程度大きい。そこで、ここでは、導波路2.3を形
成する際のTi(チタン)拡散濃度、導波路パターン幅
及び拡散条件を選択してTE (Traverse  
Electric)波、TM(Traverse  M
agnetic)波に対する結合長の一致を図っている
The one shown in the same figure (a) is a Z plate directional coupling type,
Two waveguides 2. are placed on the Z plate of the LiNb O3 crystal plate 1.
3 are arranged side by side, and electrodes 4.5 are formed directly above the waveguides 2 and 3, respectively. In this way, L i N b O
3 When a waveguide is formed on the Z plate of the crystal plate 1 and an electric field is applied in the Z direction, the refractive index for the TE wave and the TM wave is the electro-optic constant r and r13''ij are trigonal, respectively. r33 is about three times larger than '13. Therefore, here, we will discuss the Ti used when forming the waveguide 2.3. (Titanium) After selecting the diffusion concentration, waveguide pattern width and diffusion conditions, TE (Traverse)
Electric) wave, TM (Traverse M
The aim is to match the coupling lengths for agnetic (agnetic) waves.

また、同図(b)に示されるものはYviZ軸伝搬方向
性結合型であり、LiNbO3結晶板1のY板上に導波
路2.3を並置し、この導波路2゜3直上位置にそれぞ
れ電極4.5を形成している。
In addition, the one shown in the same figure (b) is a YviZ-axis propagation directional coupling type, in which waveguides 2 and 3 are arranged in parallel on the Y plate of the LiNbO3 crystal plate 1, and each waveguide is placed directly above the waveguide 2. It forms an electrode 4.5.

このように、Y板上に導波路を形成しZ軸伝撮方位を採
用することによりTE波、TM波に対する結合長を一致
させることができる。従って、この場合には、電極4.
5に電圧を印加しない状態で対角方向の入出力ボートが
つながる(入力ボート2a (3a)と出カポ−1−3
b(2b))クロス状態が得られるような作製条件を容
易に調整できる。そして、電極4.5に電圧を印加した
状態で同一導波路の入出力ボートがつながるバー状態が
得られる。これは、導波路の屈折率が電気光学効果r2
゜と印加電界強度とに応じて変化し、屈折率変化の符号
は印加電界の方向によって変化するために生ずる。ここ
では、T’E波(図でX方向の偏波)及びTM波(図で
Y方向の偏波)は、互いに逆の極性で等しい大きさの屈
折率変化を感じるので、偏光に依存せず動作が行える。
In this way, by forming a waveguide on the Y plate and adopting the Z-axis transmission direction, the coupling lengths for TE waves and TM waves can be matched. Therefore, in this case, electrode 4.
The diagonal input/output ports are connected with no voltage applied to port 5 (input port 2a (3a) and output port 1-3).
b(2b)) Fabrication conditions for obtaining a cross state can be easily adjusted. Then, a bar state is obtained in which the input and output ports of the same waveguide are connected with a voltage applied to the electrodes 4.5. This is because the refractive index of the waveguide is due to the electro-optic effect r2
This occurs because the sign of the refractive index change changes depending on the direction of the applied electric field. Here, the T'E wave (polarized wave in the X direction in the figure) and the TM wave (polarized wave in the Y direction in the figure) have opposite polarities and experience refractive index changes of equal magnitude, so they do not depend on the polarization. It is possible to perform movements without any movement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来例におけるZ板方向性結合型の
場合には、作製条件の選択によりTE波、TM波に対す
る結合長の一致を図る必要があり、この作製条件が厳し
いために、製作上の困難性を伴うという問題があった。
However, in the case of the Z-plate directional coupling type in the conventional example, it is necessary to match the coupling length for TE waves and TM waves by selecting manufacturing conditions, and this difficult manufacturing condition causes difficulties in manufacturing. There was a problem with sexuality.

一方、上記従来例におけるY板Z軸伝撤方向性結合型の
場合には、1゛E波、TM波に対する結合長が一致して
いるので製作条件の厳しさはない。
On the other hand, in the case of the Y-plate Z-axis directional coupling type in the conventional example, the coupling lengths for the 1'E wave and the TM wave are the same, so the manufacturing conditions are not severe.

