JP2009181108A - Optical waveguide element - Google Patents

Optical waveguide element Download PDF

Info

Publication number
JP2009181108A
JP2009181108A JP2008022759A JP2008022759A JP2009181108A JP 2009181108 A JP2009181108 A JP 2009181108A JP 2008022759 A JP2008022759 A JP 2008022759A JP 2008022759 A JP2008022759 A JP 2008022759A JP 2009181108 A JP2009181108 A JP 2009181108A
Authority
JP
Japan
Prior art keywords
optical waveguide
electrode
input
ground electrode
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008022759A
Other languages
Japanese (ja)
Inventor
Akira Shimizu
亮 清水
Satoru Oikawa
哲 及川
Toru Sugamata
徹 菅又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2008022759A priority Critical patent/JP2009181108A/en
Publication of JP2009181108A publication Critical patent/JP2009181108A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide element such that increase in drive voltage is suppressed, the propagation loss of light waves is reduced and the optical response characteristic at a high-frequency band is not deteriorated by a propagation loss reduction means. <P>SOLUTION: The optical waveguide element includes: a substrate having an electrooptical effect; a Mach-Zehnder type optical waveguide formed on the main face of the substrate; a control electrode for controlling the light wave which propagates in the optical waveguide, wherein the Mach-Zehnder type optical waveguide is divided into: an action part which is an optical waveguide part which controls the light wave with the control electrode; and input/output parts (2, 21 and 22) which are optical waveguide parts which input the light wave to the action part or output the light wave from the action part, wherein the control electrodes are constituted of a signal electrode 3 and grounding electrodes (321 to 323), and an optical loss reduction means is provided at least at one side of the grounding electrodes on the input/output parts, when the grounding electrodes are arranged striding over the input/output parts. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光導波路素子に関し、特に、マッハツェンダー型光導波路と該光導波路内を導波する光波を制御するための制御電極とを備えた光導波路素子に関する。   The present invention relates to an optical waveguide device, and more particularly to an optical waveguide device including a Mach-Zehnder optical waveguide and a control electrode for controlling a light wave guided in the optical waveguide.

近年、光通信や光計測の分野において、電気光学効果を有する基板上に光導波路を形成すると共に、光導波路内を導波する光波を制御するための制御電極を形成した導波路型光変調器などの光導波路素子が多用されている。
図1及び2に示す光導波路素子は、マッハツェンダー型光導波路を基板上に形成したものである。図1は基板にX板を用いたものであり、図2は基板にZ板を用いた例を示す。なお、各図の(a)は光導波路素子の平面図、図1(b)又は(c)は図1(a)のA−A’又はB−B’における各断面図であり、さらに、図2(b)又は(c)は図2(a)のC−C’又はD−D’における各断面図を示す。
In recent years, in the fields of optical communication and optical measurement, a waveguide type optical modulator in which an optical waveguide is formed on a substrate having an electro-optic effect and a control electrode for controlling a light wave guided in the optical waveguide is formed. Such optical waveguide elements are often used.
The optical waveguide device shown in FIGS. 1 and 2 has a Mach-Zehnder type optical waveguide formed on a substrate. FIG. 1 shows an example in which an X plate is used as a substrate, and FIG. 2 shows an example in which a Z plate is used as a substrate. In addition, (a) of each figure is a top view of an optical waveguide element, FIG.1 (b) or (c) is each sectional drawing in AA 'or BB' of FIG.1 (a), Furthermore, FIG. 2B or FIG. 2C is a cross-sectional view taken along the line CC ′ or DD ′ in FIG.

図1の光導波路素子では、信号電極3を接地電極31,32が挟むように配置される、所謂、コプレーナ型の制御電極が形成されている。このため、接地電極32は、局所的に光導波路2を跨ぐように配置することが必要となり、図1(c)に示すように、光導波路2上に接地電極32が接触することとなる。光導波路2を伝搬する光波は、このような接地電極32により吸収又は散乱され、光波の伝搬損失が大きくなる。   In the optical waveguide device of FIG. 1, a so-called coplanar type control electrode is formed in which the signal electrode 3 is disposed so that the ground electrodes 31 and 32 are sandwiched therebetween. For this reason, it is necessary to arrange the ground electrode 32 so as to straddle the optical waveguide 2 locally, and the ground electrode 32 comes into contact with the optical waveguide 2 as shown in FIG. The light wave propagating through the optical waveguide 2 is absorbed or scattered by the ground electrode 32, and the propagation loss of the light wave increases.

他方、図2の光導波路素子では、図1の光導波路素子と同様に、接地電極35は局所的に光導波路を跨ぐように配置されるだけでなく、信号電極33,36も、光導波路21,22上に配置する必要がある。このため、光導波路を伝搬する光波の損失を低減させるため、図2(b),(c)に示すようにSiOなどのバッファ層4が形成されている。なお、図2(a)においては、光導波路(2,23等)と制御電極(信号電極33,36、接地電極34,35,37)との配置関係を示すため、バッファ層4は省略されている。なお、バッファ層を用いた例としては、特許文献1のものなどが知られている。
特開平9−185025号公報
On the other hand, in the optical waveguide device shown in FIG. 2, the ground electrode 35 is not only locally disposed so as to straddle the optical waveguide, as in the optical waveguide device shown in FIG. , 22 is necessary. For this reason, in order to reduce the loss of the light wave propagating through the optical waveguide, a buffer layer 4 such as SiO 2 is formed as shown in FIGS. In FIG. 2A, the buffer layer 4 is omitted to show the positional relationship between the optical waveguide (2, 23, etc.) and the control electrodes (signal electrodes 33, 36, ground electrodes 34, 35, 37). ing. In addition, as an example using a buffer layer, the thing of patent document 1 etc. are known.
JP-A-9-185025

図2のように、バッファ層4は、光導波路上に電極を配置する場合の損失の低減に寄与する効果が期待できるが、電極と光導波路との間隔が大きくなるため、光導波路に印加する電界の強さを所定以上に維持するためには、電極に印加する駆動電圧を高くする必要がある。このため、駆動装置の低消費電力化や低コスト化などが困難となる。   As shown in FIG. 2, the buffer layer 4 can be expected to contribute to reducing loss when an electrode is disposed on the optical waveguide. However, since the gap between the electrode and the optical waveguide is increased, the buffer layer 4 is applied to the optical waveguide. In order to maintain the strength of the electric field at a predetermined level or higher, it is necessary to increase the driving voltage applied to the electrodes. For this reason, it becomes difficult to reduce the power consumption and cost of the driving device.

