JPS6396626A - Waveguide type light control element - Google Patents

Waveguide type light control element

Info

Publication number
JPS6396626A
JPS6396626A JP24203786A JP24203786A JPS6396626A JP S6396626 A JPS6396626 A JP S6396626A JP 24203786 A JP24203786 A JP 24203786A JP 24203786 A JP24203786 A JP 24203786A JP S6396626 A JPS6396626 A JP S6396626A
Authority
JP
Japan
Prior art keywords
waveguide
electrode
optical
control element
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24203786A
Other languages
Japanese (ja)
Inventor
Yoshiro Komatsu
啓郎 小松
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24203786A priority Critical patent/JPS6396626A/en
Publication of JPS6396626A publication Critical patent/JPS6396626A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Abstract

PURPOSE:To realize a low-loss light control element which is driven at a low voltage by forming a buffer layer only between an optical waveguide and an electrode right above the optical waveguide. CONSTITUTION:The waveguide type light control element consists of a Ti diffused optical waveguide 103 formed by diffusing titanium in a beltlike shape and a couple of electrodes 104 and 105 on an LiNbO3 substrate 101 made of lithium niobate crystal. Then the SiO2 buffer layer 102 is formed only between the electrode 104 right above the optical waveguide and the optical waveguide 103 and not formed between the other electrode 105 and substrate 101. Consequently, a light wave is prevented from being absorbed by the electrode parts and the operating voltage is reducible, so the low-loss, low-voltage light control element is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光波の変調を行う光回路に関し、特に基板中に
設けられた先導波路を用いて制御を行う導波型の光回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical circuit that modulates light waves, and more particularly to a waveguide type optical circuit that performs control using a guide waveguide provided in a substrate.

〔従来の技術とその問題点〕[Conventional technology and its problems]

近年、光通信システムの実用化が進むにつれ、さらに大
容量、高機能のシステムが要求されるようになり、より
高速の光波の変調器や光スィッチ等の光制御素子が必要
となっている。このような光制御素子においては、その
挿入損失が光信号の伝送距離を制限するということもあ
り得るので、高速性とともに低損失性も重要となる。
BACKGROUND ART In recent years, as optical communication systems have become more practical, systems with higher capacity and higher functionality are required, and optical control elements such as faster light wave modulators and optical switches are required. In such an optical control element, the insertion loss may limit the transmission distance of the optical signal, so low loss as well as high speed are important.

高速の光制御素子としては、大きな電気光学効果を有す
るLiNbC)+にオブ酸リチウム)結晶等の基板中に
Tiを熱拡散することにより導波路を形成し、導波路の
屈折率分布を電気光学効果を利用して電界で変化させる
ことにより制御する方式の光変調器等があり、光位相変
調器、カットオフ型光強度変調器1介岐干渉型光変調器
等に関する報告がなされている。このような導波型光変
調器においては、電気光学効果自体は非常に高速である
が、実際のシステム内で高速で動作させるためには、素
子の変調電圧が低電圧であることが要求される。これは
高電圧を発生させる電気回路を得ることが高速であれば
あるほど困難となるためである。
As a high-speed optical control element, a waveguide is formed by thermally diffusing Ti into a substrate such as LiNbC)+ and lithium oxide crystal, which have a large electro-optic effect, and the refractive index distribution of the waveguide is controlled by electro-optic control. There are optical modulators that are controlled by changing the optical field using an electric field, and there have been reports on optical phase modulators, cut-off optical intensity modulators, single-interference interference optical modulators, and the like. In such a waveguide optical modulator, the electro-optic effect itself is very fast, but in order to operate at high speed in an actual system, the modulation voltage of the element must be low. Ru. This is because the higher the speed, the more difficult it becomes to obtain an electric circuit that generates high voltage.

