JPH06222403A - Directional coupling type optical waveguide - Google Patents

Directional coupling type optical waveguide

Info

Publication number
JPH06222403A
JPH06222403A JP1216993A JP1216993A JPH06222403A JP H06222403 A JPH06222403 A JP H06222403A JP 1216993 A JP1216993 A JP 1216993A JP 1216993 A JP1216993 A JP 1216993A JP H06222403 A JPH06222403 A JP H06222403A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
coupling type
waveguides
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1216993A
Other languages
Japanese (ja)
Other versions
JP2739405B2 (en
Inventor
Yuichi Togano
祐一 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP5012169A priority Critical patent/JP2739405B2/en
Publication of JPH06222403A publication Critical patent/JPH06222403A/en
Application granted granted Critical
Publication of JP2739405B2 publication Critical patent/JP2739405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the directional coupling type optical waveguide which facilitates mask alignment of waveguides and electrode patterns and can prevent shorting and rupturing by a strong electric field and a pyroelectric effect of the substrate by simplifying the electrode patterns (on the waveguides) of the directional coupler formed by using the optical waveguides. CONSTITUTION:The directional coupling type optical waveguide is formed out of the optical waveguide 1 installed on the ferroelectric substrate having an electro-optical effect and another optical waveguide in proximity to the optical waveguide 1. The optical waveguide part 2 subjected to polarization inversion is formed in a part of the other optical waveguide in proximity to the optical waveguide 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光導波路により入射光
を制御する光制御デバイスに関し、光の導波路内での変
換制御を行なう方向性結合形光導波路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light control device for controlling incident light by means of an optical waveguide, and more particularly to a directional coupling type optical waveguide for controlling conversion of light in the waveguide.

【0002】[0002]

【従来の技術】従来、光導波路により入射光を制御する
光制御デバイスは、電気光学効果を有する強誘電体基板
上(特にLiNbO3 結晶基板)に2本の光導波路を形
成し、この2本の光導波路を基板内で近接させることに
よって、光路切り換え及び光強度分配を行なうようにし
ている。この時、近接させる導波路上に電界をかけて屈
折率を変化させることにより、分配強度を制御してい
る。これを方向性結合形光導波路デバイスと称する。
2. Description of the Related Art Conventionally, an optical control device for controlling incident light by an optical waveguide has two optical waveguides formed on a ferroelectric substrate (especially LiNbO 3 crystal substrate) having an electro-optical effect. The optical waveguides are brought close to each other in the substrate to switch the optical paths and distribute the light intensity. At this time, the distribution intensity is controlled by changing the refractive index by applying an electric field on the waveguides to be brought close to each other. This is called a directional coupling type optical waveguide device.

【0003】通常、光導波路を用いた方向性結合器は、
2つの導波路を近接させ、進行させることにより、一方
の導波路を他方の導波路に移行させて光の分配を行なう
(カップリングモードセオリー)。
Generally, a directional coupler using an optical waveguide is
By advancing and advancing the two waveguides, one of the waveguides is transferred to the other waveguide to perform light distribution (coupling mode theory).

【0004】この光導波路の光の分配率は、近接する光
導波路の断面形状、近接平行進行距離(結合長)、導波
路及び基板の屈折率によって決定される。ここで、光導
波路の製作上、光導波路の断面形状及び近接平行進行距
離(結合長)は可変ではない。
The light distribution ratio of this optical waveguide is determined by the cross-sectional shape of the adjacent optical waveguide, the proximity parallel traveling distance (coupling length), and the refractive index of the waveguide and the substrate. Here, in manufacturing the optical waveguide, the cross-sectional shape of the optical waveguide and the proximity parallel traveling distance (coupling length) are not variable.

【0005】ところが、電気光学効果を有する強誘電体
基板は、結晶軸方向にかける印加電界によってその屈折
率を変化させる特性があるため、光導波路上に電極を形
成して印加電界をかけることにより、その屈折率を変動
させ、光の分配率を制御することが可能となる。
However, since the ferroelectric substrate having the electro-optical effect has a characteristic of changing its refractive index by an applied electric field applied in the crystal axis direction, it is possible to form an electrode on the optical waveguide and apply the applied electric field. It is possible to control the light distribution ratio by changing the refractive index.

【0006】この光の分配率制御のための印加電界は、
Z基板を用いたときは導波路上(図2)に、X基板を用
いたときは導波路を挾む形で配置(図3)しなければな
らない。また、電界の導波路への印加方向は、2本の導
波路のそれぞれの方向が相反した方向にかけられること
により、それぞれの屈折率を、+Δn,−Δn変化させ
る(図2、図3)。
The applied electric field for controlling the light distribution ratio is
When the Z substrate is used, it must be arranged on the waveguide (FIG. 2), and when the X substrate is used, it must be arranged so as to sandwich the waveguide (FIG. 3). Further, the direction of application of the electric field to the waveguide is changed in the directions in which the two waveguides are opposite to each other, thereby changing the respective refractive indices by + Δn and −Δn (FIGS. 2 and 3).

