JP2963989B1 - Light modulator - Google Patents

Light modulator

Info

Publication number
JP2963989B1
JP2963989B1 JP13522898A JP13522898A JP2963989B1 JP 2963989 B1 JP2963989 B1 JP 2963989B1 JP 13522898 A JP13522898 A JP 13522898A JP 13522898 A JP13522898 A JP 13522898A JP 2963989 B1 JP2963989 B1 JP 2963989B1
Authority
JP
Japan
Prior art keywords
crystal
waveguide
electrode
light
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13522898A
Other languages
Japanese (ja)
Other versions
JPH11326853A (en
Inventor
浩司 松原
正信 渡辺
栄 仁木
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP13522898A priority Critical patent/JP2963989B1/en
Application granted granted Critical
Publication of JP2963989B1 publication Critical patent/JP2963989B1/en
Publication of JPH11326853A publication Critical patent/JPH11326853A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

【要約】 【課題】 本発明は、小さな印加電圧で電気光学結晶導
波路内に大きな電界が生じ、大きな光屈折率変化を生じ
る光変調器及びその製造方法を提供することを目的とし
ている。 【解決手段】本発明は光導波路1を上下から変調電極
4,6,7で挟み込む構造とし、印加電界のすべての成
分が電気光学効果に寄与するようにして、変調電圧の低
減を行なう。通常電気光学効果を有する導波路は結晶で
あるため、金属材料を下部電極とすることは不可能であ
る。そこで下部電極4を導電性結晶材料とし、導波路結
晶をその上にヘテロエピタキシャル成長させることによ
り上記構造を達成する。
An object of the present invention is to provide an optical modulator in which a large electric field is generated in an electro-optic crystal waveguide by a small applied voltage, and a large change in optical refractive index is caused, and a manufacturing method thereof. The present invention has a structure in which an optical waveguide (1) is sandwiched between modulation electrodes (4, 6, 7) from above and below, so that all components of an applied electric field contribute to an electro-optic effect to reduce a modulation voltage. Usually, since the waveguide having the electro-optic effect is a crystal, it is impossible to use a metal material for the lower electrode. Therefore, the above structure is achieved by making the lower electrode 4 a conductive crystal material and heteroepitaxially growing a waveguide crystal thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は結晶の電気光学効果を利
用した光変調器に関し、特に導電性結晶を下部電極とし
て備えた光変調器及びその製造方法に関する。
The present invention relates also relates to an optical modulator using an electro-optical effect of the crystal, an optical modulator and a method for manufacturing the same with a particularly conductive crystal as the lower electrode.

【0002】[0002]

