JP4793550B2 - Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation - Google Patents

Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation Download PDF

Info

Publication number
JP4793550B2
JP4793550B2 JP2005228964A JP2005228964A JP4793550B2 JP 4793550 B2 JP4793550 B2 JP 4793550B2 JP 2005228964 A JP2005228964 A JP 2005228964A JP 2005228964 A JP2005228964 A JP 2005228964A JP 4793550 B2 JP4793550 B2 JP 4793550B2
Authority
JP
Japan
Prior art keywords
signal
modulator
optical
phase
sideband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005228964A
Other languages
Japanese (ja)
Other versions
JP2007047230A (en
Inventor
哲也 川西
高秀 坂本
雅之 井筒
昌弘 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2005228964A priority Critical patent/JP4793550B2/en
Publication of JP2007047230A publication Critical patent/JP2007047230A/en
Application granted granted Critical
Publication of JP4793550B2 publication Critical patent/JP4793550B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

本発明は,高消光比変調可能な光搬送波抑圧両側波帯システムなどに関する。   The present invention relates to an optical carrier suppression double sideband system capable of high extinction ratio modulation.

光通信において,光に信号を乗せるために光を変調する必要がある。光変調には,半導体レーザの駆動パワーを変調する直接変調と,半導体レーザからの光を光源以外の手段で変調する外部変調とがある。外部変調で使用される変調器を一般に光変調器とよぶ。光変調器では,変調器に信号に応じて物理的変化を起こして,光の強度,位相などを変調する。光変調器の技術課題として,駆動電圧の低減,変調効率向上のための高消光比,広帯域化,高速化および損失低減のための高光利用効率とがある。すなわち,高い消光比を持った光変調器の開発が望まれている。なお,消光比とは,光の強度が最も高い時の光強度と光の強度が最も弱くなる時の光強度の比を意味する。   In optical communication, it is necessary to modulate light in order to place a signal on the light. Optical modulation includes direct modulation for modulating the driving power of the semiconductor laser and external modulation for modulating light from the semiconductor laser by means other than the light source. A modulator used for external modulation is generally called an optical modulator. In an optical modulator, a physical change is caused in the modulator in accordance with a signal to modulate light intensity, phase, and the like. Technical issues of optical modulators include reduction of drive voltage, high extinction ratio for improving modulation efficiency, wide bandwidth, high speed, and high light utilization efficiency for loss reduction. That is, development of an optical modulator having a high extinction ratio is desired. The extinction ratio means the ratio of the light intensity when the light intensity is the highest to the light intensity when the light intensity is the weakest.

光変調器として,光搬送波抑圧両側波帯(DSB-SC)変調器が知られている。具体的には,たとえば,特開2004-252386号公報(下記特許文献1)の図37には,MZと,その両アームに設けられたPMと,一方のアームに設けられた固定位相器を有するDSB-SC変調器が開示されている。光DSB-SC変調器は,理想的には,2つのサイドバンド(両側波帯)信号を出力し,キャリア(搬送波)信号成分が抑圧される。しかしながら,実際の光DSB-SC変調器の出力には,サイドバンド信号の他,抑圧しきれないキャリア成分や高次成分信号などが残留するので,消光比が高くできないという問題がある。したがって,従来の光DSB-SC変調器は,できるだけキャリア成分や高次信号成分などを抑圧した光信号を出力することが意図されていた。
特開2004-252386号公報
An optical carrier-suppressed double sideband (DSB-SC) modulator is known as an optical modulator. Specifically, for example, in FIG. 37 of Japanese Patent Laid-Open No. 2004-252386 (Patent Document 1 below), MZ, PM provided on both arms, and a fixed phase shifter provided on one arm are shown. A DSB-SC modulator is disclosed. Light DSB-SC modulator, ideally, two side bands (double sideband) outputs a signal, the carrier (carrier wave) signal component is suppressed. However, there is a problem that the extinction ratio cannot be increased because the output of the actual optical DSB-SC modulator contains carrier components and high-order component signals that cannot be suppressed in addition to sideband signals. Therefore, the conventional optical DSB-SC modulator was intended to output an optical signal in which the carrier component and the higher-order signal component are suppressed as much as possible.
JP 2004-252386 A

本発明は,キャリア信号(又は高次成分信号)を抑圧し,高い消光比変調を得ることができる光DSB-SC変調システムを提供することを目的とする。   An object of the present invention is to provide an optical DSB-SC modulation system capable of suppressing a carrier signal (or higher-order component signal) and obtaining a high extinction ratio modulation.

本発明は,基本的には,光DSB-SC変調器と,光DSB-SC変調器の出力光に変調を加える位相・強度変調器(具体的には2電極MZ型変調器)とを具備する光DSB-SC変調システムなどに関する。すなわち,光DSB-SC変調器の出力には,抑圧しきれないキャリア成分などが残留するので,消光比が高くできない。そこで,光DSB-SC変調器からの出力光に対し位相変調及び/又は強度変調を施す。この際,サイト゛ハ゛ント゛由来のサイト゛ハ゛ント゛(キャリアまたは高次成分と周波数が一致する)をキャリア成分を打ち消すよう(又は高次成分を打ち消すよう)に,位相とタイミングとを調整する。このようにすれば,キャリア成分(又は高次成分)を抑圧できるので,高い消光比変調を得ることができる光DSB-SC変調システムを得ることができる。本発明は,基本的には,このような知見に基づくものである。   The present invention basically includes an optical DSB-SC modulator and a phase / intensity modulator (specifically, a two-electrode MZ modulator) that modulates the output light of the optical DSB-SC modulator. Related to optical DSB-SC modulation system. That is, since the carrier component that cannot be suppressed remains in the output of the optical DSB-SC modulator, the extinction ratio cannot be increased. Therefore, phase modulation and / or intensity modulation is performed on the output light from the optical DSB-SC modulator. At this time, the phase and timing are adjusted so as to cancel the carrier component (or cancel the high-order component) for the site band (which has the same frequency as the carrier or higher-order component) derived from the site band. In this way, since the carrier component (or higher-order component) can be suppressed, an optical DSB-SC modulation system capable of obtaining a high extinction ratio modulation can be obtained. The present invention is basically based on such knowledge.

