JPH09185025A - Optical control element - Google Patents

Optical control element

Info

Publication number
JPH09185025A
JPH09185025A JP84796A JP84796A JPH09185025A JP H09185025 A JPH09185025 A JP H09185025A JP 84796 A JP84796 A JP 84796A JP 84796 A JP84796 A JP 84796A JP H09185025 A JPH09185025 A JP H09185025A
Authority
JP
Japan
Prior art keywords
electrode
optical
control element
buffer layer
wave type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP84796A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyazawa
弘 宮澤
Kazuto Noguchi
一人 野口
Osamu Mitomi
修 三冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP84796A priority Critical patent/JPH09185025A/en
Publication of JPH09185025A publication Critical patent/JPH09185025A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Abstract

PROBLEM TO BE SOLVED: To provide an optical control element which is small in driving voltage and with which high-speed operation is possible by forming progressive wave type electrodes formed via a buffer layer on an optical waveguide formed on the surface of an optical substrate of plural layers varying in shapes. SOLUTION: The progressive wave type electrodes of the optical control element which have an optical substrate 1 having an electrooptic effect and the progressive wave type electrodes 21, 22 formed via the buffer layer 3 on the optical waveguide 2 formed on the surface of this optical substrate 1 are composed of the plural layers varying in shapes. The first progressive wave type electrode 21 consists of three parts 21a, 21b, 21c and the second progressive wave type electrode 22 disposed in contact with the buffer layer 3 consists of three parts 22a, 22b, 22c and is laminated and disposed on the first electrode 21. According thereto, the progressive wave type electrodes required to be thick films as a whole may be settable at the small thickness of the electrode layer in contact with the buffer layer and the formation of the thin resist layer for forming such electrode layers is possible as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光変調器や光スイ
ッチ等の光制御素子に関するものである。
TECHNICAL FIELD The present invention relates to an optical control element such as an optical modulator or an optical switch.

【0002】[0002]

【従来の技術】高速かつ大容量の光伝送システム、光交
換システム等においては、駆動電圧が小さく高速動作が
可能な光制御素子が有用である。この種の光制御素子と
しては光スイッチや位相変調器、光強度変調器等があ
り、Ti拡散LiNbO3 導波路を用いた光制御素子が
ある。
2. Description of the Related Art In a high-speed and large-capacity optical transmission system, optical switching system, etc., an optical control element having a low driving voltage and capable of high-speed operation is useful. Examples of this type of light control element include an optical switch, a phase modulator, a light intensity modulator, and the like, and there is a light control element using a Ti-diffused LiNbO 3 waveguide.

【0003】図1は従来の光制御素子、ここではマッハ
ツェンダ型光強度変調器の一例を示すもので、同図(a)
は平面図、同図(b) は同図(a) 中のA−A´線矢視方向
断面図である。
FIG. 1 shows an example of a conventional light control element, here, a Mach-Zehnder type light intensity modulator.
3A is a plan view, and FIG. 1B is a sectional view taken along the line AA ′ in FIG.

【0004】図1において、1は電気光学効果を有する
z板LiNbO3 (LN)基板であり、例えばTi熱拡
散により、その途中がマッハツェンダ干渉計を構成する
如く2本(2a,2b)に分岐された光導波路2が形成
されている。該基板1上にはSiO2 バッファ層3が
0.3〜1μm程度形成され、さらにバッファ層3の上
には3つの部分4a,4b,4cからなる変調用の進行
波型電極4が形成されている。また、進行波型電極4a
と4b,4cとの間には、給電線5からマイクロ波電圧
が供給されるとともに終端抵抗6が接続されている。
In FIG. 1, reference numeral 1 denotes a z-plate LiNbO 3 (LN) substrate having an electro-optical effect, which is branched into two (2a, 2b) so as to form a Mach-Zehnder interferometer in the middle thereof by Ti thermal diffusion, for example. The formed optical waveguide 2 is formed. A SiO 2 buffer layer 3 having a thickness of about 0.3 to 1 μm is formed on the substrate 1, and a traveling wave type electrode 4 for modulation composed of three portions 4 a, 4 b and 4 c is further formed on the buffer layer 3. ing. In addition, the traveling wave electrode 4a
A microwave voltage is supplied from the power supply line 5 and a terminating resistor 6 is connected between the terminals 4 and 4b.