【従来の技術】従来この種の光変調器としては図5に示
すものが知られている。これらの素子では電界を印加す
るための2つ以上の金属表面電極33が電気光学結晶基
板31上のSiO2バッファ層2を介して素子表面に装荷さ
れている。電源34により電極33間に電圧を印加する
と、図5の断面図に示すように電気力線が通り、光導波
路1中に電界が生じる。電界により結晶の光に対する屈
折率が変化する電気光学効果によって、光導波路1部分
の屈折率が変化し、光導波路1中を伝播する光の位相が
変化する。この位相変化と光の干渉効果を利用して、マ
ッハツェンダ型導波路を用いた光強度変調器や、方向性
結合器型導波路を用いた変調器(光スイッチ)が実現さ
れている。
2. Description of the Related Art Conventionally, an optical modulator of this type is shown in FIG. In these devices, two or more metal surface electrodes 33 for applying an electric field are loaded on the device surface via the SiO 2 buffer layer 2 on the electro-optic crystal substrate 31. When a voltage is applied between the electrodes 33 by the power supply 34, the lines of electric force pass through as shown in the cross-sectional view of FIG. Due to the electro-optic effect in which the refractive index of the crystal with respect to light by the electric field changes, the refractive index of the optical waveguide 1 changes, and the phase of light propagating in the optical waveguide 1 changes. A light intensity modulator using a Mach-Zehnder waveguide and a modulator (optical switch) using a directional coupler waveguide are realized by utilizing the phase change and the interference effect of light.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の光変調器においては、2つ以上の変調用の金属表面電
極33を素子表面に装荷するため、印加した電界のうち
基板31内を通過し、かつ電気光学効果に寄与する方向
の成分EZのみが光変調に寄与する。このように印加電
界の一部しか有効に利用されないため、十分な変調を行
うためには、5〜数十Vの電圧が必要であり、集積化、
省エネルギーなどの観点から実用上問題となっている。
電界をより有効に作用させるために、図6に示すような
リッジ型光導波路35の両側に変調用の側面電極36を
つける方法も提案されているが、この方法は切り立った
導波路側面への電極材料の蒸着が困難であり、またマッ
ハツェンダ型や方向性結合器型など2つ以上の導波路が
近接する場合には、それぞれの導波路の両側に電極を蒸
着することは不可能である。
However, in the above-mentioned conventional optical modulator, since two or more metal surface electrodes 33 for modulation are loaded on the element surface, the applied electric field passes through the inside of the substrate 31; and only the component E Z contribute direction electrooptic effect contributes to the light modulation. Since only a part of the applied electric field is effectively used as described above, a voltage of 5 to several tens of volts is required to perform sufficient modulation.
This is a practical problem from the viewpoint of energy saving.
In order to make the electric field act more effectively, a method has been proposed in which side electrodes 36 for modulation are provided on both sides of a ridge-type optical waveguide 35 as shown in FIG. When it is difficult to deposit an electrode material, and when two or more waveguides such as a Mach-Zehnder type and a directional coupler type are close to each other, it is impossible to deposit electrodes on both sides of each waveguide.

【0004】[0004]

【課題を解決するための手段】上記従来の課題を解決す
るために,本発明は導波路を上下から変調電極で挟み込
む構造とし、印加電界のすべての成分が電気光学効果に
寄与するようにして、変調電圧の低減を行なう。通常電
気光学効果を有する導波路は結晶であるため、金属材料
を下部電極とすることは不可能である。そこで下部電極
を導電性結晶材料とし、導波路結晶をその上にヘテロエ
ピタキシャル成長させることにより上記構造を達成す
る。
In order to solve the above-mentioned conventional problems, the present invention has a structure in which a waveguide is sandwiched between modulation electrodes from above and below, so that all components of an applied electric field contribute to the electro-optic effect. , The modulation voltage is reduced. Usually, since the waveguide having the electro-optic effect is a crystal, it is impossible to use a metal material for the lower electrode. Therefore, the above structure is achieved by forming the lower electrode from a conductive crystal material and heteroepitaxially growing a waveguide crystal thereon.

【0005】本発明によれば,厚さ数ミクロンの電気光
学結晶導波路が、下部電極である導電性結晶と、金属な
どの上部電極に挟まれているため、小さな印加電圧で電
気光学結晶導波路内に大きな電界が生じ、大きな光屈折
率変化を生む。
According to the present invention, an electro-optic crystal waveguide having a thickness of several microns is sandwiched between a conductive crystal serving as a lower electrode and an upper electrode such as a metal. A large electric field is generated in the wave path, causing a large change in the optical refractive index.

【0006】[0006]