すなわち,本発明の第一の側面は,光搬送波抑圧両側波帯変調器と,前記光搬送波抑圧両側波帯変調器の出力光に変調を加えるための位相変調器又は強度変調器のいずれかまたは両方と,前記光搬送波抑圧両側波帯変調器の変調信号と前記位相変調器又は強度変調器の変調信号との変調時間を調整するための制御部と,を具備する光搬送波抑圧両側波帯変調システムに関する。そして,制御部をより詳しく説明すると,前記制御部は,前記光搬送波抑圧両側波帯変調器からの出力光の両側波帯信号のいずれか又は両方を前記位相変調器又は強度変調器が変調することにより生ずる両側波帯信号のいずれかが,前記光搬送波抑圧両側波帯変調器の出力光のうち光搬送波信号又は高次光信号の周波数と一致し,前記光搬送波信号又は高次光信号を打ち消すように制御する。これにより,効果的に前記光搬送波信号又は高次光信号を打ち消すことができるので,本発明の光搬送波抑圧両側波帯変調システムは,高い消光比を得ることができる。   That is, the first aspect of the present invention is an optical carrier-suppressed double-sideband modulator and either a phase modulator or an intensity modulator for modulating the output light of the optical carrier-suppressed double-sideband modulator, or And an optical carrier suppressed double sideband modulation comprising: a control unit for adjusting a modulation time of the modulated signal of the optical carrier suppressed double sideband modulator and the modulated signal of the phase modulator or intensity modulator. About the system. The control unit will be described in more detail. In the control unit, the phase modulator or the intensity modulator modulates either or both of the double sideband signals of the output light from the optical carrier suppression double sideband modulator. Any of the double-sideband signals generated by the optical carrier signal is controlled so as to coincide with the frequency of the optical carrier signal or higher-order optical signal in the output light of the optical carrier-suppressed double-sideband modulator, and the optical carrier signal or higher-order optical signal is canceled. To do. As a result, the optical carrier signal or the higher-order optical signal can be canceled effectively, so that the optical carrier suppressed double sideband modulation system of the present invention can obtain a high extinction ratio.

本発明によれば,光DSB-SC変調器自体の出力信号のキャリア信号(又は高次信号)を抑圧するのではなく,光DSB-SC変調器のノイズ成分であるサイドバンド信号の更にサイドバンド信号を効果的に利用することで,光DSB-SC変調システムのキャリア信号(又は高次信号)を抑圧できるので,高い消光比変調を得ることができる光DSB-SC変調システムを提供できる。   According to the present invention, the carrier signal (or higher order signal) of the output signal of the optical DSB-SC modulator itself is not suppressed, but the sideband signal that is a noise component of the optical DSB-SC modulator is further reduced. By effectively using the signal, the carrier signal (or higher order signal) of the optical DSB-SC modulation system can be suppressed, so that an optical DSB-SC modulation system capable of obtaining a high extinction ratio modulation can be provided.

1.光搬送波抑圧両側波帯変調システム(光DSB-SC変調システム)
図1は,本発明の光搬送波抑圧両側波帯変調システムのブロック図である。図1に示されるとおり,本発明の第一の実施態様に係る光搬送波抑圧両側波帯変調システム(1)は,光搬送波抑圧両側波帯変調器(2)と,前記光搬送波抑圧両側波帯変調器の出力光に変調を加えるための位相変調器又は強度変調器のいずれかまたは両方を含む光変調器(3)と,前記光搬送波抑圧両側波帯変調器の変調信号と前記位相変調器又は強度変調器の変調信号との変調時間を調整するための制御部(4)と,を具備する。なお,各光変調器は光ファイバなどの光導波路で接続されるか,真空又は大気中で光の授受ができるようにされていればよい。また,各光変調器は,変調信号などを印加するための信号源(5;5a〜5c)を有し,その信号源が前記の制御部と電気的に接続され,情報を授受できるようにされていればよい。
1. Optical carrier suppressed double sideband modulation system (optical DSB-SC modulation system)
FIG. 1 is a block diagram of an optical carrier suppressed double sideband modulation system of the present invention. As shown in FIG. 1, an optical carrier suppressed double sideband modulation system (1) according to a first embodiment of the present invention includes an optical carrier suppressed double sideband modulator (2) and the optical carrier suppressed double sideband. An optical modulator (3) including either or both of a phase modulator and an intensity modulator for modulating the output light of the modulator, a modulation signal of the optical carrier-suppressed double-sideband modulator, and the phase modulator Or a control unit (4) for adjusting the modulation time with the modulation signal of the intensity modulator. Each optical modulator may be connected by an optical waveguide such as an optical fiber, or may be capable of transmitting and receiving light in a vacuum or in the atmosphere. Each optical modulator has a signal source (5; 5a to 5c) for applying a modulation signal and the like so that the signal source is electrically connected to the control unit and can exchange information. It only has to be done.

そして,前記制御部(4)は,好ましくは,前記光搬送波抑圧両側波帯変調器(2)からの出力光の両側波帯信号のいずれか又は両方を前記位相変調器又は強度変調器などの光変調器(3)が変調することにより生ずる両側波帯信号のいずれかが,前記光搬送波抑圧両側波帯変調器の出力光のうち光搬送波信号又は高次光信号の周波数と一致し,前記光搬送波信号又は高次光信号を打ち消すように制御する。   The control unit (4) is preferably configured to convert either or both of the double-sideband signals of the output light from the optical carrier-suppressed double-sideband modulator (2) to the phase modulator or the intensity modulator. Any one of the double-sideband signals generated by the modulation by the optical modulator (3) matches the frequency of the optical carrier signal or the higher-order optical signal in the output light of the optical carrier-suppressed double-sideband modulator, and the optical carrier Control to cancel signal or higher order optical signal.

なお,光変調器(3)として,位相変調器(PM)及び強度変調器(IM)の両方を含むものは,本発明の好ましい実施形態であり,制御部は,打ち消したい光信号(キャリア信号又は高次成分信号)と,それを打ち消すために利用するサイト゛ハ゛ント゛信号を決め,それらの信号の強度変調器による変調後の位相を把握し,位相変調器はそれらの信号の光変調器(3)による変調後の位相が位相が逆位相になるように制御する。そのようにすれば,光変調器(3)による変調後の打ち消したい信号とサイト゛ハ゛ント゛信号とは周波数が同じで,位相が逆位相になるので,打ち消したい信号が打ち消され,弱くなる。   Note that the optical modulator (3) including both the phase modulator (PM) and the intensity modulator (IM) is a preferred embodiment of the present invention, and the control unit detects the optical signal (carrier signal) to be canceled. Or higher-order component signals) and site band signals to be used for canceling them, and grasping the phase after modulation by the intensity modulator of those signals, and the phase modulator is an optical modulator (3 ) Is controlled so that the phase after the modulation by () is opposite in phase. By doing so, the signal to be canceled after being modulated by the optical modulator (3) and the site band signal have the same frequency and the phases are opposite to each other, so that the signal to be canceled is canceled and weakened.