本発明が解決しようとする課題は、上述した問題を解決し、駆動電圧の増加を抑制しながら、光波の伝搬損失を低減すると共に、伝搬損失低減手段によって高周波帯域における光応答特性が劣化しないように維持した光導波路素子を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems and reduce the propagation loss of the light wave while suppressing the increase of the driving voltage, so that the optical response characteristic in the high frequency band is not deteriorated by the propagation loss reducing means. It is to provide an optical waveguide device maintained in the above.

請求項1に係る発明では、電気光学効果を有する基板と、該基板の主面に形成されたマッハツェンダー型光導波路と、該光導波路内を導波する光波を制御するための制御電極とを備えた光導波路素子において、該マッハツェンダー型光導波路は、該制御電極による光波の制御を行なう光導波路部分である作用部と、該作用部に光波を導入又は該作用部から光波を導出する光導波路部分である入出力部とに分けられ、該制御電極が信号電極と接地電極から構成され、該接地電極が該入出力部を跨いで配置される際には、該入出力部上の少なくとも一方の該接地電極に光損失低減手段を設けることを特徴とする。   In the invention according to claim 1, a substrate having an electro-optic effect, a Mach-Zehnder type optical waveguide formed on the main surface of the substrate, and a control electrode for controlling a light wave guided in the optical waveguide. In the optical waveguide element provided, the Mach-Zehnder type optical waveguide includes an action portion that is an optical waveguide portion that controls the light wave by the control electrode, and an optical waveguide that introduces a light wave into the action portion or derives a light wave from the action portion. When the control electrode is composed of a signal electrode and a ground electrode, and the ground electrode is disposed across the input / output unit, at least on the input / output unit. One of the ground electrodes is provided with light loss reducing means.

請求項2に係る発明では、請求項1に記載の光導波路素子において、該光損失低減手段は、該入出力部上を跨ぐ接地電極の幅が、跨ぐ前後の接地電極の幅と比較して狭く、かつ該入出力部上を跨ぐ接地電極は該信号電極の近傍に配置するものであることを特徴とする。   In the invention according to claim 2, in the optical waveguide element according to claim 1, the light loss reducing means is configured such that the width of the ground electrode straddling the input / output portion is compared with the width of the ground electrode before and after straddling. The ground electrode that is narrow and straddles the input / output section is disposed in the vicinity of the signal electrode.

請求項3に係る発明では、請求項1に記載の光導波路素子において、該光損失低減手段は、該入出力部上を跨ぐ接地電極が、該信号電極の近傍に配置するワイヤー又はリボンボンディングであることを特徴とする。   According to a third aspect of the present invention, in the optical waveguide device according to the first aspect, the light loss reducing means is a wire or ribbon bonding in which a ground electrode straddling the input / output unit is disposed in the vicinity of the signal electrode. It is characterized by being.

請求項4に係る発明では、請求項1に記載の光導波路素子において、該光損失低減手段は、該入出力部上を跨ぐ接地電極が、該信号電極の近傍に配置され、跨ぐ前後の接地電極を繋ぐブリッジ状電極であることを特徴とする。   According to a fourth aspect of the present invention, in the optical waveguide device according to the first aspect, the optical loss reducing means includes a ground electrode that straddles the input / output unit and is disposed in the vicinity of the signal electrode. It is a bridge-like electrode connecting electrodes.

請求項5に係る発明では、請求項1又は2に記載の光導波路素子において、該光損失低減手段は、該入出力部と該入出力部を跨いで配置された接地電極との間にバッファ層を配置するものであることを特徴とする。   According to a fifth aspect of the present invention, in the optical waveguide device according to the first or second aspect, the optical loss reduction means includes a buffer between the input / output unit and a ground electrode disposed across the input / output unit. A layer is disposed.

請求項6に係る発明では、請求項1乃至5のいずれかに記載の光導波路素子において、該基板は、ニオブ酸リチウム又はニオブ酸タンタレートのX板であることを特徴とする。   The invention according to claim 6 is the optical waveguide device according to any one of claims 1 to 5, wherein the substrate is an X plate of lithium niobate or tantalite niobate.

請求項7に係る発明では、請求項1乃至6のいずれかに記載の光導波路素子において、該基板の厚みは50μm以下であることを特徴とする。   The invention according to claim 7 is the optical waveguide element according to any one of claims 1 to 6, wherein the thickness of the substrate is 50 μm or less.

請求項1に係る発明により、マッハツェンダー型光導波路は、制御電極による光波の制御を行なう光導波路部分である作用部と、該作用部に光波を導入又は該作用部から光波を導出する光導波路部分である入出力部とに分けられ、該制御電極が信号電極と接地電極から構成され、該接地電極が該入出力部を跨いで配置される際には、該入出力部上の少なくとも一方の該接地電極に光損失低減手段を設けるため、光導波路を伝搬する光波の伝搬損失を抑制でき、かつ当該光損失低減手段は、当該光導波路近傍の電極配置をコプレーナ型が維持できるように実施するため、高周波帯域における光応答特性を劣化させないことが可能となる。   According to the first aspect of the present invention, the Mach-Zehnder type optical waveguide includes an action portion that is an optical waveguide portion that controls the light wave by the control electrode, and an optical waveguide that introduces the light wave into the action portion or derives the light wave from the action portion. The control electrode is composed of a signal electrode and a ground electrode, and when the ground electrode is disposed across the input / output unit, at least one of the input / output unit Since the optical loss reducing means is provided on the ground electrode, the propagation loss of the light wave propagating through the optical waveguide can be suppressed, and the optical loss reducing means is implemented so that the electrode arrangement in the vicinity of the optical waveguide can be maintained in the coplanar type. Therefore, it is possible not to deteriorate the optical response characteristics in the high frequency band.