しかし、Y板上にTi拡散により導波路を形成した場合
には、Tiが結晶の厚み方向だけではなく、結晶表面に
沿って拡散するサイドデイフュージョンか生じる問題が
ある。このサイドデイフュージョンによる影響をなくす
るためには、Y板上にTiを全面拡散し、その後イオン
交換により屈折率を減少させて導波路を形成しなくては
ならず、このため導波路の作製工程が複雑になるという
問題があった。
However, when a waveguide is formed by Ti diffusion on a Y plate, there is a problem that side diffusion occurs in which Ti diffuses not only in the thickness direction of the crystal but also along the crystal surface. In order to eliminate the influence of this side diffusion, it is necessary to diffuse Ti over the entire surface of the Y plate and then reduce the refractive index by ion exchange to form a waveguide. There was a problem that the process became complicated.

また、TE波及びTM波に対する結合長が一致するLi
NbO3結晶板のX板上に導波路を形成することも考え
られるが、この場合には導波路間に電極を設けることが
必要となる。ところが、導波路間隔は5〜8μm程度と
狭く、ここに電極を形成することは、極めて困難であり
、実用的ではないという問題があった。
In addition, Li with the same coupling length for TE waves and TM waves
It is also possible to form waveguides on the X-plate of the NbO3 crystal plate, but in this case it is necessary to provide electrodes between the waveguides. However, the waveguide spacing is as narrow as about 5 to 8 μm, making it extremely difficult and impractical to form electrodes there.

そこで、本発明は上記したような従来技術の課題を解決
するためになされたもので、その目的とするところは、
作製上の困難性がなく、偏光依存性のない特性の優れた
導波型光スイッチを提供することにある。
Therefore, the present invention has been made to solve the problems of the prior art as described above, and its purpose is to:
The object of the present invention is to provide a waveguide type optical switch which is free from manufacturing difficulties and has excellent characteristics without polarization dependence.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明に係る導波型光ス
イッチは、電気光学結晶基板と、上記電気光学結晶基板
のX板上に所定間隔をあけて並置された3本の導波路と
、上記3本の導波路の内、中央の導波路の直上位置に備
えられた第一の電極と、上記3本の導波路の内、両側の
導波路の直上位置外方にそれぞれ備えられ、上記両側の
導波路に沿って延びる第二及び第三の電極とを有し、T
E波及びTM波に対する上記導波路間の結合係数が互い
に略等しい値となるよう上記各々の導波路の素子長及び
上記導波路間隔を設定したことを特徴としている。
In order to achieve the above object, a waveguide type optical switch according to the present invention includes an electro-optic crystal substrate, and three waveguides arranged in parallel at predetermined intervals on the X-plate of the electro-optic crystal substrate. , a first electrode provided at a position directly above the central waveguide among the three waveguides, and a first electrode provided outwardly at a position immediately above the waveguides on both sides of the three waveguides, and second and third electrodes extending along the waveguide on both sides,
The present invention is characterized in that the element length of each of the waveguides and the interval between the waveguides are set so that the coupling coefficients between the waveguides for E waves and TM waves are approximately equal to each other.

〔イy  用〕[for y]

上記の構成を有する本発明においては、電気光半結晶基
板に所定間隔をあけて所定の素子長の3本の導波路を並
置し、両側の導波路を入出力用とし、中間の導波路に入
出力用導波路間の橋渡し機能を担わせるている。これに
より、入出力用の両導波路間の距離を確保でき、両導波
路間に備える第一の電極の幅を大きくできる。よって、
第一の電極の形成は容易になり、導波路間隔が狭いため
に困難であったX板の使用が可能になる。
In the present invention having the above configuration, three waveguides of a predetermined element length are arranged side by side at a predetermined interval on an electro-optic semi-crystalline substrate, the waveguides on both sides are used for input/output, and the waveguide in the middle is used for input/output. It is responsible for the bridging function between the input and output waveguides. Thereby, the distance between both the input and output waveguides can be ensured, and the width of the first electrode provided between both the waveguides can be increased. Therefore,
The formation of the first electrode becomes easy, and the use of an X plate, which was difficult due to the narrow waveguide spacing, becomes possible.