2.光DSB-SC変調システムの基本動作
以下,図面に従って,第一の実施態様に係る光DSB-SC変調システムの動作例を説明する。なお,この例は,光変調器(3)として,位相変調器(3a)及び強度変調器(3b)をこの順に含むものである。勿論,位相変調器と強度変調器の順番は逆でもよいし,たとえば強度変調器のみなどいずれか一つでもよい。特に,光DSB-SC変調信号の出力信号を強度変調器で変調した後の出力信号において,打ち消したい信号の位相が,その信号を打ち消すために利用された光信号の位相と逆位相になる場合は,位相変調器は不要である。
2. Basic Operation of Optical DSB-SC Modulation System Hereinafter, an operation example of the optical DSB-SC modulation system according to the first embodiment will be described with reference to the drawings. In this example, the optical modulator (3) includes a phase modulator (3a) and an intensity modulator (3b) in this order. Of course, the order of the phase modulator and the intensity modulator may be reversed, or only one of the intensity modulators may be used, for example. In particular, when the output signal of an optical DSB-SC modulated signal is modulated by an intensity modulator, the phase of the signal that you want to cancel is opposite to the phase of the optical signal that was used to cancel the signal. Does not require a phase modulator.

まず,光DSB-SC変調器に光を入力する。この光が通常光搬送波(キャリア信号)ともよばれるものであり,通常単一波長の光である。このキャリア信号の周波数をf0[Hz]とする。そして,信号源(5a)が,ラジオ周波数信号などの変調信号を光DSB-SC変調器に印加することで,光DSB-SC変調器はキャリア信号に変調を施す。なお,この変調信号の周波数(変調周波数)をfm[Hz]とする。図2は,光DSB-SC変調器から出力される理想的な光DSB-SC変調信号を示す概念図である。図2に示されるとおり,理想的な光DSB-SC変調信号(11)は,キャリア信号が抑圧され(すなわち,f0[Hz]の信号が無くなり),両側波帯(サイト゛ハ゛ント゛)信号(12)が出力される。なお,サイト゛ハ゛ント゛信号(12)の周波数は,f0±fm[Hz]である。サイト゛ハ゛ント゛信号のうち,f0+fm[Hz]の周波数を有する信号が上側波帯(USB)信号(12a)であり,f0-fm[Hz]の周波数を有する信号が下側波帯(LSB)信号(12b)である。 First, light is input to the optical DSB-SC modulator. This light is usually called an optical carrier wave (carrier signal), and is usually a single wavelength light. Let the frequency of this carrier signal be f 0 [Hz]. The signal source (5a) applies a modulation signal such as a radio frequency signal to the optical DSB-SC modulator, so that the optical DSB-SC modulator modulates the carrier signal. The frequency (modulation frequency) of this modulation signal is assumed to be f m [Hz]. FIG. 2 is a conceptual diagram showing an ideal optical DSB-SC modulated signal output from the optical DSB-SC modulator. As shown in FIG. 2, in the ideal optical DSB-SC modulation signal (11), the carrier signal is suppressed (that is, the signal of f 0 [Hz] is eliminated), and the double sideband (site band) signal (12 ) Is output. The frequency of the site band signal (12) is f 0 ± f m [Hz]. Of the site band signals, the signal having the frequency of f 0 + f m [Hz] is the upper sideband (USB) signal (12a), and the signal having the frequency of f 0 -f m [Hz] is the lower side wave. This is the band (LSB) signal (12b).

図3は,光DSB-SC変調器から出力される実際のDSB-SC変調信号を示す概念図である。図3に示されるとおり,光DSB-SC変調器から出力される実際のDSB-SC変調信号(13)は,サイト゛ハ゛ント゛信号(12)以外に,抑圧しきれず残留したキャリア信号成分(14)や,高次変調された高次成分信号(15)なども存在する。高次成分信号(15)の中心周波数は,通常,f0±nfm[Hz](nは1以外の整数)となり,nが2以上の場合,nが大きくなるほど高次成分信号(15)の強度は小さくなる。また,理論的には,光DSB-SC変調器からの変調信号は,奇数次側波帯からなることとなり,偶数次側波帯信号が抑圧されるが,3次以上の光信号の強度は弱くなる。なお,図中15aは2次の上側波帯信号を示し,15bは2次の下側波帯信号を示し,15cは3次の上側波帯信号を示し,15dは3次の下側波帯信号を示し,15eは4次の上側波帯信号を示し,15fは4次の下側波帯信号を示し,15gは5次の上側波帯信号を示し,15hは5次の下側波帯信号を示す。 FIG. 3 is a conceptual diagram showing an actual DSB-SC modulated signal output from the optical DSB-SC modulator. As shown in FIG. 3, the actual DSB-SC modulation signal (13) output from the optical DSB-SC modulator is not completely suppressed but remains in the remaining carrier signal component (14) and the site band signal (12). There is also a higher-order component signal (15) that is higher-order modulated. The center frequency of the higher-order component signal (15) is usually f 0 ± nf m [Hz] (n is an integer other than 1). When n is 2 or more, the higher the higher-order component signal (15) The strength of becomes smaller. Theoretically, the modulation signal from the optical DSB-SC modulator is composed of odd-order sidebands, and even-order sideband signals are suppressed, but the intensity of the third-order or higher-order optical signal is become weak. In the figure, 15a indicates the second order upper sideband signal, 15b indicates the second order lower sideband signal, 15c indicates the third order upper sideband signal, and 15d indicates the third order lower sideband signal. 15e indicates the 4th order upper sideband signal, 15f indicates the 4th order lower sideband signal, 15g indicates the 5th order upper sideband signal, 15h indicates the 5th order lower sideband signal Signals are shown.