【0007】ここで問題になるのは、光導波路の大きさ
と近接する光導波路間隔である。
The problem here is the size of the optical waveguide and the distance between the adjacent optical waveguides.

【0008】光導波路の大きさは、光の波長にもよる
が、1.31μm波長で7〜9μm、また、光導波路間
隔は、6〜8μmと、両寸法とも非常に小さく、これに
電極を形成するためには、細く長い電極を数μmに近接
して平行に配置する必要がある。
Although the size of the optical waveguide depends on the wavelength of light, it is 7 to 9 μm at 1.31 μm wavelength, and the optical waveguide interval is 6 to 8 μm, which are very small in both dimensions. In order to form it, it is necessary to arrange thin and long electrodes in parallel close to each other by several μm.

【0009】[0009]

【発明が解決しようとする課題】従来の方向性結合形光
導波路においては、前述のように細分化した電極を用い
ると、導波路と電極パターンのマスク合わせを難易にす
るばかりか、強電界がかかった時や、基板の焦電気効果
によるチャージによって、ショートして破断してしまう
現象が発生する。
In the conventional directional coupling type optical waveguide, the use of the subdivided electrodes as described above not only makes it difficult to align the mask between the waveguide and the electrode pattern, but also causes a strong electric field. When applied, or due to the charge due to the pyroelectric effect of the substrate, a phenomenon of short-circuiting and breaking occurs.

【0010】本発の課題明は、光導波路を用いた方向性
結合器の電極パターン(導波路上)を簡易化することに
より、導波路と電極パターンのマスク合わせを容易に
し、強電界や基板の焦電気効果によるショート及び破断
を防止できる方向性結合形光導波路を提供することにあ
る。
The object of the present invention is to simplify the electrode pattern (on the waveguide) of the directional coupler using the optical waveguide, thereby facilitating the mask alignment between the waveguide and the electrode pattern, and to enhance the strong electric field and the substrate. An object of the present invention is to provide a directional coupling type optical waveguide capable of preventing short-circuit and breakage due to the pyroelectric effect.

【0011】[0011]

【課題を解決するための手段】本発明によれば、電気光
学効果を有する強誘電体基板上に設置した第1の光導波
路と、この第1の光導波路に近接した第2の光導波路よ
りなる方向性結合体形光導波路において、上記第1また
は第2の光導波路の少なくとも一方の光導波路の一部分
を分極反転させることを特徴とする方向性結合形光導波
路が得られる。
According to the present invention, a first optical waveguide installed on a ferroelectric substrate having an electro-optical effect and a second optical waveguide adjacent to the first optical waveguide are provided. In such a directional-coupling type optical waveguide, a directional-coupling type optical waveguide is obtained in which a part of at least one of the first and second optical waveguides is polarization-inverted.

【0012】[0012]

【作用】前述のように、上記第1または第2の光導波路
の少なくとも一方の光導波路の一部分を分極反転させる
ことにより、電界の導波路への印加方向は、2本の導波
路に対して同一の方向でよく、この場合の電界の導波路
への印加方向は、2本の導波路のそれぞれの方向が、結
晶軸に対し相反した方向にかけられることになり、それ
ぞれの屈折率を、+Δn,−Δn変化させることができ
るので、特性的には、前記従来の方向性結合器による光
制御デバイスと何等変わることがなくなる。
As described above, the polarization direction of at least one of the first and second optical waveguides causes the electric field to be applied to the two waveguides in the direction of application to the two waveguides. The directions may be the same. In this case, the directions of application of the electric field to the waveguides are such that the respective directions of the two waveguides are applied in opposite directions to the crystal axis, and the respective refractive indexes are + Δn. , -Δn can be changed, so that there is no difference in characteristics from the conventional optical control device using the directional coupler.

【0013】また、本発明の光導波路は、従来の光導波
路に比べて、その電極形状を大きくすることができるの
で、導波路と電極パターンのマスク合わせが容易化さ
れ、強電界や基板の焦電気効果によるショート及び破断
が防止される。
Further, since the electrode shape of the optical waveguide of the present invention can be made larger than that of the conventional optical waveguide, the mask alignment between the waveguide and the electrode pattern is facilitated, and the strong electric field or the focus of the substrate is increased. Short circuit and breakage due to electric effect are prevented.