請求項2に係る発明により、光損失低減手段は、入出力部上を跨ぐ接地電極の幅が、跨ぐ前後の接地電極の幅と比較して狭く、かつ該入出力部上を跨ぐ接地電極は信号電極の近傍に配置するものであるため、光導波路と接地電極との重なり部分を少なくして光損失を低減できると共に、跨いだ接地電極が信号電極の近傍に配置されるため、上述のように高周波帯域の光応答特性が劣化しない。   According to the invention according to claim 2, the light loss reducing means is such that the width of the ground electrode straddling the input / output part is narrower than the width of the ground electrode before and after straddling, and the ground electrode straddling the input / output part is Since it is arranged in the vicinity of the signal electrode, the overlapping portion between the optical waveguide and the ground electrode can be reduced to reduce the optical loss, and the straddling ground electrode is arranged in the vicinity of the signal electrode. In addition, the optical response characteristics in the high frequency band do not deteriorate.

請求項3に係る発明により、光損失低減手段は、入出力部上を跨ぐ接地電極が、信号電極の近傍に配置するワイヤー又はリボンボンディングであるため、光導波路に接触する接地電極を配置する必要が無く、光損失を最大限に抑制することが可能となる。しかも、ワイヤーボンディング等が、信号電極の近傍に配置されているため、上述のように高周波帯域の光応答特性が劣化しない。   According to the invention of claim 3, the light loss reducing means requires that a ground electrode straddling the input / output section is a wire or ribbon bonding disposed in the vicinity of the signal electrode, and therefore a ground electrode that contacts the optical waveguide needs to be disposed. Therefore, the optical loss can be suppressed to the maximum. In addition, since wire bonding or the like is arranged in the vicinity of the signal electrode, the optical response characteristics in the high frequency band do not deteriorate as described above.

請求項4に係る発明により、光損失低減手段は、入出力部上を跨ぐ接地電極が、信号電極の近傍に配置され、跨ぐ前後の接地電極を繋ぐブリッジ状電極であるため、光導波路に接触する接地電極を配置する必要が無く、光損失を最大限に抑制することが可能となる。しかも、ブリッジ状電極が、信号電極の近傍に配置されているため、上述のように高周波帯域の光応答特性が劣化しない。   According to the invention of claim 4, the optical loss reducing means is in contact with the optical waveguide because the ground electrode straddling the input / output section is a bridge-shaped electrode that is disposed in the vicinity of the signal electrode and connects the ground electrodes before and after the straddle. Therefore, it is not necessary to arrange a grounding electrode, and light loss can be suppressed to the maximum. In addition, since the bridge electrode is disposed in the vicinity of the signal electrode, the optical response characteristic in the high frequency band does not deteriorate as described above.

請求項5に係る発明により、光損失低減手段は、入出力部と該入出力部を跨いで配置された接地電極との間にバッファ層を配置するため、光導波路を伝搬する光波の伝搬損失を低減することが可能となる。   According to the invention of claim 5, since the optical loss reducing means arranges the buffer layer between the input / output unit and the ground electrode arranged across the input / output unit, the propagation loss of the light wave propagating through the optical waveguide Can be reduced.

請求項6に係る発明により、基板は、ニオブ酸リチウム又はニオブ酸タンタレートのX板であるため、基板上に直接電極を配置する場合でも、請求項1乃至5の光損失低減手段を介して接地電極が光導波路を跨ぐように配置できるため、光導波路素子の駆動電圧の増加を抑制しながら、光導波路を伝搬する光波の伝搬損失を抑制することが可能となる。   According to the invention of claim 6, since the substrate is an X plate of lithium niobate or tantalate niobate, even when an electrode is arranged directly on the substrate, grounding is performed via the light loss reducing means of claims 1 to 5. Since the electrodes can be disposed so as to straddle the optical waveguide, it is possible to suppress the propagation loss of the light wave propagating through the optical waveguide while suppressing an increase in the driving voltage of the optical waveguide element.

請求項7に係る発明により、基板の厚みは50μm以下であるため、光導波路を伝搬する光波と駆動信号との速度整合が図りやすくなり、より高周波領域まで光応答が良好な光導波路素子を実現することが可能となる。また、基板の厚みが薄いため、一般に光導波路を伝搬する光波が光導波路を跨ぐ接地電極で吸収され易くなるが、請求項1乃至5の光損失低減手段により、これらの不具合を抑制することが可能となる。   With the invention according to claim 7, since the thickness of the substrate is 50 μm or less, it becomes easy to achieve speed matching between the light wave propagating through the optical waveguide and the drive signal, and an optical waveguide element having a good optical response up to a higher frequency region is realized. It becomes possible to do. In addition, since the substrate is thin, light waves propagating through the optical waveguide are generally easily absorbed by the ground electrode straddling the optical waveguide. However, the light loss reducing means according to claims 1 to 5 can suppress these problems. It becomes possible.

以下、本発明に係る光導波路素子について、詳細に説明する。
本発明に係る光導波路素子は、電気光学効果を有する基板と、該基板の主面に形成されたマッハツェンダー型光導波路と、該光導波路内を導波する光波を制御するための制御電極とを備えた光導波路素子において、該マッハツェンダー型光導波路は、該制御電極による光波の制御を行なう光導波路部分である作用部と、該作用部に光波を導入又は該作用部から光波を導出する光導波路部分である入出力部とに分けられ、該制御電極が信号電極と接地電極から構成され、該接地電極が該入出力部を跨いで配置される際には、該入出力部上の少なくとも一方(光波の導入側又は導出側)の該接地電極に光損失低減手段を設けることを特徴とする。
Hereinafter, the optical waveguide device according to the present invention will be described in detail.
An optical waveguide device according to the present invention includes a substrate having an electro-optic effect, a Mach-Zehnder optical waveguide formed on a main surface of the substrate, and a control electrode for controlling a light wave guided in the optical waveguide. In the optical waveguide device comprising: When the control electrode is composed of a signal electrode and a ground electrode, and the ground electrode is disposed across the input / output unit, the control electrode is divided into an input / output unit that is an optical waveguide portion. An optical loss reducing means is provided on at least one of the ground electrodes (light wave introduction side or light emission side).