図4は,位相変調器から出力される変調信号の例を示す概念図である。この例は,1次の側波帯信号(サイト゛ハ゛ント゛)の,サイト゛ハ゛ント゛を用いて,キャリア信号成分(14)を打ち消すものの例を示すものである。図4に示されるとおり,位相変調器から出力される変調信号(21)は,サイト゛ハ゛ント゛信号(12),キャリア信号成分(14),又は,高次成分信号(15)のうちいずれか又は2つ以上の光位相が変調される。具体的には,光変調器(3)の位相変調器は,打ち消したい光信号(キャリア信号又は高次成分信号)と,それを打ち消すために利用するサイト゛ハ゛ント゛信号の強度変調器による変調後の位相を把握し,位相変調器はそれらの信号の光変調器(3)による変調後の位相が逆位相になるように制御する。すなわち,図4の例では,抑圧しきれず残留しているキャリア信号成分(14)と,サイト゛ハ゛ント゛信号(12)との位相がもともとπ/2ずれているので,位相変調器が,制御部の指令を受けて,サイト゛ハ゛ント゛信号(12)の位相を更にπ/2ずらすように電極に印加する電圧を制御するので,キャリア信号成分(14)とサイト゛ハ゛ント゛信号(12)との位相がπずれる(すなわち逆位相となる)こととなる。   FIG. 4 is a conceptual diagram illustrating an example of a modulation signal output from the phase modulator. This example shows an example of canceling the carrier signal component (14) by using the site band of the primary sideband signal (site band). As shown in FIG. 4, the modulation signal (21) output from the phase modulator is either a site band signal (12), a carrier signal component (14), or a higher order component signal (15), or 2 One or more optical phases are modulated. Specifically, the phase modulator of the optical modulator (3) is an optical signal (carrier signal or higher-order component signal) to be canceled and a site band signal used for canceling it after modulation by the intensity modulator. The phase modulator grasps the phase, and controls so that the phase after the modulation by the optical modulator (3) of these signals becomes an opposite phase. In other words, in the example of FIG. 4, the phase of the carrier signal component (14) that cannot be fully suppressed and the site band signal (12) is originally shifted by π / 2. In response to the command, the voltage applied to the electrode is controlled so that the phase of the site band signal (12) is further shifted by π / 2, so the phase of the carrier signal component (14) and the site band signal (12) are shifted by π. (That is, the phase is reversed).

図5は,強度変調器から出力される変調信号を説明するための概念図である。図6は,強度変調器から出力される変調信号を示す概念図である。図5に示されるとおり,強度変調器から出力される変調信号(31)は,打ち消したい光信号(キャリア信号又は高次成分信号)と,それを打ち消すためのサイト゛ハ゛ント゛信号との周波数が一致し,位相が逆位相となる。よって,図6に示されるとおり,強度変調器から出力される変調信号(31)は,打ち消したい信号の強度が弱められる(理想的には抑圧される)こととなる。図5において,16aは,USB(12a)のUSBを示し,16bはUSB(12a)のLSBを示し,17aはLSB(12b)のUSBを示し,17bは,LSB(12b)のLSBを示す。図5に示されるように,この例では,キャリア信号成分(14)と,サイト゛ハ゛ント゛信号(12)のサイト゛ハ゛ント゛信号(16b,17a)との位相がπずれる(すなわち逆位相となる)こととなり,これによりキャリア信号成分(14)の強度が減少することとなる。   FIG. 5 is a conceptual diagram for explaining a modulation signal output from the intensity modulator. FIG. 6 is a conceptual diagram showing a modulation signal output from the intensity modulator. As shown in FIG. 5, the modulation signal (31) output from the intensity modulator has the same frequency as the optical signal (carrier signal or higher-order component signal) to be canceled and the site band signal for canceling it. , The phase is reversed. Therefore, as shown in FIG. 6, the intensity of the signal to be canceled is reduced (ideally suppressed) in the modulation signal (31) output from the intensity modulator. In FIG. 5, 16a indicates the USB of the USB (12a), 16b indicates the LSB of the USB (12a), 17a indicates the USB of the LSB (12b), and 17b indicates the LSB of the LSB (12b). As shown in FIG. 5, in this example, the phase of the carrier signal component (14) and the site band signal (16b, 17a) of the site band signal (12) are shifted by π (that is, opposite in phase). Thus, the intensity of the carrier signal component (14) is reduced.

3.1.光DSB-SC変調器
図7は,光DSB-SC変調器の例を示す概略図である。図7に示すように,光DSB-SC変調器は,たとえば,マッハツェンダー導波路(MZ)とMZの2つのアームを伝播する光の位相を制御するための第1の直流信号または低周波用の電極(DC電極)と,前記MZを構成する2つのアームにラジオ周波数(RF)信号を入力する第1のRF電極(RF電極)とを具備するものがあげられる。DC電極に印加される信号により光の位相が制御され,RF電極に印加されるラジオ周波数信号により,周波数変調がなされる。なお,図7では,概念的にDC電極とRF電極とを別のものとして描いたが,実際はひとつの電極として構成されていてもよい。MZに単色光などが入力されると,MZの入力地点の分岐路により単色光がそれぞれのアームに分離し,それぞれのアーム上の電極により位相変調や周波数変調を受け,MZの出力地点の分岐路においてそれらが合波されて,出力される。その際に,周波数(振動数)が同じで,位相も同じ光信号は強めあい,位相が逆位相な信号は打ち消しあう。
3.1. Optical DSB-SC Modulator FIG. 7 is a schematic diagram showing an example of an optical DSB-SC modulator. As shown in FIG. 7, the optical DSB-SC modulator is, for example, a first DC signal or a low frequency signal for controlling the phase of light propagating through two arms of a Mach-Zehnder waveguide (MZ) and MZ. And a first RF electrode (RF electrode) for inputting a radio frequency (RF) signal to the two arms constituting the MZ. The phase of light is controlled by a signal applied to the DC electrode, and frequency modulation is performed by a radio frequency signal applied to the RF electrode. In FIG. 7, the DC electrode and the RF electrode are conceptually drawn as separate ones, but may actually be configured as one electrode. When monochromatic light or the like is input to the MZ, the monochromatic light is separated into each arm by a branch path at the input point of the MZ, and is subjected to phase modulation or frequency modulation by the electrode on each arm, and the output point of the MZ is branched. They are combined on the road and output. At that time, optical signals having the same frequency (frequency) and the same phase strengthen each other, and signals having opposite phases cancel each other.