また、3本の導波路を並置することによって、中央の導
波路を共用した2組の導波路を直列に接続した場合と同
様にクロストークを2段階で収り除くことができ、結合
長の誤差に対して大きな許容値を持たせることができる
In addition, by arranging three waveguides in parallel, crosstalk can be eliminated in two stages, similar to when two sets of waveguides that share a central waveguide are connected in series, and the coupling length can be reduced. It is possible to have a large tolerance for errors.

さらに、電気光学結晶基板のX板上に導波路を形成した
場合には、TM波及びTE波に対する結合長が一致する
ので、偏光依存性の除去が容易である。
Furthermore, when a waveguide is formed on the X plate of the electro-optic crystal substrate, the coupling lengths for TM waves and TE waves are the same, so polarization dependence can be easily removed.

〔実施例〕〔Example〕

以下に本発明を図示の実施例に基づいて説明する。 The present invention will be explained below based on illustrated embodiments.

第1図は本発明に係る導波型光スイッチの第一実施例を
示す構成図である。
FIG. 1 is a configuration diagram showing a first embodiment of a waveguide type optical switch according to the present invention.

同図において、10は電気光学結晶基板としてのLi 
Nb 03  X板、11.12及び13はLi Nb
 03−X板10上にTiを拡散して形成された導波路
である。この内、11及び12は入出力用の導波路(入
出力導波路)、13は導波F#111及び12間の橋渡
し機能を果す導波路(中間導波路)である、また、ll
a及びllbはそれぞれ導波路11の入力ポートと出力
ポートであり、12a及び12bはそれぞれ導波路12
の入力ポートと出力ポートである。
In the figure, 10 is Li as an electro-optic crystal substrate.
Nb 03 X plate, 11.12 and 13 are Li Nb
This is a waveguide formed by diffusing Ti on the 03-X plate 10. Of these, 11 and 12 are input/output waveguides (input/output waveguide), and 13 is a waveguide (intermediate waveguide) that serves as a bridge between the waveguides F#111 and 12.
a and llb are the input port and output port of the waveguide 11, respectively, and 12a and 12b are the waveguide 12, respectively.
are the input and output ports of

また、14はLi Nb 03−X板10上において中
間導波路13直上位置に形成された第一の電極、15a
及び15bはLi Nb 03−X板10上において入
出力導波路11及び12直上位置の外方に形成された第
二、第三の電極である。尚、電極14は駆動電源16に
接続され、電極15aは駆動電源17に接続され、電極
15bは接地されている。
Further, 14 is a first electrode formed on the LiNb 03-X plate 10 at a position directly above the intermediate waveguide 13, and 15a
and 15b are second and third electrodes formed on the LiNb 03-X plate 10 at positions directly above the input/output waveguides 11 and 12. Note that the electrode 14 is connected to a drive power source 16, the electrode 15a is connected to a drive power source 17, and the electrode 15b is grounded.

そして、本実施例では、導波fill、12を平行に配
置するとともに、導波路11.12の間に導波路13を
平行に配置している。そして、LiNb03−X板10
上において中間導波路13の直上に電極14を、導波路
11の外側に電極15aを、導波路12の外側に電極1
5bを、それぞれの電極15a、15b及び14が導波
路11゜12及び13と同一方向に延びるように形成さ
れている。
In this embodiment, the waveguides 12 and 12 are arranged in parallel, and the waveguide 13 is arranged in parallel between the waveguides 11 and 12. And LiNb03-X board 10
At the top, an electrode 14 is placed directly above the intermediate waveguide 13, an electrode 15a is placed outside the waveguide 11, and an electrode 1 is placed outside the waveguide 12.
5b is formed such that the respective electrodes 15a, 15b and 14 extend in the same direction as the waveguides 11, 12 and 13.

また、導波路作製条件は電極14.15aに電圧を印加
しない時に、入カポ−)−11a(12a)から入った
光が出力ポート12b(11b)に出力されるクロス状
態となるように、素子長、導波路間隔及び屈折率等を設
定する。
In addition, the waveguide fabrication conditions are such that when no voltage is applied to the electrodes 14.15a, the element is in a cross state in which light entering from the input port 11a (12a) is output to the output port 12b (11b). Set the waveguide length, waveguide spacing, refractive index, etc.