図3は、上記「作用部」を説明する図であり、制御電極を構成する信号電極3が不図示の接地電極と協働して、光導波路に電界を印加し、光導波路内を伝搬する光波を制御する領域は、図の領域bであり、この領域にある光導波路(21,22)を作用部という。そして、光導波路素子に光波を入力する側端から作用部までの間の領域aに配置される光導波路を「入力部」、光導波路素子から光波を出力する側端から作用部までの間の領域cに配置される光導波路を「出力部」と呼び、両者を併せて「入出力部」と呼ぶ。   FIG. 3 is a diagram for explaining the above-mentioned “acting portion”. The signal electrode 3 constituting the control electrode cooperates with a ground electrode (not shown) to apply an electric field to the optical waveguide and propagate in the optical waveguide. The region for controlling the light wave is the region b in the figure, and the optical waveguides (21, 22) in this region are called action parts. The optical waveguide disposed in the region a between the side end where the light wave is input to the optical waveguide element and the action part is referred to as “input part”, and the side between the side end where the light wave is output from the optical waveguide element to the action part. The optical waveguide disposed in the region c is called an “output unit”, and both are collectively called an “input / output unit”.

基板1は、例えば、ニオブ酸リチウム、ニオブ酸タンタレート、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料及びこれらの組み合わせが利用可能である。特に、X板において電気光学効果の高いニオブ酸リチウム(LN)やニオブ酸タンタレートが好適に利用される。
また、使用する基板の厚みは、以下の特許文献2が示すように150μm以下、特に50μm以下であることが好ましい。このような薄板を用いることで光導波路を伝搬する光波と駆動信号の速度整合が図りやすくなり、より高周波領域まで光応答が良好な光導波路素子を実現することが可能となる。しかし、基板の厚みが50μm以下である場合、光導波路上に接地電極があると光導波路を伝搬する光波が電極により吸収され光損失が増えると共に、散乱された光波が光導波路出力部まで伝搬され、光導波路出力部に接続する光ファイバ内に結合し、on/off消光比などの特性を著しく劣化することが実験によりわかった。本発明を適用することで、薄板を用いる場合に発生し易い、このような特性劣化も回避することができることがわかった。
特開2006−284963号公報
As the substrate 1, for example, lithium niobate, tantalate niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), a quartz-based material, and a combination thereof can be used. In particular, lithium niobate (LN) or niobate tantalate having a high electro-optic effect in the X plate is preferably used.
The thickness of the substrate to be used is preferably 150 μm or less, particularly 50 μm or less, as shown in Patent Document 2 below. By using such a thin plate, it becomes easy to achieve speed matching between the light wave propagating through the optical waveguide and the drive signal, and it becomes possible to realize an optical waveguide element having a good optical response up to a higher frequency region. However, when the thickness of the substrate is 50 μm or less, if there is a ground electrode on the optical waveguide, the light wave propagating through the optical waveguide is absorbed by the electrode and the optical loss is increased, and the scattered light wave is propagated to the optical waveguide output section. It has been experimentally found that the characteristics such as the on / off extinction ratio are significantly deteriorated by coupling into the optical fiber connected to the optical waveguide output section. It has been found that application of the present invention can avoid such characteristic deterioration that is likely to occur when a thin plate is used.
JP 2006-284963 A

光導波路の形成方法としては、Tiなどを熱拡散法やプロトン交換法などで基板表面に拡散させることにより形成することができる。
また、制御電極は、Ti・Auの電極パターンの形成及び金メッキ方法などにより形成することが可能である。
As a method for forming the optical waveguide, it can be formed by diffusing Ti or the like on the substrate surface by a thermal diffusion method or a proton exchange method.
The control electrode can be formed by forming a Ti / Au electrode pattern, a gold plating method, or the like.

次に、本発明の特徴である光損失低減手段について説明する。
図4は、光導波路の入力部に光損失低減手段を配置した第1の例を示す。光損失低減手段としては、光導波路の入力部(図4では、光導波路2)上を跨ぐ接地電極322の幅が、跨ぐ前後の接地電極(321,323)の幅と比較して狭く、しかも、入力部上を跨ぐ接地電極322は信号電極3の近傍に配置しているものである。
本発明に用いる「近傍」とは、光応答特性が劣化しない範囲であれば良く、図4においては信号電極に最も近い位置に配置させたが、これに限らない。
Next, the optical loss reducing means that is a feature of the present invention will be described.
FIG. 4 shows a first example in which light loss reducing means is arranged at the input portion of the optical waveguide. As an optical loss reducing means, the width of the ground electrode 322 straddling the input portion of the optical waveguide (the optical waveguide 2 in FIG. 4) is narrower than the width of the ground electrodes (321, 323) before and after the straddle. The ground electrode 322 straddling the input section is disposed in the vicinity of the signal electrode 3.
The “neighborhood” used in the present invention may be a range in which the optical response characteristic does not deteriorate. In FIG. 4, it is arranged at the position closest to the signal electrode, but is not limited thereto.

光導波路を跨ぐ接地電極322の幅は、光損失を低減する観点からは狭いほど良く、好ましくは75μm以下である。他方、接地電極322の幅が狭すぎると、信号電極を伝搬する駆動信号に対する光応答特性が劣化するため、接地電極322の幅は信号電極3の幅以上とすることが好ましい。   The width of the ground electrode 322 straddling the optical waveguide is preferably as narrow as possible from the viewpoint of reducing optical loss, and is preferably 75 μm or less. On the other hand, if the width of the ground electrode 322 is too narrow, the optical response characteristic with respect to the drive signal propagating through the signal electrode deteriorates.

また、光導波路を跨ぐ接地電極322の位置(接地電極322と信号電極との距離n)は、接地電極321と信号電極3との距離n又は接地電極323と信号電極3との距離nと同程度に設定することにより、コプレーナ型の制御電極を連続的に形成でき、信号電極を駆動信号が伝搬するのに対応して発生する信号電極と接地電極との間の電界の強さを安定させ、高周波領域での光応答特性をより安定化させることが可能となる。 The position of the ground electrode 322 across the optical waveguide (the distance n 2 between the ground electrode 322 and the signal electrode) is the distance n 1 between the ground electrode 321 and the signal electrode 3 or the distance n between the ground electrode 323 and the signal electrode 3. 3 , the coplanar control electrode can be continuously formed, and the electric field strength between the signal electrode and the ground electrode generated in response to the drive signal propagating through the signal electrode. It is possible to stabilize the optical response characteristic in the high frequency region.