図8は,光DSB-SC変調器の別の例を示す概略図である。図8に示すように,光DSB-SC変調器は,MZと,そのMZの両アームに設けられた位相変調器(PM)と,MZのいずれか一方のアームに設けられた固定位相変調器を有する光DSB-SC変調器であってもよい。
光位相変調器間の位相差は,電極より注入する電界のDC成分により制御できる。また,位相変調器(PM)に入力するRF信号の位相差は,信号源からの電気回路構成を調整することで制御できる。通常2つの光位相変調器に対し互いに逆相となるように調整し両アームにRF信号を入力する。そして,固定位相変調器の位相変調パラメータは,通常πに設定される。固定位相変調器は,たとえば,光導波路に一定の電界を印加する位相変調器であればよい。
FIG. 8 is a schematic diagram showing another example of the optical DSB-SC modulator. As shown in FIG. 8, the optical DSB-SC modulator includes an MZ, a phase modulator (PM) provided in both arms of the MZ, and a fixed phase modulator provided in one of the MZ arms. An optical DSB-SC modulator having
The phase difference between the optical phase modulators can be controlled by the DC component of the electric field injected from the electrode. The phase difference of the RF signal input to the phase modulator (PM) can be controlled by adjusting the electric circuit configuration from the signal source. Usually, the two optical phase modulators are adjusted so as to be in opposite phases, and RF signals are input to both arms. The phase modulation parameter of the fixed phase modulator is usually set to π. The fixed phase modulator may be a phase modulator that applies a constant electric field to the optical waveguide, for example.

3.2.位相変調器(PM)
位相変調器は,たとえば導波路に電界を印加することにより変調する光信号の位相変調量を制御できるものがあげられる。具体的には,導波路と導波路に電界を印加できるようにされた電極とを具備するものがあげられる。
3.2. Phase modulator (PM)
An example of the phase modulator is one that can control the amount of phase modulation of an optical signal to be modulated by applying an electric field to a waveguide. Specifically, there are those provided with a waveguide and an electrode adapted to apply an electric field to the waveguide.

3.3.強度変調器(IM)
本発明において,強度変調器は,基本的にその入力信号の中心周波数をf,変調周波数をfとすると,その主な出力信号の周波数が,f,f±f(f+fとf−f)となるものである。なお,これらのうち周波数fの光信号の強度がもっとも強いものでもよいが,f±fのいずれか又は両方の光強度がfの光強度の1/10〜1/1の強度を持つものが好ましい。なお,特にf成分が抑圧されるものを出力するものを光DSB−SC変調器とよぶ。すなわち,光DSB−SC変調器は,両側波帯の光信号が出力され,キャリア信号の周波数成分fは抑圧される。
3.3. Intensity modulator (IM)
In the present invention, the intensity modulator, f 0 the center frequency of essentially the input signal, when the modulation frequency is f m, the frequency of the main output signal, f 0, f 0 ± f m (f 0 + f m and f 0 are those -f m) and composed. Also it is intended intensity of the optical signal of frequency f 0 is the strongest of these, f 0 the intensity of 1 / 10-1 / 1 of one or both of the light intensity of the light intensity f 0 of ± f m Those having are preferred. Note that what outputs an output in which the f 0 component is suppressed is called an optical DSB-SC modulator. That is, the optical DSB-SC modulator outputs a double-sideband optical signal and suppresses the frequency component f 0 of the carrier signal.

本発明における強度変調器として,たとえば先に説明した光搬送波抑圧両側波帯(DSB−SC)変調器を用いてもよい。強度変調器は,導波路を伝播する光信号の強度(振幅)を制御するための装置である。強度変調器として,周知の可変光減衰器(VOA)を用いることができる。強度変調器として,LNを用いたVOA素子を用いても良い(例えば,特開平10-142569号公報参照)。強度変調器としての,光DSB−SC変調器の具体的な構成として,例えば,導波路上に形成された金属薄膜ヒータを熱源としてマッハツェンダー導波路の一方のアーム導波路に熱光学効果によって屈折率変化を生じさせ,干渉計の出力強度を調整するものがあげられる(例えば,特開2000-352699号公報参照)。強度変調器としての光DSB−SC変調器として,信号源と,信号源から出力される信号の位相を調整する位相調整器とを具備し,マッハツェンダー導波路の両アームに印加される電気信号の位相が例えば180度異なるように調整されるものがあげられる。両アームに印加される電気信号の位相が180度異なるので,光DSB−SC信号を出力できる。本発明の光通信システムでは,光DSB−SC変調器に光変調器の変調周波数fmが印加される。   As the intensity modulator in the present invention, for example, the optical carrier suppression double sideband (DSB-SC) modulator described above may be used. The intensity modulator is a device for controlling the intensity (amplitude) of an optical signal propagating through a waveguide. A known variable optical attenuator (VOA) can be used as the intensity modulator. As the intensity modulator, a VOA element using LN may be used (for example, see Japanese Patent Laid-Open No. 10-142569). As a specific configuration of an optical DSB-SC modulator as an intensity modulator, for example, a metal thin film heater formed on a waveguide is used as a heat source to refract one arm waveguide of a Mach-Zehnder waveguide by a thermo-optic effect. There is one that causes a rate change and adjusts the output intensity of the interferometer (see, for example, JP 2000-352699 A). As an optical DSB-SC modulator as an intensity modulator, an electric signal provided with a signal source and a phase adjuster for adjusting the phase of a signal output from the signal source, and applied to both arms of the Mach-Zehnder waveguide For example, the phase is adjusted so that the phase of the phase is different by 180 degrees. Since the phases of the electrical signals applied to both arms are 180 degrees different, an optical DSB-SC signal can be output. In the optical communication system of the present invention, the modulation frequency fm of the optical modulator is applied to the optical DSB-SC modulator.

3.4.制御装置(PC)
制御装置は,前記光搬送波抑圧両側波帯変調器からの出力光の両側波帯信号のいずれか又は両方を前記位相変調器又は強度変調器が変調することにより生ずる両側波帯信号のいずれかが,前記光搬送波抑圧両側波帯変調器の出力光のうち光搬送波信号又は高次光信号の周波数と一致し,前記光搬送波信号又は高次光信号を打ち消すように制御するものがあげられる。このように制御するため,本発明の制御部は,たとえば,各光変調器の信号源と接続され,各光変調器の変調信号が印加されるタイミングなどを制御する。
3.4. Control device (PC)
The control device is configured to detect either of the double sideband signals of the output light from the optical carrier suppression double sideband modulator or any of the double sideband signals generated by modulating the phase modulator or the intensity modulator. In the output light of the optical carrier-suppressed double-sideband modulator, the output light coincides with the frequency of the optical carrier signal or the higher-order optical signal and is controlled so as to cancel the optical carrier signal or the higher-order optical signal. In order to control in this way, the control unit of the present invention is connected to, for example, the signal source of each optical modulator, and controls the timing at which the modulation signal of each optical modulator is applied.