【実施の形態】図1に本発明の一実施例としてのマッハ
ツェンダ型光変調器の構造を示す。まずzカットのニオ
ブ酸リチウム(以下LN)結晶基板5上に酸化亜鉛(以
下ZnO)結晶を成長させ、これを下部結晶電極4とす
る。結晶性のよいZnO結晶基板が入手可能な場合は、そ
れを用いれば、基板が下部電極を兼ねることもできる。
その上にLN結晶薄膜3をヘテロエピタキシャル成長さ
せる。LN結晶薄膜3上にマッハツェンダ型の導波路パ
ターンマスクをタンタル薄膜で作製し、この試料をピロ
リン酸に約200℃,20分程度浸しプロトン交換を行
う。さらに空気中で300℃,1時間ほどアニールを行
ってプロトン交換光導波路1を作製する。導波路作製に
は、チタン薄膜の導波路パターンをつけ、これを高温炉
内で数時間熱拡散させるチタン拡散法を用いることも可
能であるが、プロセス温度が1000℃程度と高くZnO
とLNの界面における相互拡散が進む可能性があるた
め、比較的低温で作製できるプロトン交換法の方が望ま
しい。作製したマッハツェンダ型導波路の2本の分岐線
路上に透明絶縁物である酸化シリコン(SiO2)膜2を介
して上部金電極6,7を蒸着によりつける。下部電極4
を0Vに接続し、電源装置9を用いて上部金電極7に正
電圧を、電源装置8を用いて上部金電極6に負電圧を印
加する。上部電極7下の導波路中と、上部電極6下の導
波路中に生じる電界は方向が逆なので、電気光学効果に
よって生じる屈折率変化の符号が逆になり、一方の導波
路を通る光の位相は進み、他方を通る光の位相は遅れ
る。これらが再び重ね合わされて出力されるので、干渉
により出力光強度が印加電圧によって変化する。
FIG. 1 shows the structure of a Mach-Zehnder type optical modulator as one embodiment of the present invention. First, a zinc oxide (hereinafter ZnO) crystal is grown on a z-cut lithium niobate (hereinafter LN) crystal substrate 5, which is used as a lower crystal electrode 4. If a ZnO crystal substrate with good crystallinity is available, the substrate can also serve as the lower electrode if it is used.
An LN crystal thin film 3 is heteroepitaxially grown thereon. A Mach-Zehnder type waveguide pattern mask is made of a tantalum thin film on the LN crystal thin film 3, and this sample is immersed in pyrophosphoric acid at about 200 ° C. for about 20 minutes to perform proton exchange. Further, annealing is performed in air at 300 ° C. for about 1 hour to produce a proton exchange optical waveguide 1. For the production of a waveguide, a titanium diffusion method in which a waveguide pattern of a titanium thin film is provided and this is thermally diffused in a high-temperature furnace for several hours can be used, but the process temperature is as high as about 1000 ° C. and ZnO is used.
Since there is a possibility that the interdiffusion at the interface between LN and LN proceeds, the proton exchange method that can be manufactured at a relatively low temperature is more preferable. Upper gold electrodes 6 and 7 are formed on the two branch lines of the manufactured Mach-Zehnder waveguide through a silicon oxide (SiO 2 ) film 2 as a transparent insulator by vapor deposition. Lower electrode 4
Is connected to 0 V, a positive voltage is applied to the upper gold electrode 7 using the power supply device 9, and a negative voltage is applied to the upper gold electrode 6 using the power supply device 8. Since the electric field generated in the waveguide below the upper electrode 7 and the electric field generated in the waveguide below the upper electrode 6 have opposite directions, the sign of the refractive index change caused by the electro-optic effect is reversed, and the light passing through one of the waveguides is inverted. The phase is advanced and the phase of light passing through the other is delayed. Since these are superimposed again and output, the output light intensity changes depending on the applied voltage due to interference.

【0007】このように、本発明の光変調器は、導波路
を上下から変調電極で挟み込む構造とし、印加電界のす
べての成分が電気光学効果に寄与するようにして、変調
電圧の低減を行なう。本発明によれば,厚さ数ミクロン
の電気光学結晶導波路が、下部電極である導電性結晶
と、金属などの上部電極に挟まれているため、小さな印
加電圧で電気光学結晶導波路内に大きな電界が生じ、大
きな光屈折率変化を生む。
As described above, the optical modulator of the present invention has a structure in which the waveguide is sandwiched between the modulation electrodes from above and below, and reduces the modulation voltage by making all components of the applied electric field contribute to the electro-optic effect. . According to the present invention, an electro-optic crystal waveguide having a thickness of several microns is sandwiched between a conductive crystal as a lower electrode and an upper electrode such as a metal. A large electric field is generated, causing a large change in the refractive index of light.