また上述の光変調器を実際の光フアイバ伝送系へ適用す
る場合には、低損失性も要求される。Ti拡散L i 
N b O3導波型光変調器の光ファイバ間挿入損失は
、主に光ファイバとの結合損失と光波が導波路中を伝搬
するときの導波損失により生ずる。このうち結合損失に
関しては、Ti拡散導波路形成後に導波路表面に基板の
屈折率を下げるイオンであるMgを追拡散することによ
り温波路出射光のエネルギー分布を光ファイバのエネル
ギー分布に一致させることができ、片端面当り0.15
dB程度にまで結合損失を低減できることが、本発明者
らにより1986年集積光学と導波光学に関する会議(
Topical Meeting on Integr
ated and Guided−Have 0pti
cs)のポストデッドライン ペーパーズPDP−2に
述べられている。一方、導波損失に関しては、Ti拡散
導波路自体では波長1.3μmに対して0.1〜0.2
dB/cmという小さな値であるが、その上に電極を形
成すると導波損失が増大することが知られている。これ
は、−iには、LiNb0.3の電気光学効果の中で最
大のγ4.を利用できるようにl、1Nbos基板が変
調器では用いられ、導波光としてはTMモードが利用さ
れるため、光波の電界分布のしみ出しにより電極部での
光波の吸収が生じるためである。これを防止するために
第2図に示すように通常S i O2等の低屈折率、低
損失の誘電体バッファ層102がTi拡散導波路103
の形成されたL I N b O3基板101と電極1
04.105の間に形成されている。しかしながらSi
n、等のバッファ層を電極−基板間に形成すると導波損
失は減少するが、導波路103に印加される実効的な電
界はバッファ層102を形成しないときに比べて減少し
、結果として動作電圧が増加するという問題がある。バ
ッファ層102の厚さを厚くすればする程、導波損失は
減少するが、動作電圧は増大する。
Further, when the above-mentioned optical modulator is applied to an actual optical fiber transmission system, low loss properties are also required. Ti diffusion Li
The insertion loss between optical fibers of the N b O3 waveguide optical modulator is mainly caused by coupling loss with the optical fiber and waveguide loss when the light wave propagates in the waveguide. Regarding coupling loss, after forming the Ti diffusion waveguide, Mg, which is an ion that lowers the refractive index of the substrate, is further diffused on the waveguide surface to make the energy distribution of the light emitted from the warm waveguide match the energy distribution of the optical fiber. 0.15 per end face
The present inventors demonstrated that the coupling loss can be reduced to about dB at the 1986 Conference on Integrated Optics and Waveguide Optics (
Topical Meeting on Integration
ated and Guided-Have 0pti
cs) Post Deadline Papers PDP-2. On the other hand, regarding the waveguide loss, the Ti diffusion waveguide itself has a waveguide loss of 0.1 to 0.2 for a wavelength of 1.3 μm.
Although it is a small value of dB/cm, it is known that forming an electrode thereon increases waveguide loss. This is due to the fact that -i has the largest γ4. This is because a 1N BOS substrate is used in the modulator so as to be able to take advantage of this, and the TM mode is used as the guided light, so that the electric field distribution of the light wave seeps out, causing absorption of the light wave at the electrode portion. In order to prevent this, as shown in FIG.
L I N b O3 substrate 101 and electrode 1 formed with
It was formed between 04.105. However, Si
Forming a buffer layer such as n between the electrode and the substrate reduces waveguide loss, but the effective electric field applied to the waveguide 103 decreases compared to when the buffer layer 102 is not formed, resulting in poor operation. There is a problem of increased voltage. As the thickness of the buffer layer 102 increases, the waveguide loss decreases, but the operating voltage increases.

本発明は、上述のようにTi拡散LiNb0:+導波型
光制御素子の導波損失を増加させることなく動作電圧を
低減化することを目的とする。
As described above, the present invention aims to reduce the operating voltage of a Ti-diffused LiNb0:+ waveguide type optical control element without increasing the waveguide loss.

C問題点を解決するための手段〕 本発明は、ニオブ酸リチウム結晶中に帯状のチタンを拡
散して形成した光導波路と、光導波路上に設けられた1
対の電極と、電極と光導波路の間に形成されたバッファ
層とを有する導波型光制御素子において、バッファ層が
導波路の真上の電極と光導波路との間にのみ形成されて
いることを特徴としている。
Means for Solving Problem C] The present invention provides an optical waveguide formed by diffusing band-shaped titanium into a lithium niobate crystal, and a light guide provided on the optical waveguide.
In a waveguide type optical control element having a pair of electrodes and a buffer layer formed between the electrode and the optical waveguide, the buffer layer is formed only between the electrode and the optical waveguide directly above the waveguide. It is characterized by

〔作用〕[Effect]