制御部としてのコンピュータは,たとえば,CPUなどの演算部,メモリ,メインメモリ,入出力部(I/O),及びディスプレイを具備する。そして,CPU,メモリ,I/O,ディスプレイは,システムバスに接続され,相互にデータ転送を行うことができるようにされている。そして,入力部から所定の情報がコンピュータに入力されると,その指令に従ってメインメモリ中のプログラムが読み出され,CPUなどがメインメモリ中のプログラムの指令を受けて適宜処理指令を行い,バスやシステムI/Fを介して出力部から制御信号が出力されるようにされていればよい。   A computer as a control unit includes, for example, a calculation unit such as a CPU, a memory, a main memory, an input / output unit (I / O), and a display. The CPU, memory, I / O, and display are connected to the system bus so that data can be transferred between them. When predetermined information is input to the computer from the input unit, the program in the main memory is read in accordance with the command, and the CPU or the like receives the command of the program in the main memory and issues a processing command as appropriate. The control signal may be output from the output unit via the system I / F.

そして,コンピュータの入出力部は,各信号源に電気的に連結されており,コンピュータからの指令に従って,各信号源は所定の電圧の信号を所定のタイミングで出力する。   The input / output unit of the computer is electrically connected to each signal source, and each signal source outputs a signal having a predetermined voltage at a predetermined timing in accordance with a command from the computer.

具体的な制御方法としては,たとえば,第1次側波帯信号を用いて,キャリア信号を抑圧し,第1次側波帯信号とキャリア信号とは,π/2だけ位相がずれている場合について説明する。各光変調器に入力される信号は制御部により同期が取られており,所定の信号に対して,変調が施されるようにされている。制御部は,第1次側波帯信号の位相をπ/2ずらすような指令を位相変調器へ出力する。位相変調器は,その出力を受けて,導波路に印加する電界を調整し,第1次側波帯信号の位相がπ/2ずれるような電界とする(すなわち,打ち消したい信号と,打ち消すために用いる信号の位相が逆位相(位相がπずれた状態)になるように制御する)。このような信号は,強度変調器に入力される。光変調器では,第1次側波帯信号の周波数がfm[Hz]だけずれたサイト゛ハ゛ント゛信号を発生し,これにより打ち消すために用いられた信号のサイト゛ハ゛ント゛の周波数と,打ち消したい信号(キャリア信号)の周波数とが一致する。よって,これらの光が合波されると,打ち消したい信号の強度を打ち消すように機能することとなる。 As a specific control method, for example, a primary sideband signal is used to suppress a carrier signal, and the primary sideband signal and the carrier signal are shifted in phase by π / 2. Will be described. The signals input to the optical modulators are synchronized by the control unit, and a predetermined signal is modulated. The control unit outputs a command for shifting the phase of the primary sideband signal by π / 2 to the phase modulator. The phase modulator receives the output and adjusts the electric field applied to the waveguide so that the phase of the primary sideband signal is shifted by π / 2 (that is, to cancel the signal to be canceled). Is controlled so that the phase of the signal used for the phase is opposite (the phase is shifted by π). Such a signal is input to the intensity modulator. The optical modulator generates a site band signal in which the frequency of the primary sideband signal is shifted by f m [Hz], and the frequency of the site band of the signal used for cancellation and the signal ( The frequency of the carrier signal) matches. Therefore, when these lights are combined, they function to cancel the intensity of the signal to be canceled.

なお,図示されるように,前記位相変調器及び強度変調器の変調信号は,同一の信号源から分岐した信号を用いることが好ましい。さらに,光搬送波抑圧両側波帯変調器(2)用の変調信号源と,前記位相変調器及び強度変調器の変調信号源としてひとつの信号源を用い,その信号源から出力される信号を分岐して用いるものが好ましい。光搬送波抑圧両側波帯変調器(2)用の信号源と,光変調器(3)用の信号源とを分け,それらの信号源を別々に制御する場合は,全ての信号源の周波数を完全に一致させることは難しいが,光搬送波抑圧両側波帯変調器(2),位相変調器及び強度変調器がひとつの信号源から出力され,分岐された電気信号により制御される場合,その信号によってもたらされる各変調器の変調周波数は容易に一致するので,各変調器への供給する変調信号の強度や位相を制御することにより,容易に最終的な出力光の打ち消し作用などを調整できることとなる。   As shown in the figure, it is preferable to use signals branched from the same signal source as the modulation signals of the phase modulator and the intensity modulator. Furthermore, a modulation signal source for the optical carrier suppression double sideband modulator (2) and one signal source as the modulation signal source of the phase modulator and the intensity modulator are used, and the signal output from the signal source is branched. What is used is preferable. When the signal source for the optical carrier suppression double-sideband modulator (2) is separated from the signal source for the optical modulator (3) and these signal sources are controlled separately, the frequency of all signal sources is Although it is difficult to perfectly match, if the optical carrier-suppressed double sideband modulator (2), phase modulator, and intensity modulator are output from one signal source and controlled by a branched electrical signal, the signal Because the modulation frequency of each modulator brought about by the same is easily matched, it is possible to easily adjust the canceling action of the final output light by controlling the intensity and phase of the modulation signal supplied to each modulator. Become.

4.製造方法
各光変調器は,基本的には,導波路と電極とを具備し,例えば,光の入力部と,変調された光の出力部とを具備するマッハツェンダー導波路(MZ)を有するものがあげられる。マッハツェンダー導波路は,例えば,略六角形状の導波路(これが2つのアームを構成する)を具備し,並列する2つの位相変調器を具備するようにして構成される。
4). Manufacturing Method Each optical modulator basically includes a waveguide and an electrode, and includes, for example, a Mach-Zehnder waveguide (MZ) including a light input portion and a modulated light output portion. Things can be raised. The Mach-Zehnder waveguide includes, for example, a substantially hexagonal waveguide (which forms two arms) and includes two phase modulators arranged in parallel.