【0008】この本発明の作用を、図2を用いて説明す
る。図2の左側に示すように、従来型の表面電極の場
合、表面電極間の距離はフォトリソグラフィの精度で決
まり、光素子の場合電極間隔は1〜2ミクロン程度以上
である。一般に電界強度Eは電極間の電圧Vと距離dを
用いて、E=V/dで表されるが、表面電極の場合、電
極間を直線で結ぶ水平方向の電界強度がこの式で与えら
れ、電極下の導波路中での電界強度はこの値より小さ
い。さらに図の左下に示したように有効に作用する電界
Zは電界のz方向の成分なのでさらに小さい値とな
る。
The operation of the present invention will be described with reference to FIG. As shown on the left side of FIG. 2, in the case of a conventional surface electrode, the distance between the surface electrodes is determined by the accuracy of photolithography, and in the case of an optical element, the electrode spacing is about 1 to 2 microns or more. Generally, the electric field strength E is expressed by E = V / d using the voltage V between the electrodes and the distance d. In the case of a surface electrode, the electric field strength in the horizontal direction connecting the electrodes with a straight line is given by this equation. The electric field strength in the waveguide below the electrode is smaller than this value. Further, as shown in the lower left of the figure, the effective electric field EZ has a smaller value because it is a component of the electric field in the z direction.

【0009】一方、図2の右側に示す本発明による方法
では、電気光学結晶薄膜は1〜2ミクロン程度で、電極
間隔は従来の表面電極の場合とほぼ同等であるが、図中
矢印で示す電気力線に見られるように、それによる電界
が全て有効に作用する。このため本発明による方法では
従来方法と同じ有効電界強度を得るのに必要な印加電圧
が小さく、消費電力も少ない。
On the other hand, in the method according to the present invention shown on the right side of FIG. 2, the thickness of the electro-optic crystal thin film is about 1 to 2 μm, and the electrode spacing is almost the same as that of the conventional surface electrode. As seen in the lines of electric force, the resulting electric fields all work effectively. Therefore, in the method according to the present invention, the applied voltage required to obtain the same effective electric field strength as the conventional method is small, and the power consumption is small.

【0010】図3は本発明の一実施例としての方向性結
合器型光変調器の構造を示す。まずzカットのタンタル
酸リチウム(以下LT)結晶基板15上にZnO結晶を成
長させ、これを下部結晶電極4とする。その上にさらに
LT結晶薄膜13をヘテロエピタキシャル成長させる。
方向性結合器型のプロトン交換光導波路1を上述の場合
と同様に作製する。方向性結合器型導波路の2本の平行
線路部分の上に、フォトリソグラフィによって電極パタ
ーンマスクを作製した後、再びZnO結晶薄膜を作製し、
これを上部電極16、17とする。下部電極4を0Vに
接続し、電源装置9を用いて上部ZnO結晶電極17に正
電圧を、電源装置8を用いて上部ZnO結晶電極16に負
電圧を印加する。方向性結合器の平行線路部分がその相
互作用長の奇数倍に等しい場合、電圧が印加されていな
い時には、素子の入射端で左側の導波路に入射した光
は、出射端では右側の導波路から射出する。印加電圧を
調整して相互作用長を変化させ、平行線路部分の長さが
相互作用長の偶数倍になるようにすると、出射端では全
ての光が左側の導波路から射出し、光の進路変更が達成
される。また印加する電圧を調整することにより2つの
導波路からの出力光強度を変化させることができる。
FIG. 3 shows the structure of a directional coupler type optical modulator according to an embodiment of the present invention. First, a ZnO crystal is grown on a z-cut lithium tantalate (LT) crystal substrate 15 and used as a lower crystal electrode 4. An LT crystal thin film 13 is further heteroepitaxially grown thereon.
The directional coupler type proton exchange optical waveguide 1 is manufactured in the same manner as in the above case. After forming an electrode pattern mask by photolithography on the two parallel line portions of the directional coupler type waveguide, a ZnO crystal thin film is again formed,
These are referred to as upper electrodes 16 and 17. The lower electrode 4 is connected to 0V, and a positive voltage is applied to the upper ZnO crystal electrode 17 using the power supply device 9 and a negative voltage is applied to the upper ZnO crystal electrode 16 using the power supply device 8. When the parallel line portion of the directional coupler is equal to an odd multiple of its interaction length, when no voltage is applied, the light incident on the left waveguide at the input end of the element is converted into the right waveguide at the output end. Inject from If the interaction length is changed by adjusting the applied voltage so that the length of the parallel line portion becomes an even multiple of the interaction length, all light exits from the left waveguide at the emission end, and the light travels Change is achieved. Also, by adjusting the applied voltage, the intensity of the output light from the two waveguides can be changed.