【0005】ここで、強度が一定の入射光7を光導波路
2に入射すると、該光は2本の光導波路2a,2bにそ
のパワーが分配されて伝搬するが、光導波路2と電極4
に給電された電圧とが相互作用する領域8で各光導波路
2a,2bの屈折率、即ち光の位相が前記電圧に応じて
変化するため、合波された光は干渉し合い、強度変調さ
れた出射光9となる。
Here, when the incident light 7 having a constant intensity is incident on the optical waveguide 2, the light propagates with its power distributed to the two optical waveguides 2a and 2b.
In the region 8 where the voltage supplied to the device interacts with each other, the refractive index of each of the optical waveguides 2a and 2b, that is, the phase of the light changes according to the voltage, so that the combined lights interfere with each other and are intensity-modulated. Emitted light 9.

【0006】この光変調器の高速化を図るには、光の伝
搬速度と進行波型電極上の電気信号の伝搬速度とをほぼ
一致させる(速度整合)ことが必須であり、それには電
極の厚さを10〜30μmにすることが必要となる(参
考文献:1995年電子情報通信学会エレクトロニクス
ソサイエティ大会C−153)。このため、10μmを
越える厚膜電極の形成技術が要求されるが、例えば幅8
μm、厚さ20μmの電極を、電極特性や駆動電圧等が
最適値となるような設計に基づいて実際に作製した場
合、図1(b) に示したような断面逆台形状となってしま
う。以下、この理由について簡単に説明する。
In order to increase the speed of this optical modulator, it is essential that the propagation speed of light and the propagation speed of an electric signal on a traveling-wave electrode be substantially equal (speed matching). It is necessary to set the thickness to 10 to 30 μm (reference: 1995 Electronics Society Conference of the Institute of Electronics, Information and Communication Engineers C-153). Therefore, a technique for forming a thick film electrode exceeding 10 μm is required.
If an electrode with a thickness of 20 μm and a thickness of 20 μm is actually manufactured based on a design that optimizes the electrode characteristics and drive voltage, it will have an inverted trapezoidal cross section as shown in FIG. 1 (b). . The reason for this will be briefly described below.

【0007】従来の厚膜電極の形成法として、厚いレジ
ストのガイドに沿った金メッキ法が良く知られている。
この方法ではレジストの形状が電極の形状に直接反映さ
れて転写パターンが形成されることが特徴である。従来
の金メッキ法による20μm程度の電極形成プロセスを
図2に示す。
As a conventional method for forming a thick film electrode, a gold plating method along a thick resist guide is well known.
This method is characterized in that the transfer pattern is formed by directly reflecting the resist shape on the electrode shape. FIG. 2 shows an electrode forming process of about 20 μm by the conventional gold plating method.

【0008】まず、予め光導波路2及びバッファ層3を
形成した基板1にメッキ用の下地電極11及びレジスト
12を形成する。この場合、レジスト12の厚さは20
μm以上必要である。この厚いレジスト12に電極を設
けない部分の形状に対応したマスク13を介して紫外線
14を露光する(図2(a) )。一般に、紫外線等の光は
回折や吸収によって横方向及び深さ方向に強度分布を生
じるため、レジスト12を現像してもレジストパターン
12´の側面が垂直にならず、台形状になる(図2(b)
)。
First, a base electrode 11 for plating and a resist 12 are formed on a substrate 1 on which an optical waveguide 2 and a buffer layer 3 are formed in advance. In this case, the thickness of the resist 12 is 20
At least μm is required. The thick resist 12 is exposed to ultraviolet rays 14 through a mask 13 corresponding to the shape of the portion where no electrode is provided (FIG. 2 (a)). In general, light such as ultraviolet rays has an intensity distribution in the lateral direction and the depth direction due to diffraction and absorption, so that even if the resist 12 is developed, the side surfaces of the resist pattern 12 'are not vertical and become trapezoidal (see FIG. 2). (b)
).