通常,マッハツェンダー導波路や電極は基板上に設けられる。基板及び各導波路は,光を伝播することができるものであれば,特に限定されない。例えば,LN基板上に,Ti拡散のニオブ酸リチウム導波路を形成しても良いし,シリコン(Si)基板上に二酸化シリコン(SiO2)導波路を形成しても良い。また,InPやGaAs基板上にInGaAsP,GaAlAs導波路を形成した光半導体導波路を用いても良い。基板として,XカットZ軸伝搬となるように切り出されたニオブ酸リチウム (LiNbO3:LN)が好ましい。これは大きな電気光学効果を利用できるため低電力駆動が可能であり,かつ優れた応答速度が得られるためである。この基板のXカット面(YZ面)の表面に光導波路が形成され,導波光はZ軸(光学軸)に沿って伝搬することとなる。Xカット以外のニオブ酸リチウム基板を用いても良い。また,基板として,電気光学効果を有する三方晶系,六方晶系といった一軸性結晶,又は結晶の点群がC3V,C3,D3,C3h,D3hである材料を用いることができる。これらの材料は,電界の印加によって屈折率変化が伝搬光のモードによって異符号となるような屈折率調整機能を有する。具体例としては,ニオブ酸リチウムの他に,タンタル酸リチウム (LiTO3:LT),β−BaB2O4(略称BBO),LiIO3等を用いることができる。 Usually, the Mach-Zehnder waveguide and the electrode are provided on the substrate. The substrate and each waveguide are not particularly limited as long as they can propagate light. For example, a Ti-diffusion lithium niobate waveguide may be formed on an LN substrate, or a silicon dioxide (SiO 2 ) waveguide may be formed on a silicon (Si) substrate. Alternatively, an optical semiconductor waveguide in which an InGaAsP or GaAlAs waveguide is formed on an InP or GaAs substrate may be used. As the substrate, lithium niobate (LiNbO 3 : LN) cut out so as to achieve X-cut Z-axis propagation is preferable. This is because a large electro-optic effect can be used, so that low power driving is possible and an excellent response speed can be obtained. An optical waveguide is formed on the surface of the X cut surface (YZ surface) of the substrate, and the guided light propagates along the Z axis (optical axis). A lithium niobate substrate other than the X-cut may be used. Further, as the substrate, a triaxial or hexagonal uniaxial crystal having an electro-optic effect, or a material whose crystal point group is C 3V , C 3 , D 3 , C 3h , D 3h can be used. . These materials have a function of adjusting the refractive index so that the change in refractive index is different depending on the mode of propagating light by applying an electric field. Specific examples include lithium tantalate (LiTO 3 : LT), β-BaB 2 O 4 (abbreviation BBO), LiIO 3 and the like in addition to lithium niobate.

基板の大きさは,所定の導波路を形成できる大きさであれば,特に限定されない。各導波路の幅,長さ,及び深さも本発明のモジュールがその機能を発揮しうる程度のものであれば特に限定されない。各導波路の幅としては,たとえば1〜20マイクロメートル程度,好ましくは5〜10マイクロメートル程度があげられる。また,導波路の深さ(厚さ)として,10nm〜1マイクロメートルがあげられ,好ましくは50nm〜200nmである。   The size of the substrate is not particularly limited as long as a predetermined waveguide can be formed. The width, length, and depth of each waveguide are not particularly limited as long as the module of the present invention can exert its function. The width of each waveguide is, for example, about 1 to 20 micrometers, preferably about 5 to 10 micrometers. Further, the depth (thickness) of the waveguide is 10 nm to 1 micrometer, and preferably 50 nm to 200 nm.

第1のバイアス調整電極(DC電極)は,MZを構成する2つのアーム間のバイアス電圧を制御することにより,MZの2つのアームを伝播する光の位相を制御するための電極である。DC電極は,好ましくは通常直流または低周波用電極である。ここで低周波用電極における「低周波」とは,例えば,0Hz〜500MHzの周波数を意味する。なお,この信号源の出力には位相変調器が設けられ,出力信号の位相を制御できるようにされていることが好ましい。   The first bias adjustment electrode (DC electrode) is an electrode for controlling the phase of light propagating through the two arms of the MZ by controlling the bias voltage between the two arms constituting the MZ. The DC electrode is preferably a direct current or low frequency electrode. Here, “low frequency” in the low frequency electrode means, for example, a frequency of 0 Hz to 500 MHz. The output of this signal source is preferably provided with a phase modulator so that the phase of the output signal can be controlled.

変調電極(RF電極)は,MZを構成する2つのアームに変調信号としてのラジオ周波数(RF)信号を入力するための電極である。RF電極としては,進行波型電極または共振型電極が挙げられ,好ましくは共振型電極である。   The modulation electrode (RF electrode) is an electrode for inputting a radio frequency (RF) signal as a modulation signal to the two arms constituting the MZ. As the RF electrode, a traveling wave type electrode or a resonance type electrode can be mentioned, and a resonance type electrode is preferable.

先に説明したとおり,DC電極とRF電極とは,別々の電極とされてもよいし,一つの電極がそれらの機能を果たしてもよい。後者の場合は,一つの電極にバイアス電圧とラジオ周波数信号とが印加されることとなる。   As described above, the DC electrode and the RF electrode may be separate electrodes, or one electrode may perform their functions. In the latter case, a bias voltage and a radio frequency signal are applied to one electrode.

RF電極は,好ましくは高周波電気信号源と接続される。高周波電気信号源は, RF電極へ伝達される信号を制御するためのデバイスであり,公知の高周波電気信号源を採用できる。RF電極,及びRF電極に入力される高周波信号の周波数(f)として,例えば1GHz〜100GHzがあげられる。高周波電気信号源の出力としては,一定の周波数を有する正弦波があげられる。なお,この高周波電気信号源の出力には位相変調器が接続され,出力信号の位相を制御できるようにされていることが好ましい。 The RF electrode is preferably connected to a high frequency electrical signal source. The high-frequency electric signal source is a device for controlling a signal transmitted to the RF electrode, and a known high-frequency electric signal source can be adopted. RF electrodes, and as the frequency (f m) of the high frequency signal input to the RF electrodes, for example 1GHz~100GHz the like. As an output of the high frequency electric signal source, a sine wave having a constant frequency can be mentioned. It is preferable that a phase modulator is connected to the output of the high frequency electric signal source so that the phase of the output signal can be controlled.