【0014】[0014]

【実施例】以下、本発明の実施例を図によって詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0015】本発明の実施例としては、図1に示すよう
に、ZカットのLiNbO3 結晶基板を用い、表面(+
Z面)に、幅8μm、深さ6μmの光導波路1を、方向
性結合形にTi熱拡散によって形成した。
As an example of the present invention, as shown in FIG. 1, a Z-cut LiNbO 3 crystal substrate was used, and the surface (+
An optical waveguide 1 having a width of 8 μm and a depth of 6 μm was formed on the (Z plane) by Ti thermal diffusion in a directional coupling type.

【0016】ここで、光導波路1と分極反転させた光導
波路部分2との、導波路間の近接ギャップは7μm、近
接結合長は20mmとした。また、この分岐干渉形光変
調器に、SiO2 を約0.5μm堆積し、フォトレジス
トパターニングとSiO2 エッチングで、近接光導波路
の1本の部分を図1に示す通りに露出させた。
Here, the proximity gap between the optical waveguide 1 and the polarization-inverted optical waveguide portion 2 was 7 μm, and the proximity coupling length was 20 mm. Further, about 0.5 μm of SiO 2 was deposited on this branch interference type optical modulator, and one portion of the near optical waveguide was exposed as shown in FIG. 1 by photoresist patterning and SiO 2 etching.

【0017】次ぎに、WET酸素雰囲気中で、1000
℃、2時間の熱処理を行ない、加熱終了後、電気炉内で
自然冷却させた。これにより、光導波路の分極反転部を
作成した。
Next, in a WET oxygen atmosphere, 1000
After heat treatment was performed at 2 ° C. for 2 hours and after heating was completed, the mixture was naturally cooled in an electric furnace. In this way, the polarization inversion part of the optical waveguide was created.

【0018】なお、結晶表面に残ったSiO2 は、バッ
ファエッチング液で一旦除去した後、光導波路基板の全
体に、バッファー層として、3000 のSiO2 膜を
堆積した。
The SiO 2 remaining on the crystal surface was once removed with a buffer etching solution, and then a 3000 SiO 2 film was deposited as a buffer layer on the entire optical waveguide substrate.

【0019】電極3は、図4に示すように、下地をCr
+Auとして、1μmに堆積した金膜を、リフトオフに
よりパターン形成して作成した。
As shown in FIG. 4, the electrode 3 has an underlayer of Cr.
As + Au, a gold film deposited to a thickness of 1 μm was formed by lift-off to form a pattern.

【0020】このようにして製造した方向性結合形光導
波路に、光ファイバー(伝搬レーザ光波長を、1.31
μmとした偏波面保持ファイバー)を接続して、この方
向性結合器の片側の入力ポートからレーザ光を入射し、
電極3に電圧を印加して、クロスした出力ポートからの
出力光を測定したところ、従来品に比べて特性劣化のな
い、スイッチング曲線が確認された。
An optical fiber (propagating laser light wavelength: 1.31) was added to the directional coupling type optical waveguide manufactured as described above.
Polarization maintaining fiber (μm) is connected and laser light is incident from one input port of this directional coupler,
When a voltage was applied to the electrode 3 and the output light from the crossed output port was measured, a switching curve without characteristic deterioration as compared with the conventional product was confirmed.

【0021】なお、上記実施例では、光導波路1上に電
極3を形成設置したが、電界を計測するような光デバイ
スには、電極3を付けない光デバイスも適用できる。
Although the electrode 3 is formed and installed on the optical waveguide 1 in the above embodiment, an optical device without the electrode 3 can be applied to an optical device for measuring an electric field.

【0022】また、この光導波路を用いて光交換器を製
造することにより、電極のショートや破断のない、信頼
性の高い光交換器が得られる。
By manufacturing an optical exchanger using this optical waveguide, a highly reliable optical exchanger without electrode short-circuit or breakage can be obtained.

【0023】[0023]

【発明の効果】上述したように、本発明によれば、従来
の光導波路に比べて、その電極形状を大きくすることが
できるので、導波路と電極パターンのマスク合わせを容
易化でき、強電界や基板の焦電気効果によるショート及
び破断を防止できる。
As described above, according to the present invention, the electrode shape can be made larger than that of the conventional optical waveguide, so that the mask alignment between the waveguide and the electrode pattern can be facilitated and the strong electric field can be increased. It is possible to prevent short circuit and breakage due to the pyroelectric effect of the substrate and the substrate.

【0024】また、本発明を利用して光導波路形方向性
結合器を作製することにより、従来品と特性的に変わる
ことなく、その工程の簡易化及び信頼性の向上を図るこ
とができる。
Further, by manufacturing an optical waveguide type directional coupler using the present invention, the process can be simplified and the reliability can be improved without changing the characteristics of the conventional product.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の方向性結合形光導波路を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing a directional coupling type optical waveguide according to an embodiment of the present invention.

【図2】方向性結合器における近接ギャップ断面での電
界(Z基板)を示す概略図である。
FIG. 2 is a schematic diagram showing an electric field (Z substrate) in a cross section of a close gap in a directional coupler.