電極14.15aに所定の電圧を印加した時には、Y方
向に電場が生じ、このときの電気光学定数r2□の変化
により屈折率が変化する。電源16から電極14にのみ
電圧を印加したときは、TE波及びTM波は導波路11
と12に対し同一の大きさで逆符号の屈折率変化を感じ
るので、偏光に依存しないスイッチング動作が行える。
When a predetermined voltage is applied to the electrodes 14.15a, an electric field is generated in the Y direction, and the refractive index changes due to the change in the electro-optic constant r2□ at this time. When voltage is applied only to the electrode 14 from the power supply 16, the TE wave and TM wave are transmitted through the waveguide 11.
Since a refractive index change of the same magnitude and opposite sign is felt for and 12, a switching operation that does not depend on polarization can be performed.

即ち、電極14に電圧を印加したときには、入力ボート
11a(12a)に入力された光が出力ポート11b 
(12b)に出力されるバー状態となる。
That is, when a voltage is applied to the electrode 14, the light input to the input port 11a (12a) is transferred to the output port 11b.
(12b) becomes a bar state.

尚、電源17により電極15aに印加される電圧vbは
屈折率変化の非対称性を制御調整し、最適な動作を行う
ためのものである。
Note that the voltage vb applied to the electrode 15a by the power source 17 is for controlling and adjusting the asymmetry of the change in refractive index to perform optimal operation.

さらに、本実施例では3本の導波路を用いることにより
素子長/結合長に対するタロストークの値の変化を小さ
くできるので、TM波、TE波に対して偏光依存性をな
くするために素子長と結合長とを一致させる作製条件の
許容値が緩やかであり達成が容易である。
Furthermore, in this example, by using three waveguides, it is possible to reduce the change in the Talostalk value with respect to the element length/coupling length, so in order to eliminate polarization dependence for TM waves and TE waves, The tolerance of the manufacturing conditions for matching the bond length is loose and easy to achieve.

第3図は本発明の第二実施例を示す構成図、第4図は第
二実施例のクロストーク特性を示す特性曲線図である。
FIG. 3 is a configuration diagram showing a second embodiment of the present invention, and FIG. 4 is a characteristic curve diagram showing crosstalk characteristics of the second embodiment.

同図において、上記第一実施例と同一の部分には同一の
符号を付して説明すると、この第二実施例は導波路の形
状及びこれに沿う電極の形状が第一実施例と相違する。
In the figure, the same parts as in the first embodiment are given the same reference numerals, and the second embodiment differs from the first embodiment in the shape of the waveguide and the shape of the electrodes along it. .

即ち、第二実施例では、導波路21.22がその中央部
付近で互いに接近するように曲線状に形成されている。
That is, in the second embodiment, the waveguides 21 and 22 are formed in a curved shape so as to approach each other near the center thereof.

また、電極24、電極25a及び電極25bの平面形状
は導波路に沿うように辺を曲線に形成している。ここで
、導波FRI21と13、導波路22と13の両方の結
合係数Kを伝搬距離ζに対して、次式の関係を有するよ
う作製する。
Further, the planar shape of the electrode 24, the electrode 25a, and the electrode 25b has curved sides along the waveguide. Here, the coupling coefficients K of both the waveguide FRIs 21 and 13 and the waveguides 22 and 13 are manufactured so as to have the following relationship with respect to the propagation distance ζ.

I(= Ko  e x P  (−(ζ −L/  
2)     /  100)ここで、Koはζ=Oの
ときの結合係数、Lは導波路の素子長である。また、L
=100に対して導波路間の伝搬定数差Δβ=0のとき
に、クロス状態が得られるようにK。−0,12として
いる。
I(= Ko e x P (−(ζ −L/
2)/100) Here, Ko is the coupling coefficient when ζ=O, and L is the element length of the waveguide. Also, L
K so that a cross state is obtained when the propagation constant difference Δβ between the waveguides is 0 for Δβ = 100. -0,12.

この場合には、第4図に示ずように伝搬定数差Δβが増
大するとともに、急速にクロストークが減少し、バー状
態になる。
In this case, as shown in FIG. 4, the propagation constant difference Δβ increases and the crosstalk rapidly decreases, resulting in a bar state.