【0009】このレジストパターン12´を用いて金メ
ッキすると、形成された金電極15は断面逆台形状にな
る(図2(c) )。レジストパターン12´及びその下部
の不要な下地電極11を除去して完成する(図2(d) )
が、この時、金電極15及び残りの下地電極11が前述
した電極4を構成する。
When gold plating is performed using this resist pattern 12 ', the formed gold electrode 15 has an inverted trapezoidal cross section (FIG. 2 (c)). The resist pattern 12 'and the unnecessary underlying electrode 11 thereunder are removed to complete the process (FIG. 2 (d)).
However, at this time, the gold electrode 15 and the remaining base electrode 11 constitute the electrode 4 described above.

【0010】前述したレジストパターンの台形形状は、
紫外線の代わりに電子ビームを用いても同様に生じるこ
とが知られている。
The trapezoidal shape of the resist pattern described above is
It is known that the same occurs when an electron beam is used instead of ultraviolet rays.

【0011】[0011]

【発明が解決しようとする課題】光変調器の駆動電圧は
光導波路近傍の電界の大きさに依存するため、光導波路
に近接した電極下部の幅に大きく依存する。電極下部の
幅Wに対する駆動電圧と電極の作用長との積VπLの計
算例を図3に示す。
Since the driving voltage of the optical modulator depends on the magnitude of the electric field near the optical waveguide, it largely depends on the width of the electrode lower portion adjacent to the optical waveguide. FIG. 3 shows an example of calculation of the product VπL of the driving voltage and the working length of the electrode with respect to the width W of the lower part of the electrode.

【0012】通常、電極下部の幅Wが光導波路の幅と同
程度である場合、駆動電圧は最も低くなる。しかしなが
ら、前述したように、電極形状は逆台形状であり、電極
下部の幅は電極上部の幅より細くなってしまうため、駆
動電圧が上昇してしまうという問題があった。また、電
極下部の幅を広くするために前述したマスク13の幅を
やや広めに設定すると、マイクロ波特性が劣化する(例
えば、速度不整合が大きくなる、特性インピーダンスが
低下する等)という問題があった。
Usually, when the width W of the lower portion of the electrode is about the same as the width of the optical waveguide, the driving voltage becomes the lowest. However, as described above, the electrode shape is an inverted trapezoidal shape, and the width of the lower portion of the electrode becomes smaller than the width of the upper portion of the electrode, which causes a problem that the driving voltage increases. Further, if the width of the mask 13 is set to be slightly wider in order to widen the width of the lower part of the electrode, the microwave characteristic is deteriorated (for example, speed mismatch becomes large, characteristic impedance is lowered, etc.). was there.

【0013】本発明の目的は、駆動電圧が小さく且つ高
速動作が可能な光制御素子を提供することにある。
An object of the present invention is to provide a light control element which has a low driving voltage and can be operated at high speed.

【0014】[0014]

【課題を解決するための手段】本発明では前記課題を解
決するため、電気光学効果を有する光学基板と、該光学
基板の表面に形成された光導波路と、該光導波路上にバ
ッファ層を介して形成された進行波型電極とを備えた光
制御素子において、進行波型電極を形状の異なる複数の
層で構成した。
In order to solve the above problems, the present invention provides an optical substrate having an electro-optical effect, an optical waveguide formed on the surface of the optical substrate, and a buffer layer on the optical waveguide. In the light control element including the traveling-wave electrode formed as above, the traveling-wave electrode is composed of a plurality of layers having different shapes.

【0015】本発明によれば、全体として厚膜であるこ
とが必要される進行波型電極を複数の層で構成すること
により、バッファ層に接する電極層の厚さを薄く設定す
ることが可能となり、これによって、この薄い電極層を
形成するためのレジストも薄くすることができ、露光用
の光の回折や吸収の影響を受けないレジストパターンを
形成することが可能となり、設計通りの幅を有する電極
を形成可能となる。このため、駆動電圧の上昇や特性イ
ンピーダンスの低下等の問題を回避することができる。
According to the present invention, it is possible to set the thickness of the electrode layer in contact with the buffer layer to be small by forming the traveling-wave electrode, which is required to be a thick film as a whole, by a plurality of layers. As a result, the resist for forming this thin electrode layer can also be made thinner, and it becomes possible to form a resist pattern that is not affected by the diffraction or absorption of light for exposure, and the width as designed can be achieved. It becomes possible to form an electrode having the same. Therefore, problems such as an increase in driving voltage and a decrease in characteristic impedance can be avoided.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して本発明を詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0017】図4は本発明の光制御素子の第1の実施の
形態、ここでは従来例と同様なマッハツェンダ型光強度
変調器の例を示すもので、図中、従来例と同一構成部分
は同一符号をもって表す。即ち、1はz板LiNbO3
基板、2は光導波路、3はSiO2 バッファ層、21は
変調用の第1の進行波型電極、22は変調用の第2の進
行波型電極である。
FIG. 4 shows an example of a Mach-Zehnder type optical intensity modulator similar to the first embodiment of the light control element of the present invention, in which the same components as those of the conventional example are shown. The same symbols are used. That is, 1 is a z-plate LiNbO 3
The substrate 2 is an optical waveguide, 3 is a SiO 2 buffer layer, 21 is a first traveling wave type electrode for modulation, and 22 is a second traveling wave type electrode for modulation.