【図3】方向性結合器における近接ギャップ断面での電
界(X基板)を示す概略図である。
FIG. 3 is a schematic diagram showing an electric field (X substrate) in a cross section of a close gap in a directional coupler.

【図4】本発明を利用した方向性結合器における近接ギ
ャップ断面での電界(Z基板)を示す概略図である。
FIG. 4 is a schematic diagram showing an electric field (Z substrate) in a cross section of a near gap in a directional coupler using the present invention.

【符号の説明】[Explanation of symbols]

1 光導波路 2 分極反転させた光導波路部分 3 電極 1 Optical Waveguide 2 Optical Inverted Waveguide Part 3 Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を有する強誘電体基板上に
設置した第1の光導波路と、この第1の光導波路に近接
した第2の光導波路よりなる方向性結合体形光導波路に
おいて、上記第1または第2の光導波路の少なくとも一
方の光導波路の一部分を分極反転させることを特徴とす
る方向性結合形光導波路。
1. A directional coupler optical waveguide comprising a first optical waveguide installed on a ferroelectric substrate having an electro-optical effect, and a second optical waveguide adjacent to the first optical waveguide, wherein: A directional coupling type optical waveguide, wherein a part of at least one of the first and second optical waveguides is polarization-inverted.
【請求項2】 請求項1に記載の方向性結合形光導波路
を用いた光交換器。
2. An optical exchanger using the directional coupling type optical waveguide according to claim 1.
JP5012169A 1993-01-28 1993-01-28 Electric field sensor Expired - Fee Related JP2739405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5012169A JP2739405B2 (en) 1993-01-28 1993-01-28 Electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5012169A JP2739405B2 (en) 1993-01-28 1993-01-28 Electric field sensor

Publications (2)

Publication Number Publication Date
JPH06222403A true JPH06222403A (en) 1994-08-12
JP2739405B2 JP2739405B2 (en) 1998-04-15

Family

ID=11797938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5012169A Expired - Fee Related JP2739405B2 (en) 1993-01-28 1993-01-28 Electric field sensor

Country Status (1)

Country Link
JP (1) JP2739405B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023969A1 (en) * 1999-09-29 2001-04-05 Robert Bosch Gmbh Method and device for function selection of a control unit
US6334008B2 (en) 1998-02-19 2001-12-25 Nec Corporation Optical circuit and method of fabricating the same
JP2011075928A (en) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd Directional coupler
JP2013047627A (en) * 2011-08-29 2013-03-07 Toyota Industries Corp Optical waveguide type voltage sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688974A (en) * 1992-09-08 1994-03-29 Sumitomo Metal Mining Co Ltd Electric field applying method for optical waveguide type electro-optical element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688974A (en) * 1992-09-08 1994-03-29 Sumitomo Metal Mining Co Ltd Electric field applying method for optical waveguide type electro-optical element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334008B2 (en) 1998-02-19 2001-12-25 Nec Corporation Optical circuit and method of fabricating the same
WO2001023969A1 (en) * 1999-09-29 2001-04-05 Robert Bosch Gmbh Method and device for function selection of a control unit
US7437448B1 (en) 1999-09-29 2008-10-14 Robert Bosch Gmbh Method and device for function selection of a control unit
JP2011075928A (en) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd Directional coupler
JP2013047627A (en) * 2011-08-29 2013-03-07 Toyota Industries Corp Optical waveguide type voltage sensor

Also Published As

Publication number Publication date
JP2739405B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
Ohmachi et al. Electro‐optic light modulator with branched ridge waveguide
US4561718A (en) Photoelastic effect optical waveguides
JPH1090638A (en) Optical control element
JPH0728007A (en) Waveguide type optical device
US5679291A (en) Method of fabricating optical waveguide device
JPH05196972A (en) Waveguide type optical directional coupler
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP3573180B2 (en) Polling method for Mach-Zehnder interferometer arm
JP2739405B2 (en) Electric field sensor
JP2000028979A (en) Optical control element independent of polarization
JPH0996731A (en) Waveguide type optical device
JP2963989B1 (en) Light modulator
JPS6396626A (en) Waveguide type light control element
JPH01201609A (en) Optical device
JPS61134730A (en) Production of optical control element
JP3418391B2 (en) Method for manufacturing waveguide type optical device
JP2635986B2 (en) Optical waveguide switch
JPH0954291A (en) Optical phase shifter and optical switch using the same
JPH06281897A (en) Light intensity modulator
JPH04258918A (en) Light control circuit
JP2814967B2 (en) Waveguide type optical device
JPS6269247A (en) Optical switch
JPH0980364A (en) Waveguide type optical device
JPS5993431A (en) Optical switch
JP3024555B2 (en) Optical waveguide device and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971203

LAPS Cancellation because of no payment of annual fees