なお、図4においては、マッハツェンダー型光導波路のY分岐前で、接地電極が光導波路を跨ぐ構成を示したが、本発明はこれに限らず、分岐導波路21,22を接地電極が跨ぐ場合にも適用可能である。その際には、分岐導波路21,22を跨ぐ毎に、図4のように光導波路を跨ぐ接地電極の幅を狭く設定し、かつ、接地電極の位置を信号電極の近傍に配置するよう構成することが好ましい。
また、図4は光導波路の入力部について説明したが、出力部についても同様に本発明の光損失低減手段が適用可能であることは言うまでも無い。
以下の光損失低減手段についても、同様である。
FIG. 4 shows a configuration in which the ground electrode straddles the optical waveguide before the Y-branch of the Mach-Zehnder type optical waveguide. However, the present invention is not limited to this, and the ground electrode straddles the branch waveguides 21 and 22. It is also applicable to cases. In that case, every time the branching waveguides 21 and 22 are straddled, the width of the ground electrode straddling the optical waveguide is set narrow as shown in FIG. 4, and the position of the ground electrode is arranged in the vicinity of the signal electrode. It is preferable to do.
Moreover, although FIG. 4 demonstrated the input part of the optical waveguide, it cannot be overemphasized that the optical loss reduction means of this invention is applicable similarly to an output part.
The same applies to the following optical loss reducing means.

図5は、光損失低減手段の第2の例を示すものである。
光損失低減手段としては、入力部上を跨ぐ接地電極が、信号電極(不図示であるが図の右側に配置されていると想定している)の近傍に配置するワイヤー324又はリボンボンディングである。
FIG. 5 shows a second example of the optical loss reducing means.
As the optical loss reduction means, a ground electrode straddling the input section is a wire 324 or ribbon bonding arranged in the vicinity of a signal electrode (not shown but assumed to be arranged on the right side of the figure). .

ワイヤーの数やリボンの幅などは特に限定されるものではないが、コプレーナ型の制御電極を維持し、駆動信号の伝搬を損なわない範囲で、適宜設定することが可能である。
また、接地電極321と323との間隔は、その間に配置される光導波路2の幅にも依存するが、200μm以下、好ましくは50μm以下とする。この間隔については、他の光損失低減手段についても同様である。また、光導波路を跨ぐワイヤーやリボンと信号電極との距離については、第1の例と同様に、接地電極321と信号電極との距離又は接地電極323と信号電極との距離と同程度に設定することが好ましい。
The number of wires, the width of the ribbon, and the like are not particularly limited, but can be set as appropriate as long as the coplanar control electrode is maintained and the propagation of the drive signal is not impaired.
The distance between the ground electrodes 321 and 323 is 200 μm or less, preferably 50 μm or less, although it depends on the width of the optical waveguide 2 disposed therebetween. The same applies to the other optical loss reducing means. In addition, the distance between the wire or ribbon straddling the optical waveguide and the signal electrode is set to be approximately the same as the distance between the ground electrode 321 and the signal electrode or the distance between the ground electrode 323 and the signal electrode, as in the first example. It is preferable to do.

図6は、光損失低減手段の第3の例を示すものである。
光損失低減手段としては、入力部上を跨ぐ接地電極が、信号電極(不図示であるが図6(a)の右側に配置されていると想定している)の近傍に配置され、跨ぐ前後の接地電極321,323を繋ぐブリッジ状電極325である。なお、光導波路を跨ぐブリッジ状電極と信号電極との距離については、第1又は第2の例と同様に、接地電極321と信号電極との距離又は接地電極323と信号電極との距離と同程度に設定することが好ましい。
ブリッジ状電極の形成方法は、金属板(例えば金、SUSなど)を半田もしくは導電性ペーストで接着することで形成できる。また金属板の代わりに高周波コンデンサ(例えば積層セラミックコンデンサ、単板コンデンサ、薄膜コンデンサ)を使用しても良い。
FIG. 6 shows a third example of the optical loss reducing means.
As an optical loss reducing means, a ground electrode straddling the input part is disposed in the vicinity of the signal electrode (not shown but assumed to be disposed on the right side of FIG. 6A), and before and after the straddle. This is a bridge electrode 325 that connects the ground electrodes 321 and 323. Note that the distance between the bridge electrode and the signal electrode straddling the optical waveguide is the same as the distance between the ground electrode 321 and the signal electrode or the distance between the ground electrode 323 and the signal electrode, as in the first or second example. It is preferable to set the degree.
The bridge-like electrode can be formed by bonding a metal plate (eg, gold, SUS, etc.) with solder or conductive paste. Further, a high frequency capacitor (for example, a multilayer ceramic capacitor, a single plate capacitor, or a thin film capacitor) may be used instead of the metal plate.

図7は、光損失低減手段の第4の例を示すものである。
光損失低減手段としては、入力部2と該入力部を跨いで配置された接地電極326との間にバッファ層5を配置するものである。
バッファ層としては、SiOが利用可能であるが、Z板を用いた光導波路素子のように、SiOを基板全体に形成すると、制御電極と光導波路との距離が離れ、駆動電圧を増加させてしまう。従って、本発明ではバッファ層は、図3の領域bを除く場所に設けることが好ましく、より好ましくは、接地電極が光導波路を跨ぐ場所に限って設ける。
FIG. 7 shows a fourth example of the optical loss reducing means.
As the optical loss reducing means, the buffer layer 5 is disposed between the input unit 2 and the ground electrode 326 disposed across the input unit.
As the buffer layer, SiO 2 can be used. However, when SiO 2 is formed on the entire substrate like an optical waveguide device using a Z-plate, the distance between the control electrode and the optical waveguide is increased, and the drive voltage is increased. I will let you. Therefore, in the present invention, the buffer layer is preferably provided in a place excluding the region b in FIG. 3, and more preferably provided only in a place where the ground electrode straddles the optical waveguide.

光導波路を跨ぐ接地電極が光損失に与える影響を評価するため、LNのX板を用いたマッハツェンダー型光導波路を有する光導波路素子を用意した。該素子のチップ長は約60mmであり、入出力部に図4に示すような光導波路を跨ぐ接地電極を設けた。次に、接地電極322の幅を0〜75μmの範囲で変化させた場合の光導波路素子の光損失を測定した。   In order to evaluate the influence of the ground electrode straddling the optical waveguide on the optical loss, an optical waveguide element having a Mach-Zehnder type optical waveguide using an LN X plate was prepared. The chip length of the element was about 60 mm, and a ground electrode straddling the optical waveguide as shown in FIG. Next, the optical loss of the optical waveguide device was measured when the width of the ground electrode 322 was changed in the range of 0 to 75 μm.