本発明においては、導波路の真上の電極と導波路との間
に十分な厚さのバッファ層を形成して電極での光波の吸
収を防止するが、従来とは異なりもう一方の電極とLi
NbO3基板の間にはバッファ層を形成しない。したが
って、従来よりも導波路に印加される電界強度は増加し
、バッファ層の厚さが十分に厚くても動作電圧は低減化
できることになり、低損失、低電圧の光制御素子が実現
できる。
In the present invention, a sufficiently thick buffer layer is formed between the electrode directly above the waveguide and the waveguide to prevent absorption of light waves by the electrode. Li
No buffer layer is formed between the NbO3 substrates. Therefore, the electric field strength applied to the waveguide is increased compared to the conventional one, and the operating voltage can be reduced even if the buffer layer is sufficiently thick, making it possible to realize a low-loss, low-voltage optical control element.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(a)は本発明によるTi拡散LiNbo3光位
相変調器の構造を示す斜視図であり、第1図(b)はそ
の断面図である。
FIG. 1(a) is a perspective view showing the structure of a Ti-diffused LiNbo3 optical phase modulator according to the present invention, and FIG. 1(b) is a sectional view thereof.

第1図においては、L iN b Os基板101中に
帯状のTiが拡散されて形成されたTi拡散導波路10
3. S i O□バッファ層102(第102a)に
おいては省略されている)、1対の電極104  <s
波路上電極)および105により光位相変調器が構成さ
れている。
In FIG. 1, a Ti diffused waveguide 10 is formed by diffusing Ti strips into a LiN b Os substrate 101.
3. S i O□ buffer layer 102 (omitted in 102a)), a pair of electrodes 104 <s
(wavelength electrode) and 105 constitute an optical phase modulator.

第1図に構成を示した光位相変調器においては、入射側
光導波路端面106から入射された光波は、1対の電極
間104および105に印加される電圧に応じて電気光
学効果によりTi拡散導波路103の屈折率が変化して
位相変調を受け、出射測光翼波路端面107から出射さ
れる。
In the optical phase modulator whose configuration is shown in FIG. 1, the light wave incident from the input side optical waveguide end face 106 is diffused by Ti due to the electro-optic effect according to the voltage applied between the pair of electrodes 104 and 105. The refractive index of the waveguide 103 changes and undergoes phase modulation, and the light is emitted from the output photometering blade waveguide end face 107.

第1図に示した光位相変調器の製造方法を簡単に説明す
る。先ず、LiNb0z基板101上に通常のフォトリ
ソグラフィ技術を用いてTi膜による光導波路のパター
ンを形成する。すなわちリフトオフ法もしくはエツチン
グにより厚さ500〜2000人5幅数〜10μm程度
のTi膜による導波路パターンを形成する。Tiによる
導波路パターンが形成された基板は1000〜1100
℃、5〜10時間程度拡散炉中で加熱されることにより
TiがL i N b Oz基板中へ拡散され、その部
分のみ屈折率がわずかに増加して光導波路103となる
。その後、第1図において導波路上電極104に相当す
る部分にのみ2000Å以上のSi0g膜を形成する。
A method of manufacturing the optical phase modulator shown in FIG. 1 will be briefly described. First, an optical waveguide pattern made of a Ti film is formed on the LiNb0z substrate 101 using a normal photolithography technique. That is, a waveguide pattern of a Ti film having a thickness of about 500 to 2000 μm and a width of several to 10 μm is formed by the lift-off method or etching. The substrate on which the waveguide pattern of Ti is formed is 1000 to 1100.
By heating in a diffusion furnace for about 5 to 10 hours, Ti is diffused into the L i N b Oz substrate, and the refractive index of that portion increases slightly to form the optical waveguide 103 . Thereafter, a Si0g film of 2000 Å or more is formed only on a portion corresponding to the electrode 104 on the waveguide in FIG.

第1図において導波路上電極104に相当する部分にの
みSiO2膜を形成するには、基板全面にSiO□膜を
形成しその後導波路上電極部をフォトレジストで覆い、
それ以外の部分のS i Oを膜をエツチングで除去す
るか、もしくはS i O!膜形成時に導波路上電極1
04に相当する部分以外の領域をフォトレジストで覆っ
ておきSiO□膜形成後にフォトレジスト膜を溶融する
いわゆるリフトオフ法により行えばよい。StO□膜形
成後CrとAuもしくはCr(!:Aβを積層した第1
図に示すような1対の電極104および105を形成す
る。その後、先導波路103に垂直方向に研摩もしくは
へき開により入射側および出射側先導波路端面106お
よび107を形成する。以上が第1図に示した光位相変
調器の製造方法である。
In order to form the SiO2 film only on the part corresponding to the electrode 104 on the waveguide in FIG.
Either remove S i O in other parts by etching the film, or remove S i O! Electrode 1 on the waveguide during film formation
This may be carried out by a so-called lift-off method in which a region other than the portion corresponding to 04 is covered with a photoresist and the photoresist film is melted after forming the SiO□ film. After forming the StO□ film, the first
A pair of electrodes 104 and 105 as shown in the figure is formed. Thereafter, the leading waveguide end faces 106 and 107 on the incident side and outgoing side are formed by polishing or cleaving the leading waveway 103 in the vertical direction. The above is the method for manufacturing the optical phase modulator shown in FIG.