【0018】第1の進行波型電極21は3つの部分21
a,21b,21cからなり、バッファ層3に接して設
けられる。第2の進行波型電極22は3つの部分22
a,22b,22cからなり、第1の電極21上に積層
されて設けられる。
The first traveling wave electrode 21 has three parts 21.
a, 21b, 21c, and is provided in contact with the buffer layer 3. The second traveling wave electrode 22 has three parts 22.
a, 22b, and 22c, which are stacked on the first electrode 21.

【0019】図5(a)(b)は第1の電極21の厚さが駆動
電圧及びマイクロ波(高周波)特性に与える影響の計算
例を示すものである。各電極は、第1の電極21aの幅
が8μm、第2の電極22aの幅が上部8μmで下部4
μm、第1の電極21及び第2の電極22の厚さの総和
が20μmとした。また、横軸に第1の電極21の厚さ
をとり、縦軸に駆動電圧と電極の作用長との積並びに高
周波特性として高周波減衰定数、特性インピーダンス及
び実効屈折率をとった。なお、第1の電極21の厚さが
0の場合は従来例の場合と同一であり、第1の電極21
の厚さが20μmの場合は矩形状となり、第2の電極2
1が存在しないことを示す。
FIGS. 5A and 5B show an example of calculation of the influence of the thickness of the first electrode 21 on the drive voltage and microwave (high frequency) characteristics. In each electrode, the first electrode 21a has a width of 8 μm, the second electrode 22a has an upper width of 8 μm, and a lower electrode 4a.
μm, and the total thickness of the first electrode 21 and the second electrode 22 was 20 μm. The horizontal axis represents the thickness of the first electrode 21, and the vertical axis represents the product of the driving voltage and the working length of the electrode and the high frequency characteristics such as a high frequency attenuation constant, a characteristic impedance and an effective refractive index. The case where the thickness of the first electrode 21 is 0 is the same as the case of the conventional example.
When the thickness of the second electrode is 20 μm, the second electrode 2 has a rectangular shape.
Indicates that 1 is not present.

【0020】図5から分かるように、第1の電極21
を、例えば1μm程度形成すれば、駆動電圧と電極の作
用長との積並びに高周波特性は幅が8μmで一定の矩形
状の場合とほとんど同じになり、低駆動電圧化及び高速
化が図れる。なお、この時、第2の電極22の厚さは1
9μmとなる。
As can be seen from FIG. 5, the first electrode 21
If, for example, about 1 μm is formed, the product of the driving voltage and the working length of the electrode and the high-frequency characteristics are almost the same as in the case of a rectangular shape with a width of 8 μm, and lower driving voltage and higher speed can be achieved. At this time, the thickness of the second electrode 22 is 1
It becomes 9 μm.

【0021】図6、7は図4に示した光制御素子の製造
方法の一例を示すものである。従来例と同様、基板1に
は予め光導波路2及びバッファ層3を形成しておく。
FIGS. 6 and 7 show an example of a method of manufacturing the light control element shown in FIG. Similar to the conventional example, the optical waveguide 2 and the buffer layer 3 are formed on the substrate 1 in advance.