なお、測定試験方法としては、図8に示すように、光源としてDFBレーザ40(波長1550nm,NTTエレクトロニクス社製,型番NLK1L5GAAA)を用い、該光源からの光を偏波コントローラ41(応用光電研究室製,型番MPCA−1550)で偏波面を調整し、偏波保持ファイバー(PMF)を介して上述の光導波路素子42に入射させた。該光導波路素子は、光透過が最大となる変調曲線のトップまで、DC電源43(菊水電子工業社製,型番PMM18−2.5DU)からDC電圧をDC印加プローブを介して印加し、その際の光導波路素子から出射する光波をシングル・モード・ファイバーを介して光パワーメータ44(アジレントテクノロジー社製,型番81533B)に入射し、光損失測定した。   As a measurement test method, as shown in FIG. 8, a DFB laser 40 (wavelength 1550 nm, manufactured by NTT Electronics, model number NLK1L5GAAA) is used as a light source, and light from the light source is polarized by a polarization controller 41 (applied photoelectric laboratory). The polarization plane was adjusted with a product of model number MPCA-1550) and made incident on the optical waveguide element 42 through a polarization maintaining fiber (PMF). The optical waveguide device applies a DC voltage from a DC power source 43 (manufactured by Kikusui Electronics Co., Ltd., model number PMM18-2.5DU) through a DC application probe to the top of the modulation curve that maximizes light transmission. The light wave emitted from the optical waveguide element was incident on an optical power meter 44 (manufactured by Agilent Technologies, model number 81533B) via a single mode fiber, and optical loss was measured.

図9は、接地電極の幅を、0μm,37.5μm,75μmと変化させた場合の光損失の変化を示すグラフであり、接地電極の幅を狭くするほど、光損失が改善していることが、容易に理解される。   FIG. 9 is a graph showing changes in optical loss when the width of the ground electrode is changed to 0 μm, 37.5 μm, and 75 μm. The light loss is improved as the width of the ground electrode is reduced. Is easily understood.

次に、図4における接地電極321と523とのギャップ距離を200μmに設定し、光導波路を跨ぐ接地電極の幅を0μm(つまり、光導波路上で切断されている)、37.5μm、75μmと設定した場合の、駆動周波数に対する光応答特性を評価した。
測定試験に際しては、該光導波路素子を変調器パッケージに実装して、光コンポーネントアナライザ(アジレントテクノロジー社製,型番86030A)を用い評価した。
Next, the gap distance between the ground electrodes 321 and 523 in FIG. 4 is set to 200 μm, and the width of the ground electrode across the optical waveguide is set to 0 μm (that is, cut on the optical waveguide), 37.5 μm, and 75 μm. When set, the optical response characteristics with respect to the driving frequency were evaluated.
In the measurement test, the optical waveguide device was mounted on a modulator package and evaluated using an optical component analyzer (manufactured by Agilent Technologies, model number 86030A).

また、接地電極の幅の変化が光応答特性に与える影響を評価するため、図4のように接地電極の幅を狭くしない通常の電極を用いた場合も同様に測定した。
さらに、ギャップ距離を50μmに設定し、接地電極の幅を0μmとすると共に、図5に示すようなワイヤー(Au,φ25μm)を5本接続した場合も同様に測定した。
これらの結果を図10に示す。
Further, in order to evaluate the influence of the change in the width of the ground electrode on the optical response characteristics, the same measurement was performed when a normal electrode having a narrow width as shown in FIG. 4 was used.
Further, the same measurement was performed when the gap distance was set to 50 μm, the width of the ground electrode was set to 0 μm, and five wires (Au, φ25 μm) as shown in FIG. 5 were connected.
These results are shown in FIG.

図10より、幅75μm、幅37.5μmの場合は、通常の場合と同程度の光応答特性を示しており、また接地電極の幅が0μmの場合(光導波路上で切断されている場合)は、光応答特性は劣化するが、ワイヤーで接続することにより、同程度の光応答特性を示しており、本発明の光導波路素子は、高周波領域での光応答特性を劣化させないことが、容易に理解される。   As shown in FIG. 10, when the width is 75 μm and the width is 37.5 μm, the optical response characteristics are the same as the normal case, and when the width of the ground electrode is 0 μm (when cut on the optical waveguide). Although the optical response characteristic is deteriorated, it shows the same optical response characteristic by connecting with a wire, and the optical waveguide element of the present invention can easily prevent the optical response characteristic in the high frequency region from being deteriorated. To be understood.

以上のように本発明によれば、駆動電圧の増加を抑制しながら、光波の伝搬損失を低減すると共に、伝搬損失低減手段によって高周波帯域における光応答特性が劣化しないように維持した光導波路素子を提供することが可能となる。   As described above, according to the present invention, there is provided an optical waveguide device that reduces propagation loss of light waves while suppressing an increase in driving voltage, and maintains optical response characteristics in a high frequency band by a propagation loss reducing unit. It becomes possible to provide.

従来のX板の基板を用いた光導波路素子の概略図である。It is the schematic of the optical waveguide element using the board | substrate of the conventional X board. 従来のZ板の基板を用いた光導波路素子の概略図である。It is the schematic of the optical waveguide element using the board | substrate of the conventional Z board. 本発明に係る光導波路の作用部を説明する図である。It is a figure explaining the action part of the optical waveguide which concerns on this invention. 本発明に係る光損失低減手段の第1の例を示す図である。It is a figure which shows the 1st example of the optical loss reduction means which concerns on this invention. 本発明に係る光損失低減手段の第1の例を示す図である。It is a figure which shows the 1st example of the optical loss reduction means which concerns on this invention. 本発明に係る光損失低減手段の第1の例を示す図である。It is a figure which shows the 1st example of the optical loss reduction means which concerns on this invention. 本発明に係る光損失低減手段の第1の例を示す図である。It is a figure which shows the 1st example of the optical loss reduction means which concerns on this invention. 光損失を測定試験する際の各機器の配置を示す図である。It is a figure which shows arrangement | positioning of each apparatus at the time of measuring and testing an optical loss. 接地電極の幅に対する光損失の関係を示すグラフである。It is a graph which shows the relationship of the optical loss with respect to the width | variety of a ground electrode. 光導波路を跨ぐ接地電極を使用した場合の駆動周波数に対する光応答特性を示すグラフである。It is a graph which shows the optical response characteristic with respect to the drive frequency at the time of using the ground electrode which straddles an optical waveguide.