次に本発明により低損失で低電圧動作が可能な光位相変
調器が得られる原理について説明する。
Next, the principle of obtaining an optical phase modulator capable of low loss and low voltage operation according to the present invention will be explained.

前述のように7Mモードの導波光を利用するTi拡散L
iNb0.i波型光制御素子においては、ある程度のバ
ッファ層の厚さがないと電極での光吸収による導波損失
の増加が生じてしまう。本発明者らが電極間隔が5μm
で、基板全面にSi0g膜が形成されている第2図の光
位相変調器において実験的に検討したところでは、波長
1.3μmの場合Singバッファ屡の厚さを3000
人程度色原ないと光吸収による導波損失の増加が観測さ
れた。
As mentioned above, Ti diffused L using 7M mode guided light
iNb0. In an i-wave type optical control element, if the buffer layer does not have a certain thickness, waveguide loss will increase due to light absorption at the electrodes. The inventors have determined that the electrode spacing is 5 μm.
According to an experimental study on the optical phase modulator shown in Fig. 2 in which a Si0g film is formed on the entire surface of the substrate, the thickness of the Sing buffer is 3000 μm for a wavelength of 1.3 μm.
An increase in waveguide loss due to light absorption was observed when there was no chromogen to the extent of humans.

一方、動作電圧の方は、第2図に示した光位相変調器に
おいて電極長16mmの場合、同じく波長1.3μmに
対して、S i Oz膜の厚さが1500人のときには
半波長電圧が6■であったものが、SiO□膜の厚さが
3000人のときには半波長電圧が7VとIV程度増加
した。波長が1.5μmの場合には半波長電圧の増加は
さらに大きくなり、S i 02膜厚1500人のとき
には8.4■であったものが3000人のときにはIO
Vとなった。このように7Mモードの導波光を利用する
Ti拡散導波型光制御素子においては電極での光吸収に
導波損失の増加を防ぐためにはSin!膜厚を3000
人程度色原くする必要があり、その結果動作電圧の増加
を招いていた。
On the other hand, regarding the operating voltage, when the electrode length is 16 mm in the optical phase modulator shown in FIG. 6■, but when the thickness of the SiO□ film was 3000 mm, the half-wave voltage increased to 7V, about IV. When the wavelength is 1.5 μm, the increase in half-wavelength voltage becomes even larger, and when the Si 02 film thickness is 1,500 people, it is 8.4μ, but when it is 3,000 people, it becomes IO.
It became V. In this way, in a Ti diffused waveguide type optical control element that uses guided light in the 7M mode, in order to prevent an increase in waveguide loss due to light absorption at the electrodes, the Sin! Film thickness 3000
It is necessary to provide color dispersion on a human level, which results in an increase in operating voltage.

しかしながら、光吸収を生じさせる電極は導波路の真上
の電極104のみであり、もう一方の電極105におい
ては光吸収はほとんど生じないので、第2図に示した従
来例のように両方の電極の下にSiO□膜が形成されて
いる必要は必ずしもない。
However, the only electrode that causes light absorption is the electrode 104 directly above the waveguide, and almost no light absorption occurs at the other electrode 105. Therefore, as in the conventional example shown in FIG. It is not necessarily necessary that the SiO□ film be formed below.

これは、通常用いられるTfの拡散条件では基板面に水
平方向の導波光の電界分布は導波路中心から5μm離れ
た位置ではほとんど減衰しており、導波路幅数μm以上
で電極間隔が5μm程度であれば導波路の真上の電極1
04と導波路103の間にのみ3000人程度色原in
、膜が形成されていればもう一方の電極105と基板1
01の間にはバッファ層は必要ない。
This is because under the normally used Tf diffusion conditions, the electric field distribution of guided light in the horizontal direction to the substrate surface is almost attenuated at a position 5 μm away from the center of the waveguide, and when the waveguide width is several μm or more, the electrode spacing is about 5 μm. If so, electrode 1 directly above the waveguide
Approximately 3000 chromogens are installed between waveguide 04 and waveguide 103.
, if a film is formed, the other electrode 105 and the substrate 1
No buffer layer is required between 01 and 01.