【0011】図4は本発明の一実施例としての単一導波
路位相変調器の構造を示す。まずzカットのLN結晶基
板5上に酸化インジウム結晶を成長させ、これを下部結
晶電極24とする。その上にさらにLN結晶薄膜3をヘ
テロエピタキシャル成長させる。直線導波路パターンを
チタンで作製した後、CF4+Arガスなどを用いた反応性イ
オンエッチングでLN結晶薄膜表面を削り、その後チタ
ンマスクを化学エッチングにより除去し、リッジ型光導
波路21を作製する。フォトリソグラフィによって電極
パターンマスクを作製した後、再び酸化インジウム結晶
薄膜を作製し、これを上部電極27とする。下部電極2
4を接地し、上部結晶電極27に電源装置9により電圧
を印加すると、電気光学効果によりLN導波路の屈折率
が変化し、導波路内を伝搬する光の位相が変化する。
FIG. 4 shows the structure of a single waveguide phase modulator as one embodiment of the present invention. First, an indium oxide crystal is grown on a z-cut LN crystal substrate 5 and used as a lower crystal electrode 24. An LN crystal thin film 3 is further heteroepitaxially grown thereon. After the straight waveguide pattern is made of titanium, the surface of the LN crystal thin film is ground by reactive ion etching using CF 4 + Ar gas or the like, and then the titanium mask is removed by chemical etching to manufacture the ridge type optical waveguide 21. . After forming an electrode pattern mask by photolithography, an indium oxide crystal thin film is formed again, and this is used as the upper electrode 27. Lower electrode 2
When the power supply 9 applies a voltage to the upper crystal electrode 27 by grounding 4, the refractive index of the LN waveguide changes due to the electro-optic effect, and the phase of light propagating in the waveguide changes.

【0012】[0012]

【発明の効果】本発明の光変調器によれば、光導波路を
上下から変調電極で挟み込む構造とし、印加電界のすべ
ての成分が電気光学効果に寄与するようにして、変調電
圧の低減を行なう。そして、下部電極を導電性結晶材料
とし、導波路結晶をその上にヘテロエピタキシャル成長
させることによりこのような構造を達成する。
According to the optical modulator of the present invention, a structure sandwiching the modulation electrodes in the optical waveguide from above and below, all components of the applied electric field so as to contribute to the electro-optical effect, is performed to reduce the modulation voltage . The lower electrode is made of a conductive crystal material, and a waveguide crystal is heteroepitaxially grown thereon to achieve such a structure.

【0013】これによって、従来問題となってきた電気
光学変調器の駆動電圧の低減がはかられ、低消費電力の
高速光変調器が実現できる。また低電力化により無駄な
発熱も無くなり、高集積化した素子も可能になる。
As a result, the driving voltage of the electro-optical modulator, which has been a problem in the past, can be reduced, and a high-speed optical modulator with low power consumption can be realized. In addition, wasteful heat generation is eliminated by lowering the power, and a highly integrated element can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を用いたマッハツェンダ型光強度変調器
の構成例である。
FIG. 1 is a configuration example of a Mach-Zehnder type light intensity modulator using the present invention.

【図2】本発明の効果を示すための図である。FIG. 2 is a diagram showing the effect of the present invention.

【図3】本発明を用いた方向性結合器型光の進路変更を
行う変調器の構成例である。
FIG. 3 is a configuration example of a modulator that changes the path of directional coupler light using the present invention.

【図4】本発明を用いた光位相変調器の構成例である。FIG. 4 is a configuration example of an optical phase modulator using the present invention.

【図5】従来用いられている光変調器の構成である。FIG. 5 shows a configuration of a conventionally used optical modulator.

【図6】すでに提案されている低電圧での変調を目的と
した光変調器の構成である。
FIG. 6 shows a configuration of an optical modulator for modulation at a low voltage which has already been proposed.