第5図は第一実施例の変形例を示す構成図、第6図は第
5図のZ方向の電界強度Ezの分布を示す説明図である
。この例は第一実施例と路間−の構成を有しているので
、同一の構成部分には同一の符号を付して説明すると、
この変形例では第二、第三の電極15a、15bの幅W
を第一の電極14の幅と等しく形成している。このよう
に形成することによって、電界強度分布を第6図に示す
ように0点を中心に対称にでき、この結果電極の取付は
位置が設計位置からずれた場合の許容値を大きくでき、
良好なスイッチング特性を有することができる。尚、こ
の変形例は第二実施例にも適用できる。
FIG. 5 is a configuration diagram showing a modification of the first embodiment, and FIG. 6 is an explanatory diagram showing the distribution of the electric field strength Ez in the Z direction in FIG. Since this example has a structure similar to that of the first embodiment, the same components are given the same reference numerals and explained as follows:
In this modification, the width W of the second and third electrodes 15a and 15b
is formed to be equal to the width of the first electrode 14. By forming it in this way, the electric field strength distribution can be made symmetrical about the zero point as shown in Fig. 6, and as a result, the tolerance when the electrode mounting position deviates from the designed position can be increased.
It can have good switching characteristics. Note that this modification can also be applied to the second embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては、電気光学結晶
基板のX板上に3本の導波路を並置することによって、
入出力用の導波路の間隔を広くできるので電極の作製を
容易に行うことができる。
As explained above, in the present invention, by arranging three waveguides in parallel on the X plate of the electro-optic crystal substrate,
Since the interval between the input and output waveguides can be widened, electrodes can be easily manufactured.

また、3本の導波路を並置することによって、結合長の
誤差に対して大きな許容値を持たせることができ、この
ため導波路の作製を容易にすることができる。
Further, by arranging three waveguides in parallel, a large tolerance can be given to coupling length errors, which facilitates the production of the waveguides.

さらに、電気光学結晶基板のX板上に導波路を形成した
場合には、TE波及びTM波は等しい大きさの屈折率を
感じるので、偏光依存性のない光スインチを提供できる
という効果を有する。
Furthermore, when a waveguide is formed on the X-plate of the electro-optic crystal substrate, the TE wave and the TM wave experience the same refractive index, which has the effect of providing an optical switch without polarization dependence. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る導波型光スイッチの第一実施例を
示す構成図、 第2図(a)、(b)は従来の導波型光スイッチの構成
図、 第3図は本発明の第二実施例を示す構成図、第4図は第
二実施例の特性を示す特性曲線図、第5図は第一実施例
の変形例を示す構成図、第6図は第5図の電界強度分布
を示す説明図である。 10・・化+ Nb o3−x板(電気光学結晶基板)
11.12.13・・・導波路、 14・・・第一の電極、 15a・・・第二の電極、15b・・・第三の電極。 特許出願0人  沖電気工業株式会社 代理人 弁理士  前 1)   実 ネ6二9ご炸(多り、λiλさ七iン]第3図 第4U!jJ
FIG. 1 is a block diagram showing a first embodiment of a waveguide optical switch according to the present invention, FIGS. 2(a) and (b) are block diagrams of a conventional waveguide optical switch, and FIG. 3 is a block diagram of a conventional waveguide optical switch. FIG. 4 is a characteristic curve diagram showing the characteristics of the second embodiment, FIG. 5 is a configuration diagram showing a modification of the first embodiment, and FIG. 6 is a diagram showing a modification of the first embodiment. FIG. 2 is an explanatory diagram showing the electric field strength distribution of FIG. 10...Nb O3-x plate (electro-optic crystal substrate)
11.12.13... Waveguide, 14... First electrode, 15a... Second electrode, 15b... Third electrode. 0 patent applicants Patent attorney, agent for Oki Electric Industry Co., Ltd. 1) Actual number 629 (a lot, λiλsa7in) Figure 3, Figure 4U!jJ

Claims (1)