本発明においては、第1図(b)に示すように、上述の
ような導波路103の真上の電極104と導波路103
の間にのみ3000人程度色原in、バッファ層102
が形成された構成を採用している。この構成においては
、Si○2バッファ層厚が3000人程度色原くても、
第2図に示した従来例のSiO□バッファ層厚が150
0人の場合と電界強度は等価となり、半波長電圧は従来
例でS i Ozバッファ層厚が3000人程度色原合
に比べて低減化できる。したがって、第1図(b)に示
した本発明による光位相変調器の構造を採用することに
より低損失で低電圧の光位相変調器が得られることにな
る。
In the present invention, as shown in FIG. 1(b), the electrode 104 directly above the waveguide 103 and the waveguide 103
Only about 3000 chromogen in between, buffer layer 102
The structure has been adopted. In this configuration, even if the thickness of the Si○2 buffer layer is about 3000 mm,
The thickness of the SiO□ buffer layer in the conventional example shown in Fig. 2 is 150 mm.
The electric field strength is equivalent to that in the case of 0 people, and the half-wave voltage can be reduced compared to the conventional example where the SiOz buffer layer thickness is about 3000 people, and the chrominance. Therefore, by employing the structure of the optical phase modulator according to the present invention shown in FIG. 1(b), a low-loss, low-voltage optical phase modulator can be obtained.

以上、本発明の一実施例について説明したが、本発明は
上記の実施例に限定されるものではない。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

実施例に示した光位相変調器と同一の構造を有し、Ti
の拡散条件が異なるカットオフ型光強度変調器において
も本発明を適用することができる。また分岐干渉型光変
調器、光スィッチの位相変調器部に本発明を適用し低損
失かつ低電圧の光変調器。
It has the same structure as the optical phase modulator shown in the example, and is made of Ti.
The present invention can also be applied to cutoff type optical intensity modulators having different diffusion conditions. Further, the present invention is applied to a branching interference type optical modulator and a phase modulator section of an optical switch to provide a low-loss and low-voltage optical modulator.

光スィッチが実現できることは言うまでもない。It goes without saying that an optical switch can realize this.

さらに電極形状としては、高速化により適した進行波電
極等も用いることができ、バッファ層としてもSin、
に限らないことは言うまでもない。
Furthermore, as for the electrode shape, traveling wave electrodes etc. which are more suitable for high speed can also be used, and as a buffer layer, it is possible to use Sin,
Needless to say, this is not limited to.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、Ti拡散LiNbo
:1光制御素子の導波損失を増加させることなく、その
動作電圧を低減化させることが可能であり、低損失でか
つ低電圧の導波型光制御素子を実現することができる。
As described above, according to the present invention, Ti-diffused LiNbo
:1 It is possible to reduce the operating voltage of the light control element without increasing its waveguide loss, and it is possible to realize a waveguide type light control element with low loss and low voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である光位相変調器を説明す
るための図、 第2図は従来技術の問題点を説明するための図である。 101   ・ ・ ・ ・ ・ L 1Nb()+ 
 基牟反102 ・・・・・5i02バッファ層103
  ・・・・・Ti拡散導波路 104  ・・・・・導波路上電極 105  ・・・・・電極 106  ・・・・・入射側光導波路端面107  ・
・・・・出射側光導波路端面(b) 第1図 第2図 手続補正書
FIG. 1 is a diagram for explaining an optical phase modulator which is an embodiment of the present invention, and FIG. 2 is a diagram for explaining problems in the prior art. 101 ・ ・ ・ ・ ・ L 1Nb()+
Basic layer 102...5i02 buffer layer 103
...Ti diffusion waveguide 104 ... Electrode on waveguide 105 ... Electrode 106 ... Incident side optical waveguide end surface 107
... Output side optical waveguide end face (b) Figure 1 Figure 2 Procedure amendment

Claims (1)

【特許請求の範囲】[Claims] (1)ニオブ酸リチウム結晶中に帯状のチタンを拡散し
て形成した光導波路と、光導波路上に設けられた1対の
電極と、電極と光導波路の間に形成されたバッファ層と
を有する導波型光制御素子において、バッファ層が導波
路の真上の電極と光導波路との間にのみ形成されている
ことを特徴とする導波型光制御素子。
(1) It has an optical waveguide formed by diffusing strip-shaped titanium in lithium niobate crystal, a pair of electrodes provided on the optical waveguide, and a buffer layer formed between the electrode and the optical waveguide. 1. A waveguide type light control element, characterized in that a buffer layer is formed only between an electrode directly above the waveguide and the optical waveguide.
JP24203786A 1986-10-14 1986-10-14 Waveguide type light control element Pending JPS6396626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24203786A JPS6396626A (en) 1986-10-14 1986-10-14 Waveguide type light control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24203786A JPS6396626A (en) 1986-10-14 1986-10-14 Waveguide type light control element