【符号の説明】[Explanation of symbols]

1 プロトン交換光導波路 2 SiO2絶縁膜 3 LN結晶薄膜 4 下部ZnO結晶電極 5 LN基板 6、7 上部金電極 8、9 変調電源 13 LT結晶薄膜 15 LT結晶基板 16,17 上部ZnO結晶電極 21 リッジ型光導波路 24 酸化インジウム結晶電極 27 上部結晶電極1 proton exchange optical waveguide 2 SiO 2 insulating film 3 LN crystal thin film 4 lower ZnO crystal electrode 5 LN substrate 6,7 upper gold electrode 8,9 modulated power 13 LT crystal thin film 15 LT crystal substrate 16, 17 the upper ZnO crystal electrode 21 Ridge Type optical waveguide 24 Indium oxide crystal electrode 27 Upper crystal electrode

フロントページの続き (56)参考文献 特開 昭62−154407(JP,A) 特開 昭61−182015(JP,A) 特開 平9−329722(JP,A) 特開 平3−196025(JP,A) 特開 平3−119311(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02F 1/015 - 1/055 505 INSPEC(DIALOG) JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-62-154407 (JP, A) JP-A-61-182015 (JP, A) JP-A-9-329722 (JP, A) JP-A-3-196025 (JP) (A) JP-A-3-119311 (JP, A) (58) Fields investigated (Int.Cl. 6 , DB name) G02F 1/15-1/055 505 INSPEC (DIALOG) JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極間に電圧を印加して光導波路中に電
界を発生し、この電界により結晶の光に対する屈折率が
変化する電気光学効果を利用して光導波路部分の屈折率
を変化させて光変調を行う光変調器において、タンタル酸リチウム結晶基板上に成長させた酸化亜鉛結
晶からなる 下部導電性結晶電極と、 該結晶電極の上にヘテロエピタキシャル成長させたタン
タル酸リチウムを用いて作成する電気光学効果を有する
結晶導波路と、 該結晶導波路の上に装荷した酸化亜鉛結晶薄膜から構成
される上部変調用電極と、 からなることを特徴とする光変調器。
An electric field is generated in an optical waveguide by applying a voltage between electrodes, and the refractive index of an optical waveguide portion is changed by utilizing an electro-optic effect in which a refractive index of a crystal with respect to light is changed by the electric field. In the optical modulator that modulates the light, the zinc oxide grown on the lithium tantalate crystal substrate
A lower conductive crystal electrode composed of a crystal, and a tandem heteroepitaxially grown on the crystal electrode.
Consisting of a crystal waveguide having an electro-optic effect formed using lithium tantalate, and a zinc oxide crystal thin film loaded on the crystal waveguide
An optical modulator comprising: an upper modulation electrode;
【請求項2】 前記結晶導波路をマッハツェンダ型と
し、かつ前記上部電極をマッハツェンダ型導波路の各分
岐に個別に装荷して、光の強度変調を行うことから成る
請求項1に記載の光変調器。
2. The light modulation device according to claim 1, wherein the crystal waveguide is of a Mach-Zehnder type, and the upper electrode is individually loaded on each branch of the Mach-Zehnder-type waveguide to perform light intensity modulation. vessel.
【請求項3】 前記結晶導波路を方向性結合器型とし、
かつ前記上部電極を方向性結合器型導波路の各導波路に
個別に装荷して、光の進路変更を行うことから成る請求
項1に記載の光変調器。
3. The crystal waveguide is of a directional coupler type,
2. The optical modulator according to claim 1, further comprising individually loading the upper electrode on each waveguide of the directional coupler type waveguide to change a light path.
【請求項4】 前記結晶導波路が単一線に構成されて、
光の位相変調を行うことから成る請求項1に記載の光変
調器。
4. The crystal waveguide is configured as a single line,
2. The optical modulator according to claim 1, comprising performing phase modulation of light.
【請求項5】 電極間に電圧を印加して光導波路中に電
界を発生し、この電界により結晶の光に対する屈折率が
変化する電気光学効果を利用して光導波路部分の屈折率
を変化させて光変調を行う光変調器において、ニオブ酸リチウム結晶基板上に成長させた酸化インジウ
ム結晶からなる 下部導電性結晶電極と、 該結晶電極の上にヘテロピタキシャル成長させて光の位
相変調を行い、かつニオブ酸リチウムから単一線に構成
されたリッジ型導波路である結晶導波路と、 該結晶導波路の上に装荷した酸化インジウム結晶薄膜か
ら構成される上部変調用電極と、 からなることを特徴とする光変調器。
5. A voltage is applied between the electrodes to generate an electric field in the optical waveguide, and the electric field changes the refractive index of the optical waveguide portion by utilizing an electro-optic effect in which the refractive index of the crystal changes with respect to light. In a light modulator that modulates light by indium oxide, indium oxide grown on a lithium niobate crystal substrate
A lower conductive crystal electrode made of beam crystals, hetero Pita key Interstitial grown in position of the light on the said crystals electrode
Performs phase modulation and forms a single line from lithium niobate
A ridge-shaped waveguide, and an indium oxide crystal thin film loaded on the crystal waveguide .
An optical modulator comprising: an upper modulation electrode comprising: an upper modulation electrode;
JP13522898A 1998-05-18 1998-05-18 Light modulator Expired - Lifetime JP2963989B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13522898A JP2963989B1 (en) 1998-05-18 1998-05-18 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13522898A JP2963989B1 (en) 1998-05-18 1998-05-18 Light modulator