【特許請求の範囲】 電気光学結晶基板と、 上記電気光学結晶基板のX板上に所定間隔をあけて並置
された3本の導波路と、 上記3本の導波路の内、中央の導波路の直上位置に備え
られた第一の電極と、 上記3本の導波路の内、両側の導波路の直上位置外方に
それぞれ備えられ、上記両側の導波路に沿って延びる第
二及び第三の電極とを有し、TE波及びTM波に対する
上記導波路間の結合係数が互いに略等しい値となるよう
上記各々の導波路の素子長及び上記導波路間隔を設定し
たことを特徴とする導波型光スイッチ。
[Claims] An electro-optic crystal substrate, three waveguides arranged in parallel at predetermined intervals on the X-plate of the electro-optic crystal substrate, and a central waveguide among the three waveguides. A first electrode provided directly above the waveguides, and second and third electrodes provided directly above the waveguides on both sides of the three waveguides and extending along the waveguides on both sides. electrodes, and the element length of each of the waveguides and the spacing between the waveguides are set so that coupling coefficients between the waveguides for TE waves and TM waves are approximately equal to each other. Wave type optical switch.
JP7571888A 1988-03-29 1988-03-29 Waveguide type optical switch Pending JPH01246529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7571888A JPH01246529A (en) 1988-03-29 1988-03-29 Waveguide type optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7571888A JPH01246529A (en) 1988-03-29 1988-03-29 Waveguide type optical switch

Publications (1)

Publication Number Publication Date
JPH01246529A true JPH01246529A (en) 1989-10-02

Family

ID=13584315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7571888A Pending JPH01246529A (en) 1988-03-29 1988-03-29 Waveguide type optical switch

Country Status (1)

Country Link
JP (1) JPH01246529A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436346A2 (en) * 1990-01-04 1991-07-10 SMITHS INDUSTRIES AEROSPACE & DEFENSE SYSTEMS INC. Optical switches
US5111517A (en) * 1990-02-14 1992-05-05 France Telecom Etablissment Autonome De Droit Public (Centre National D'etudes Des Telecommunications Polarization beam splitter for guided light
US5151957A (en) * 1990-10-31 1992-09-29 France Telecom Etablissement Autonome De Droit Public (Centre National D'etudes Des Telecommunications) Polarization beam splitter for guided light
KR100357629B1 (en) * 2000-05-03 2002-10-25 삼성전자 주식회사 Multi-branch thermo-optic switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436346A2 (en) * 1990-01-04 1991-07-10 SMITHS INDUSTRIES AEROSPACE & DEFENSE SYSTEMS INC. Optical switches
US5111517A (en) * 1990-02-14 1992-05-05 France Telecom Etablissment Autonome De Droit Public (Centre National D'etudes Des Telecommunications Polarization beam splitter for guided light
US5151957A (en) * 1990-10-31 1992-09-29 France Telecom Etablissement Autonome De Droit Public (Centre National D'etudes Des Telecommunications) Polarization beam splitter for guided light
KR100357629B1 (en) * 2000-05-03 2002-10-25 삼성전자 주식회사 Multi-branch thermo-optic switch

Similar Documents

Publication Publication Date Title
JPS6220532B2 (en)
JP2679570B2 (en) Polarization separation element
JPWO2004083953A1 (en) Optical switch, optical modulator, and tunable filter
KR0138850B1 (en) Te-tm mode converter on polymer waveguide
JP3638300B2 (en) Optical waveguide device
JPH06194696A (en) Optical switch
JP3272064B2 (en) 4-section optical coupler
US6922507B2 (en) Low-loss integrated optical coupler and optical switch
JPH01246529A (en) Waveguide type optical switch
US5835644A (en) TE-pass optical waveguide polarizer using elecro-optic polymers
US6721466B2 (en) Guided wave electrooptic and acoustooptic tunable filter apparatus and method
JPH0949996A (en) Waveguide type optical device
JP2739405B2 (en) Electric field sensor
JP2635986B2 (en) Optical waveguide switch
JPH0553157A (en) Optical control device
JPH0588123A (en) Variable wavelength filter
JP2659786B2 (en) Mode light separator
JPH02262127A (en) Waveguide type optical switch
JPH02257108A (en) Optical waveguide device
JP2659787B2 (en) Waveguide mode light selector
JPS6236608A (en) Waveguide typemode splitter
JPH0361932B2 (en)
JPH02135426A (en) Optical matrix switch
JPS61208036A (en) Waveguide type optical switching element
JPH0721595B2 (en) Waveguide type optical switch