【0022】光導波路2あるいはバッファ層3上にメッ
キ用の下地電極31を10〜500nm程度の厚さに形
成し、さらに第1のレジスト32を形成する。この第1
のレジスト32に電極を設けない部分の形状に対応した
マスク33を介して紫外線34を露光する(図6(a)
)。第1のレジスト32を現像してレジストパターン
32´を形成し(図6(b) )、これを用いて金メッキを
施すことにより金電極35を形成する(図6(c) )。
A base electrode 31 for plating is formed on the optical waveguide 2 or the buffer layer 3 to a thickness of about 10 to 500 nm, and a first resist 32 is further formed. This first
The resist 32 is exposed to ultraviolet rays 34 through a mask 33 corresponding to the shape of the portion where no electrode is provided (FIG. 6 (a)).
). The first resist 32 is developed to form a resist pattern 32 '(FIG. 6 (b)), and gold plating is applied using this to form a gold electrode 35 (FIG. 6 (c)).

【0023】次に、レジストパターン32´を除去し、
第2のレジスト36を形成し、この第2のレジスト36
に電極を設けない部分の形状に対応したマスク37を介
して紫外線38を露光する(図6(d) )。第2のレジス
ト36を現像してレジストパターン36´を形成し(図
7(e) )、これを用いて金メッキを施すことにより金電
極39を形成する(図7(f) )。
Next, the resist pattern 32 'is removed,
A second resist 36 is formed, and the second resist 36 is formed.
The ultraviolet rays 38 are exposed through the mask 37 corresponding to the shape of the portion where the electrodes are not provided (FIG. 6 (d)). The second resist 36 is developed to form a resist pattern 36 '(FIG. 7 (e)), and gold plating is applied using this to form a gold electrode 39 (FIG. 7 (f)).

【0024】最後に、レジストパターン36´及びその
下部の不要な下地電極31を除去して完成する(図7
(g) )が、この時、金電極35及び残りの下地電極31
が前述した第1の電極21を構成し、金電極39が第2
の電極22を構成する。
Finally, the resist pattern 36 'and the unnecessary underlying electrode 31 thereunder are removed to complete the process (FIG. 7).
(g)) is the gold electrode 35 and the remaining base electrode 31 at this time.
Constitutes the first electrode 21 described above, and the gold electrode 39 is the second electrode.
The electrode 22 of.

【0025】図8は図4に示した光制御素子の製造方法
の他の例を示すものである。従来例と同様、基板1には
予め光導波路2及びバッファ層3を形成しておく。
FIG. 8 shows another example of a method of manufacturing the light control element shown in FIG. Similar to the conventional example, the optical waveguide 2 and the buffer layer 3 are formed on the substrate 1 in advance.

【0026】光導波路2あるいはバッファ層3上にメッ
キ用の下地電極41を10〜500nm程度の厚さに形
成し、さらに第1のレジスト42及び第2のレジスト4
3を形成する。この第2のレジスト43に電極を設けな
い部分の形状に対応したマスク44を介して紫外線45
を露光する(図8(a) )。第2のレジスト43を現像し
てレジストパターン43´を形成する(図8(b) )が、
この時、第1のレジスト42と第2のレジスト43とは
露光特性及び現像液に対する溶解特性が異なる材料を選
択しておくものとする。
A base electrode 41 for plating is formed on the optical waveguide 2 or the buffer layer 3 to a thickness of about 10 to 500 nm, and the first resist 42 and the second resist 4 are further formed.
Form 3 An ultraviolet ray 45 is passed through a mask 44 corresponding to the shape of the portion where the electrode is not provided on the second resist 43.
Is exposed (FIG. 8 (a)). The second resist 43 is developed to form a resist pattern 43 '(FIG. 8 (b)).
At this time, for the first resist 42 and the second resist 43, materials having different exposure characteristics and dissolution characteristics with respect to a developing solution are selected.

【0027】次に、レジストパターン43´をマスクと
して第1のレジスト42に紫外線46を露光する(図8
(b) )。第1のレジスト42を現像してレジストパター
ン42´を形成する(図8(c) )。その後、金メッキを
施すことにより金電極47を形成し(図8(d) )、レジ
ストパターン42´,43´及びその下部の不要な下地
電極41を除去して完成する(図8(e) )が、金電極4
7及び残りの下地電極41が前述した第1及び第2の電
極21及び22を構成し、この場合、第1のレジスト4
2に対応する部分の幅は第2のレジスト43に対応する
部分の幅より広くなる。
Next, the first resist 42 is exposed to ultraviolet rays 46 using the resist pattern 43 'as a mask (FIG. 8).
(b)). The first resist 42 is developed to form a resist pattern 42 '(FIG. 8 (c)). After that, a gold electrode 47 is formed by applying gold plating (FIG. 8 (d)), and the resist patterns 42 ', 43' and the unnecessary underlying electrode 41 thereunder are removed (FIG. 8 (e)). But gold electrode 4
7 and the remaining base electrode 41 constitute the above-mentioned first and second electrodes 21 and 22, and in this case, the first resist 4
The width of the portion corresponding to 2 is wider than the width of the portion corresponding to the second resist 43.