符号の説明Explanation of symbols

1 基板
2,21,22,23 光導波路
3,33,36 信号電極
31,32,34,35,37,321,322,323,326 接地電極
4,5 バッファ層
324 ワイヤー
325 ブリッジ状電極
40 レーザ光源
41 偏波コントローラ
42 光導波路素子(被試験体)
43 DC電源
44 光パワーメータ
DESCRIPTION OF SYMBOLS 1 Substrate 2,21,22,23 Optical waveguide 3,33,36 Signal electrode 31,32,34,35,37,321,322,323,326 Ground electrode 4,5 Buffer layer 324 Wire 325 Bridge electrode 40 Laser Light source 41 Polarization controller 42 Optical waveguide element (test object)
43 DC power supply 44 Optical power meter

Claims (7)

電気光学効果を有する基板と、
該基板の主面に形成されたマッハツェンダー型光導波路と、
該光導波路内を導波する光波を制御するための制御電極とを備えた光導波路素子において、
該マッハツェンダー型光導波路は、該制御電極による光波の制御を行なう光導波路部分である作用部と、該作用部に光波を導入又は該作用部から光波を導出する光導波路部分である入出力部とに分けられ、
該制御電極が信号電極と接地電極から構成され、該接地電極が該入出力部を跨いで配置される際には、該入出力部上の少なくとも一方の該接地電極に光損失低減手段を設けることを特徴とする光導波路素子。
A substrate having an electro-optic effect;
A Mach-Zehnder type optical waveguide formed on the main surface of the substrate;
In an optical waveguide device comprising a control electrode for controlling a light wave guided in the optical waveguide,
The Mach-Zehnder type optical waveguide includes an action portion that is an optical waveguide portion that controls light waves by the control electrode, and an input / output portion that is an optical waveguide portion that introduces light waves into the action portion or derives light waves from the action portion. Divided into
When the control electrode is composed of a signal electrode and a ground electrode, and the ground electrode is disposed across the input / output unit, at least one of the ground electrodes on the input / output unit is provided with light loss reduction means. An optical waveguide device characterized by the above.
請求項1に記載の光導波路素子において、該光損失低減手段は、該入出力部上を跨ぐ接地電極の幅が、跨ぐ前後の接地電極の幅と比較して狭く、かつ該入出力部上を跨ぐ接地電極は該信号電極の近傍に配置するものであることを特徴とする光導波路素子。   2. The optical waveguide element according to claim 1, wherein the light loss reducing means has a width of the ground electrode straddling the input / output portion that is narrower than a width of the ground electrode before and after the straddle, and on the input / output portion. An optical waveguide device characterized in that a ground electrode straddling the wire is disposed in the vicinity of the signal electrode. 請求項1に記載の光導波路素子において、該光損失低減手段は、該入出力部上を跨ぐ接地電極が、該信号電極の近傍に配置するワイヤー又はリボンボンディングであることを特徴とする光導波路素子。   2. The optical waveguide device according to claim 1, wherein the light loss reducing means is a wire or ribbon bonding in which the ground electrode straddling the input / output portion is disposed in the vicinity of the signal electrode. element. 請求項1に記載の光導波路素子において、該光損失低減手段は、該入出力部上を跨ぐ接地電極が、該信号電極の近傍に配置され、跨ぐ前後の接地電極を繋ぐブリッジ状電極であることを特徴とする光導波路素子。   2. The optical waveguide element according to claim 1, wherein the light loss reducing means is a bridge-like electrode in which a ground electrode straddling the input / output unit is disposed in the vicinity of the signal electrode and connects the ground electrodes before and after the straddle. An optical waveguide device characterized by the above. 請求項1又は2に記載の光導波路素子において、該光損失低減手段は、該入出力部と該入出力を跨いで配置された接地電極との間にバッファ層を配置するものであることを特徴とする光導波路素子。   3. The optical waveguide device according to claim 1, wherein the light loss reducing means is configured to dispose a buffer layer between the input / output unit and a ground electrode disposed across the input / output. A characteristic optical waveguide device. 請求項1乃至5のいずれかに記載の光導波路素子において、該基板は、ニオブ酸リチウム又はニオブ酸タンタレートのX板であることを特徴とする光導波路素子。   6. The optical waveguide device according to claim 1, wherein the substrate is an X plate of lithium niobate or tantalate niobate. 請求項1乃至6のいずれかに記載の光導波路素子において、該基板の厚みは50μm以下であることを特徴とする光導波路素子。   7. The optical waveguide device according to claim 1, wherein the substrate has a thickness of 50 [mu] m or less.
JP2008022759A 2008-02-01 2008-02-01 Optical waveguide element Pending JP2009181108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022759A JP2009181108A (en) 2008-02-01 2008-02-01 Optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022759A JP2009181108A (en) 2008-02-01 2008-02-01 Optical waveguide element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013152346A Division JP5720737B2 (en) 2013-07-23 2013-07-23 Optical waveguide device

Publications (1)

Publication Number Publication Date
JP2009181108A true JP2009181108A (en) 2009-08-13

Family

ID=41035094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022759A Pending JP2009181108A (en) 2008-02-01 2008-02-01 Optical waveguide element

Country Status (1)