Publications (1)

Publication Number Publication Date
JPS6396626A true JPS6396626A (en) 1988-04-27

Family

ID=17083333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24203786A Pending JPS6396626A (en) 1986-10-14 1986-10-14 Waveguide type light control element

Country Status (1)

Country Link
JP (1) JPS6396626A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672398A1 (en) * 1991-02-01 1992-08-07 Alcatel Nv ELECTRO-OPTICAL DEVICE WITH WAVEGUIDE.
US5687265A (en) * 1994-09-27 1997-11-11 Nec Corporation Optical control device and method for making the same
EP1020754A1 (en) * 1998-08-10 2000-07-19 Sumitomo Osaka Cement Co., Ltd. Light modulator of waveguide type
WO2001057586A1 (en) * 2000-02-01 2001-08-09 Sdl Integrated Optics Limited Optical components
JP2009181108A (en) * 2008-02-01 2009-08-13 Sumitomo Osaka Cement Co Ltd Optical waveguide element
JP2013242592A (en) * 2013-07-23 2013-12-05 Sumitomo Osaka Cement Co Ltd Optical waveguide device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134643A (en) * 1975-04-30 1976-11-22 Thomson Csf Electrooptical switch and modulator
JPS5936249A (en) * 1982-08-24 1984-02-28 Fuji Photo Film Co Ltd Color photosensitive silver halide material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134643A (en) * 1975-04-30 1976-11-22 Thomson Csf Electrooptical switch and modulator
JPS5936249A (en) * 1982-08-24 1984-02-28 Fuji Photo Film Co Ltd Color photosensitive silver halide material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672398A1 (en) * 1991-02-01 1992-08-07 Alcatel Nv ELECTRO-OPTICAL DEVICE WITH WAVEGUIDE.
US5214723A (en) * 1991-02-01 1993-05-25 Alcatel N.V. Electro-optic device including a waveguide
US5687265A (en) * 1994-09-27 1997-11-11 Nec Corporation Optical control device and method for making the same
EP1020754A1 (en) * 1998-08-10 2000-07-19 Sumitomo Osaka Cement Co., Ltd. Light modulator of waveguide type
EP1020754A4 (en) * 1998-08-10 2004-08-11 Sumitomo Osaka Cement Co Ltd Light modulator of waveguide type
WO2001057586A1 (en) * 2000-02-01 2001-08-09 Sdl Integrated Optics Limited Optical components
US6473547B2 (en) 2000-02-01 2002-10-29 Jds Uniphase Corporation Optical components
JP2009181108A (en) * 2008-02-01 2009-08-13 Sumitomo Osaka Cement Co Ltd Optical waveguide element
JP2013242592A (en) * 2013-07-23 2013-12-05 Sumitomo Osaka Cement Co Ltd Optical waveguide device

Similar Documents

Publication Publication Date Title
JP2894735B2 (en) Optical circuit
US7088875B2 (en) Optical modulator
US4983006A (en) Polarization-independent optical waveguide switch
JPH0627914B2 (en) Optical element
EP0717306B1 (en) Waveguide type optical control device with properties of suppressed DC drift, reduced driving voltage and high speed operation
JPH0728007A (en) Waveguide type optical device
JPS6396626A (en) Waveguide type light control element
JPH01201609A (en) Optical device
KR100207599B1 (en) Low electric power optical switch and the production method thereof
JPH06222403A (en) Directional coupling type optical waveguide
JPH0644086B2 (en) Method of manufacturing light control element
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JP2788762B2 (en) Optical circuit
JP2900569B2 (en) Optical waveguide device
JPH07306324A (en) Optical waveguide device
JPH01201628A (en) Optical switch
JPH02114243A (en) Optical control device and its manufacture
JPH04258918A (en) Light control circuit
JPH07168042A (en) Light control device and its manufacture
JPS6262304A (en) Y branched optical waveguide device
JPS6269247A (en) Optical switch
JPH06347839A (en) Optical control device
JPH0697287B2 (en) Light control circuit manufacturing method
JP2812320B2 (en) Integrated optical circuit and manufacturing method thereof
JPH02157730A (en) Base plate type optical switch