【0028】図9は本発明の本発明の光制御素子の第2
の実施の形態、ここでは進行波型電極を三層構造となし
たマッハツェンダ型光強度変調器の例を示す。図中、5
1は変調用の第1の進行波型電極、52は変調用の第2
の進行波型電極、53は変調用の第3の進行波型電極で
ある。
FIG. 9 shows a second example of the light control element of the present invention.
In this embodiment, an example of a Mach-Zehnder type optical intensity modulator in which the traveling wave type electrode has a three-layer structure is shown. In the figure, 5
1 is a first traveling wave type electrode for modulation, 52 is a second traveling wave type electrode
Is a traveling wave type electrode, and 53 is a third traveling wave type electrode for modulation.

【0029】第1の進行波型電極51は3つの部分51
a,51b,51cからなり、バッファ層3に接して設
けられる。第2の進行波型電極52は3つの部分52
a,52b,52cからなり、第1の電極51上に積層
されて設けられる。第3の進行波型電極53は3つの部
分53a,53b,53cからなり、第2の電極52上
に積層されて設けられる。
The first traveling wave electrode 51 has three parts 51.
a, 51b, 51c, and is provided in contact with the buffer layer 3. The second traveling wave electrode 52 has three parts 52.
a, 52b, 52c, which are stacked on the first electrode 51. The third traveling-wave electrode 53 is composed of three parts 53a, 53b, and 53c, and is laminated and provided on the second electrode 52.

【0030】第1の電極51aの幅は第2の電極52a
の幅より広くしてある。第1の実施の形態の場合と同
様、駆動電圧と作用長との積は第1の電極51aの幅で
ほぼ決定し、マイクロ波特性は第2及び第3の電極52
a及び53aの形状で決定されるため、同様な効果が得
られる。
The width of the first electrode 51a is equal to the width of the second electrode 52a.
It is wider than the width of. As in the case of the first embodiment, the product of the driving voltage and the working length is almost determined by the width of the first electrode 51a, and the microwave characteristics are the second and third electrodes 52.
Since it is determined by the shapes of a and 53a, the same effect can be obtained.

【0031】本例では第2の電極を断面逆台形状となし
たが、途中が膨らんだ形状でも、あるいは細くなった形
状でも効果は変わらない。また、本例では電極を三層構
造となしたが、四層以上でもかまわない。
In the present example, the second electrode has an inverted trapezoidal cross section, but the effect does not change even if the second electrode has a bulged shape or a narrowed shape. Further, although the electrode has a three-layer structure in this example, it may have four or more layers.

【0032】また、これまではTi熱拡散法による光導
波路について説明したが、イオン交換法による光導波路
やリッジ型光導波路の場合でも同様である。また、光導
波路として直線導波路を用いることによって位相変調器
を構成することもできる。また、バッファ層の材料につ
いてもアルミナ、テフロン等の誘電体や半絶縁体を用い
ることができる。また、進行波型電極としてCPW電極
について説明したが、ACPS電極等の電極構造を用い
ても良い。さらにまた、電極形成法として金メッキ法に
ついて述べたが、蒸着法等を用いても良く、また、銅、
銀、アルミ等の金属を用いて形成しても良い。
Although the optical waveguide by the Ti thermal diffusion method has been described so far, the same applies to the optical waveguide by the ion exchange method or the ridge type optical waveguide. Further, the phase modulator can be configured by using a linear waveguide as the optical waveguide. Also, as the material of the buffer layer, a dielectric material such as alumina or Teflon or a semi-insulating material can be used. Although the CPW electrode has been described as the traveling-wave electrode, an electrode structure such as an ACPS electrode may be used. Furthermore, although the gold plating method has been described as the electrode forming method, a vapor deposition method or the like may be used, and copper,
You may form using metals, such as silver and aluminum.