Publications (2)

Publication Number Publication Date
JP2963989B1 true JP2963989B1 (en) 1999-10-18
JPH11326853A JPH11326853A (en) 1999-11-26

Family

ID=15146820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13522898A Expired - Lifetime JP2963989B1 (en) 1998-05-18 1998-05-18 Light modulator

Country Status (1)

Country Link
JP (1) JP2963989B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250258A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Optical control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472056B1 (en) * 2002-10-31 2005-03-11 한국전자통신연구원 Polarization-independent optical polymeric intensity modulator
JP4424356B2 (en) 2007-01-23 2010-03-03 株式会社村田製作所 TE-TM converter
JP5412832B2 (en) * 2007-01-23 2014-02-12 株式会社村田製作所 Light control element
JP5332665B2 (en) 2009-02-03 2013-11-06 富士通株式会社 Optical waveguide device and manufacturing method thereof, optical modulator, polarization mode dispersion compensator, and optical switch
JP5664507B2 (en) * 2011-03-08 2015-02-04 住友大阪セメント株式会社 Light control element
WO2014203931A1 (en) * 2013-06-21 2014-12-24 株式会社村田製作所 Light control element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250258A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Optical control device
JP4589354B2 (en) * 2007-03-30 2010-12-01 住友大阪セメント株式会社 Light modulation element

Also Published As

Publication number Publication date
JPH11326853A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP2902642B2 (en) Integrated optical light intensity modulator and method of manufacturing the same
US7447389B2 (en) Optical modulator
JP4552032B2 (en) Optical amplitude modulation system capable of eliminating higher-order components
CN111487793A (en) Z-cut L NOI electro-optic modulator capable of improving modulation efficiency and application thereof
WO2010082673A1 (en) Branched optical waveguide, optical waveguide substrate and optical modulator
JP2963989B1 (en) Light modulator
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
CN105074545B (en) The manufacturing method of optical waveguide components and optical waveguide components
JP2001255501A (en) Optical waveguide element
JP4793550B2 (en) Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation
JP2003066393A (en) Integrated optical waveguide device
JP2001004967A (en) Optical waveguide element
JPH01201609A (en) Optical device
JP2005274793A (en) Optical waveguide and optical waveguide device
US20220221744A1 (en) Integrated compact z-cut lithium niobate modulator
JPH06222403A (en) Directional coupling type optical waveguide
JPH02114243A (en) Optical control device and its manufacture
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
JP3050202B2 (en) Optical waveguide device and method of manufacturing the same
JPH0566428A (en) Optical control device
JP3526155B2 (en) Waveguide type light modulator
JPH05113513A (en) Waveguide-type optical device and its production
JPH06123903A (en) Second harmonic wave generator
JP2606552B2 (en) Light control device
JPH06281897A (en) Light intensity modulator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term