Country Link
JP (1) JP2009181108A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215293A (en) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd Optical control device
WO2012043724A1 (en) * 2010-09-30 2012-04-05 住友大阪セメント株式会社 Light control element
JP2013242592A (en) * 2013-07-23 2013-12-05 Sumitomo Osaka Cement Co Ltd Optical waveguide device
WO2016159202A1 (en) * 2015-03-31 2016-10-06 住友大阪セメント株式会社 Optical waveguide element
WO2016158283A1 (en) * 2015-03-31 2016-10-06 住友大阪セメント株式会社 Light modulator
JP2018055072A (en) * 2016-09-30 2018-04-05 住友大阪セメント株式会社 Optical Modulator Module
US10955723B2 (en) 2018-03-02 2021-03-23 Fujitsu Optical Components Limited Optical modulator, and optical transceiver module using the same
EP3828623A1 (en) 2019-11-28 2021-06-02 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
EP3842858A1 (en) 2019-12-26 2021-06-30 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element, optical modulator, optical modulation module, and optical transmission device
WO2021261605A1 (en) * 2020-06-22 2021-12-30 住友大阪セメント株式会社 Optical waveguide device, optical modulator, optical modulation module, and optical transmission apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396626A (en) * 1986-10-14 1988-04-27 Nec Corp Waveguide type light control element
JPH07120631A (en) * 1993-09-06 1995-05-12 Ngk Insulators Ltd Optical waveguide type part
JPH07159743A (en) * 1993-12-08 1995-06-23 Japan Aviation Electron Ind Ltd Optical waveguide element
JPH09185025A (en) * 1996-01-08 1997-07-15 Nippon Telegr & Teleph Corp <Ntt> Optical control element
JP2004523775A (en) * 2000-11-16 2004-08-05 サーントル ナスィヨナル ドゥ ラ ルシェルシュ スイヤンティフィック Broadband electro-optic modulator
WO2005019913A1 (en) * 2003-08-21 2005-03-03 Ngk Insulators, Ltd. Optical waveguide device and traveling wave type opticalmodulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396626A (en) * 1986-10-14 1988-04-27 Nec Corp Waveguide type light control element
JPH07120631A (en) * 1993-09-06 1995-05-12 Ngk Insulators Ltd Optical waveguide type part
JPH07159743A (en) * 1993-12-08 1995-06-23 Japan Aviation Electron Ind Ltd Optical waveguide element
JPH09185025A (en) * 1996-01-08 1997-07-15 Nippon Telegr & Teleph Corp <Ntt> Optical control element
JP2004523775A (en) * 2000-11-16 2004-08-05 サーントル ナスィヨナル ドゥ ラ ルシェルシュ スイヤンティフィック Broadband electro-optic modulator
WO2005019913A1 (en) * 2003-08-21 2005-03-03 Ngk Insulators, Ltd. Optical waveguide device and traveling wave type opticalmodulator

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215293A (en) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd Optical control device
US9568751B2 (en) 2010-09-30 2017-02-14 Sumitomo Osaka Cement Co., Ltd. Optical control device
JP2012078496A (en) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd Optical control element
CN103124923A (en) * 2010-09-30 2013-05-29 住友大阪水泥股份有限公司 Light control element
WO2012043724A1 (en) * 2010-09-30 2012-04-05 住友大阪セメント株式会社 Light control element
JP2013242592A (en) * 2013-07-23 2013-12-05 Sumitomo Osaka Cement Co Ltd Optical waveguide device
JP2016194574A (en) * 2015-03-31 2016-11-17 住友大阪セメント株式会社 Optical waveguide element
JP2016191827A (en) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 Optical modulator
WO2016158283A1 (en) * 2015-03-31 2016-10-06 住友大阪セメント株式会社 Light modulator
CN106796362B (en) * 2015-03-31 2021-05-28 住友大阪水泥股份有限公司 Optical modulator
CN106662766A (en) * 2015-03-31 2017-05-10 住友大阪水泥股份有限公司 Optical waveguide element
CN106796362A (en) * 2015-03-31 2017-05-31 住友大阪水泥股份有限公司 Optical modulator
WO2016159202A1 (en) * 2015-03-31 2016-10-06 住友大阪セメント株式会社 Optical waveguide element
US10185165B2 (en) 2015-03-31 2019-01-22 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device
US10409136B2 (en) 2015-03-31 2019-09-10 Sumitomo Osaka Cement Co., Ltd. Optical modulator
JP2018055072A (en) * 2016-09-30 2018-04-05 住友大阪セメント株式会社 Optical Modulator Module
US10955723B2 (en) 2018-03-02 2021-03-23 Fujitsu Optical Components Limited Optical modulator, and optical transceiver module using the same
EP3828623A1 (en) 2019-11-28 2021-06-02 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
US11442329B2 (en) 2019-11-28 2022-09-13 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
JP7434843B2 (en) 2019-11-28 2024-02-21 住友大阪セメント株式会社 Optical waveguide elements, optical modulators, optical modulation modules, and optical transmitters
EP3842858A1 (en) 2019-12-26 2021-06-30 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element, optical modulator, optical modulation module, and optical transmission device
JP2021105631A (en) * 2019-12-26 2021-07-26 住友大阪セメント株式会社 Optical waveguide element, optical modulator, optical modulation module and optical transmission device
US11333909B2 (en) 2019-12-26 2022-05-17 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element, optical modulator, optical modulation module, and optical transmission device
JP7334616B2 (en) 2019-12-26 2023-08-29 住友大阪セメント株式会社 Optical waveguide element, optical modulator, optical modulation module, and optical transmitter
WO2021261605A1 (en) * 2020-06-22 2021-12-30 住友大阪セメント株式会社 Optical waveguide device, optical modulator, optical modulation module, and optical transmission apparatus

Similar Documents

Publication Publication Date Title
JP2009181108A (en) Optical waveguide element
US8923658B2 (en) Optical waveguide device
JP5120341B2 (en) Optical device
US8406578B2 (en) Mach-zehnder waveguide type optical modulator
US8135242B2 (en) Optical modulator
JP4445977B2 (en) Light control element
US9081214B2 (en) Optical control element
US20060147145A1 (en) Optical modulator
US8031987B2 (en) Optical modulator
JP2009244812A (en) Optical waveguide element
JPWO2007114367A1 (en) Light control element
JP4599434B2 (en) Optical waveguide device module
JP2008250258A (en) Optical control device
JP5991339B2 (en) Light control element
JP2007264488A (en) Optical waveguide device
JP5720737B2 (en) Optical waveguide device
US8270777B2 (en) Optical modulator
JP7428051B2 (en) Optical waveguide device and optical modulation device and optical transmitter using the same
EP3828623B1 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
JP2005181537A (en) Optical modulator
JP2005077987A (en) Optical modulator
JP5099347B2 (en) Light modulator
JP4544479B2 (en) Optical waveguide modulator
JP2005274889A (en) Optical waveguide device
JP2001201725A (en) Optical modulation method and optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423