【0033】これまでは、z板LiNbO3 基板中の電
気光学効果を用いた光制御素子について述べたが、x板
やy板のLiNbO3 基板や、他の強誘電体を始めとす
る、半導体や有機物等の異方性を有する基板の電気光学
効果を用いた光制御素子にも本発明は非常に有効である
ことは言うまでもない。
Up to now, the light control element using the electro-optic effect in the z-plate LiNbO 3 substrate has been described. However, semiconductors such as x-plate and y-plate LiNbO 3 substrates and other ferroelectrics can be used. Needless to say, the present invention is also very effective for a light control element using the electro-optical effect of a substrate having anisotropy such as organic matter.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
全体として厚膜であることが必要される進行波型電極を
複数の層で構成することにより、バッファ層に接する電
極層の厚さを薄く設定することが可能となり、これによ
って、この薄い電極層を形成するためのレジストも薄く
することができ、露光用の光の回折や吸収の影響を受け
ないレジストパターンを形成することが可能となり、設
計通りの幅を有する電極を形成可能となる。このため、
駆動電圧の上昇や特性インピーダンスの低下等の問題を
回避することができ、高周波特性を損なうことなく駆動
電圧を低減できるので、駆動電圧が小さく高速動作が可
能な光制御素子を実現できる。
As described above, according to the present invention,
By constructing the traveling-wave electrode, which is required to be a thick film as a whole, with a plurality of layers, it is possible to set the thickness of the electrode layer in contact with the buffer layer to be small, which allows the thin electrode layer to be formed. The resist for forming the film can also be thinned, and it becomes possible to form a resist pattern that is not affected by the diffraction and absorption of light for exposure, and it is possible to form an electrode having a width as designed. For this reason,
Problems such as an increase in driving voltage and a decrease in characteristic impedance can be avoided, and the driving voltage can be reduced without impairing the high frequency characteristics, so that a light control element with a small driving voltage and capable of high-speed operation can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のマッハツェンダ型光強度変調器の一例を
示す図
FIG. 1 is a diagram showing an example of a conventional Mach-Zehnder type optical intensity modulator.

【図2】従来のマッハツェンダ型光強度変調器の製造方
法を示す図
FIG. 2 is a diagram showing a method of manufacturing a conventional Mach-Zehnder type optical intensity modulator.

【図3】図1の光変調器における電極下部の幅に対する
駆動電圧と電極の作用長との積の計算例を示す図
3 is a diagram showing a calculation example of a product of a driving voltage and an action length of an electrode with respect to a width of an electrode lower portion in the optical modulator of FIG.

【図4】本発明の光制御素子の第1の実施の形態を示す
FIG. 4 is a diagram showing a first embodiment of a light control element of the present invention.

【図5】図4の光制御素子における第1の電極の厚さに
対する駆動電圧と電極の作用長との積並びに高周波特性
の計算例を示す図
5 is a diagram showing an example of calculation of a product of a driving voltage and an action length of an electrode with respect to a thickness of a first electrode and a high frequency characteristic in the light control element of FIG.

【図6】図4の光制御素子の製造方法の一例を示す図FIG. 6 is a diagram showing an example of a method of manufacturing the light control element of FIG.

【図7】図4の光制御素子の製造方法の一例を示す図7 is a diagram showing an example of a method for manufacturing the light control element in FIG.

【図8】図4の光制御素子の製造方法の他の例を示す図FIG. 8 is a diagram showing another example of a method for manufacturing the light control element in FIG.

【図9】本発明の光制御素子の第2の実施の形態を示す
FIG. 9 is a diagram showing a second embodiment of the light control element of the present invention.

【符号の説明】[Explanation of symbols]

1…LiNbO3 基板、2…光導波路、3…SiO2
ッファ層、21,51…第1の進行波型電極、22,5
2…第2の進行波型電極、53…第3の進行波型電極。
1 ... LiNbO 3 substrate, 2 ... Optical waveguide, 3 ... SiO 2 buffer layer, 21, 51 ... First traveling wave type electrode, 22, 5
2 ... 2nd traveling wave type electrode, 53 ... 3rd traveling wave type electrode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を有する光学基板と、該光
学基板の表面に形成された光導波路と、該光導波路上に
バッファ層を介して形成された進行波型電極とを備えた
光制御素子において、 進行波型電極を形状の異なる複数の層で構成したことを
特徴とする光制御素子。
1. An optical control comprising an optical substrate having an electro-optical effect, an optical waveguide formed on the surface of the optical substrate, and a traveling wave type electrode formed on the optical waveguide via a buffer layer. In the device, the traveling wave electrode is composed of a plurality of layers having different shapes, which is an optical control device.
【請求項2】 複数の層のうちバッファ層に接する第1
の層が1μm以下の厚さであることを特徴とする請求項
1記載の光制御素子。
2. A first of the plurality of layers that is in contact with the buffer layer
2. The light control element according to claim 1, wherein said layer has a thickness of 1 μm or less.
【請求項3】 第1の層上に積層される第2の層が断面
逆台形状であることを特徴とする請求項2記載の光制御
素子。
3. The light control element according to claim 2, wherein the second layer laminated on the first layer has an inverted trapezoidal cross section.
JP84796A 1996-01-08 1996-01-08 Optical control element Pending JPH09185025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP84796A JPH09185025A (en) 1996-01-08 1996-01-08 Optical control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP84796A JPH09185025A (en) 1996-01-08 1996-01-08 Optical control element

Publications (1)

Publication Number Publication Date
JPH09185025A true JPH09185025A (en) 1997-07-15

Family

ID=11485038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP84796A Pending JPH09185025A (en) 1996-01-08 1996-01-08 Optical control element

Country Status (1)

Country Link
JP (1) JPH09185025A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411747B2 (en) 1998-04-06 2002-06-25 Nec Corporation Waveguide type optical device
JP2009181108A (en) * 2008-02-01 2009-08-13 Sumitomo Osaka Cement Co Ltd Optical waveguide element
CN110320683A (en) * 2018-03-29 2019-10-11 住友大阪水泥股份有限公司 Optical modulator
JP2021086026A (en) * 2019-11-28 2021-06-03 住友大阪セメント株式会社 Optical waveguide device, optical modulator, optical modulation module and optical transmitter
EP4095596A1 (en) 2021-05-28 2022-11-30 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device, manufacturing method of optical modulation element, optical modulator, optical modulation module, and optical transmission apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411747B2 (en) 1998-04-06 2002-06-25 Nec Corporation Waveguide type optical device
JP2009181108A (en) * 2008-02-01 2009-08-13 Sumitomo Osaka Cement Co Ltd Optical waveguide element
CN110320683A (en) * 2018-03-29 2019-10-11 住友大阪水泥股份有限公司 Optical modulator
JP2021086026A (en) * 2019-11-28 2021-06-03 住友大阪セメント株式会社 Optical waveguide device, optical modulator, optical modulation module and optical transmitter
EP4095596A1 (en) 2021-05-28 2022-11-30 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device, manufacturing method of optical modulation element, optical modulator, optical modulation module, and optical transmission apparatus

Similar Documents

Publication Publication Date Title
JP3771287B2 (en) Waveguide type electro-optic element
CA2207715C (en) Optical modulator with optical waveguide and traveling-wave type electrodes
JPH1184328A (en) Integrated optical light intensity modulator and manufacture thereof
US6600843B2 (en) Optical modulator
JPH1090638A (en) Optical control element
JPH09211402A (en) Broad-band light modulator
JPH1039266A (en) Optical control device
JP2001051244A (en) Optical modulator using photonic band gap structure and optical modulation method
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP7226554B2 (en) Plasmonic waveguide and manufacturing method thereof
JP3250712B2 (en) Polarization independent light control element
JP2013037243A (en) Optical modulator
JPH09185025A (en) Optical control element
JPS5987B2 (en) Electro-optical switches and modulators
JP3723333B2 (en) Light modulator
JPH05173099A (en) Optical control element
US6268949B1 (en) Optical intensity modulator and fabrication method using an optical waveguide having an arc shaped path
JP2004219600A (en) Electrode for optical modulation and optical modulator
JPH04149408A (en) Optical modulation element
JPH05264937A (en) Light control device
JPH0815657A (en) Waveguide type electro-optical element
JP2005274793A (en) Optical waveguide and optical waveguide device
JPH05249419A (en) Optical waveguide type optical device
JP3024555B2 (en) Optical waveguide device and method of manufacturing the same
JP2000267055A (en) Optical waveguide element