RF電極は,たとえば金,白金などによって構成される。RF電極の幅としては,1μm〜10μmが挙げられ,具体的には5μmが挙げられる。RF電極の長さとしては,変調信号の波長の(fm)の0.1倍〜0.9倍が挙げられ,0.18〜0.22倍,又は0.67倍〜0.70倍が挙げられ,より好ましくは,変調信号の共振点より20〜25%短いものである。このような長さとすることで,スタブ電極との合成インピーダンスが適度な領域に留まるからである。より具体的なRF電極の長さとしては,3250μmがあげられる。以下では,共振型電極と,進行波型電極について説明する。 The RF electrode is made of, for example, gold or platinum. Examples of the width of the RF electrode include 1 μm to 10 μm, specifically 5 μm. Examples of the length of the RF electrode include 0.1 to 0.9 times the wavelength (f m ) of the modulation signal, 0.18 to 0.22 times, or 0.67 to 0.70 times, and more preferably, the resonance of the modulation signal. 20-25% shorter than the point. This is because, by using such a length, the combined impedance with the stub electrode remains in an appropriate region. A more specific RF electrode length is 3250 μm. Hereinafter, the resonant electrode and the traveling wave electrode will be described.

共振型光電極(共振型光変調器)は,変調信号の共振を用いて変調を行う電極である。共振型電極としては公知のものを採用でき,例えば特開2002-268025号公報,「川西哲也,及川哲,井筒雅之,"平面構造共振型光変調器",信学技報,TECHNICAL REPORT OF IEICE, IQE2001-3(2001-05)」に記載のものを採用できる。   A resonance type photoelectrode (resonance type optical modulator) is an electrode that performs modulation using resonance of a modulation signal. Known electrodes can be used as the resonance type electrodes, for example, Japanese Patent Laid-Open No. 2002-268025, “Tetsuya Kawanishi, Satoshi Oikawa, Masayuki Izutsu”, “Plane Resonance Type Optical Modulator”, IEICE Technical Report, Technical Report of IEICE. , IQE2001-3 (2001-05) ”.

進行波型電極(進行波型光変調器)は,光波と電気信号を同方向に導波させ導波している間に光を変調する電極(変調器)である(例えば,西原浩,春名正光,栖原敏明著,「光集積回路」(改訂増補版)オーム社,119頁〜120頁)。進行波型電極は公知のものを採用でき,例えば,特開平11−295674号公報,特開平11−295674号公報,特開2002−169133号公報,特開2002-40381号公報,特開2000-267056号公報,特開2000-471159号公報,特開平10-133159号公報などに開示されたものを用いることができる。   A traveling wave type electrode (traveling wave type optical modulator) is an electrode (modulator) that modulates light while guiding and guiding light waves and electrical signals in the same direction (for example, Hiroshi Nishihara, Haruna) Masamitsu, Toshiaki Sugawara, “Optical Integrated Circuits” (Revised Supplement), Ohmsha, pp. 119-120). As the traveling wave type electrode, known ones can be adopted. For example, JP-A-11-295674, JP-A-11-295674, JP-A-2002-169133, JP-A-2002-40381, JP-A-2000- Those disclosed in Japanese Patent No. 267056, Japanese Patent Laid-Open No. 2000-471159, Japanese Patent Laid-Open No. 10-133159, and the like can be used.

進行波型電極として,好ましくは,いわゆる対称型の接地電極配置(進行波型の信号電極の両側に,少なくとも一対の接地電極が設けられているもの)を採用するものである。このように,信号電極を挟んで接地電極を対称に配置することによって,信号電極から出力される高周波は,信号電極の左右に配置された接地電極に印加されやすくなるので,高周波の基板側への放射を,抑圧できる。   As the traveling wave type electrode, a so-called symmetrical ground electrode arrangement (in which at least a pair of ground electrodes are provided on both sides of the traveling wave type signal electrode) is preferably adopted. Thus, by arranging the ground electrodes symmetrically across the signal electrode, the high frequency output from the signal electrode is easily applied to the ground electrodes arranged on the left and right sides of the signal electrode. Can be suppressed.

RF電極が,RF信号用の電極と,DC信号用の電極とを兼ねたものでもよい。すなわち,RF電極及びRF電極のいずれか又は両方は,DC信号とRF信号とを混合して供給する給電回路(バイアス回路)と連結されている。   The RF electrode may serve as both an RF signal electrode and a DC signal electrode. That is, either or both of the RF electrode and the RF electrode are connected to a power supply circuit (bias circuit) that supplies a mixture of a DC signal and an RF signal.

光導波路の形成方法としては,チタン拡散法等の内拡散法やプロトン交換法など公知の形成方法を利用できる。すなわち,本発明の光変調器は,例えば以下のようにして製造できる。まず,ニオブ酸リチウムのウエハー上に,フォトリソグラフィー法によって,チタンをパターニングし,熱拡散法によってチタンを拡散させ,光導波路を形成する。この際の条件は,チタンの厚さを100〜2000オングストロームとし,拡散温度を500〜2000℃とし,拡散時間を10〜40時間としすればよい。基板の主面に,二酸化珪素の絶縁バッファ層(厚さ0.5−2μm)を形成する。次いで,これらの上に厚さ15−30μmの金属メッキからなる電極を形成する。次いでウエハーを切断する。このようして,チタン拡散導波路が形成された光変調器が形成される。   As an optical waveguide formation method, a known formation method such as an internal diffusion method such as a titanium diffusion method or a proton exchange method can be used. That is, the optical modulator of the present invention can be manufactured, for example, as follows. First, titanium is patterned on a lithium niobate wafer by photolithography, and titanium is diffused by thermal diffusion to form an optical waveguide. The conditions at this time may be that the thickness of titanium is 100 to 2000 angstroms, the diffusion temperature is 500 to 2000 ° C., and the diffusion time is 10 to 40 hours. An insulating buffer layer (thickness 0.5-2 μm) of silicon dioxide is formed on the main surface of the substrate. Next, an electrode made of metal plating having a thickness of 15 to 30 μm is formed thereon. The wafer is then cut. In this way, an optical modulator having a titanium diffusion waveguide is formed.

また,電極は上記と同様にして製造できる。例えば,電極を形成するため,光導波路 の形成と同様にフォトリソグラフィー技術によって,同一幅で形成した多数の導波路の両脇に対して電極間ギャップが1マイクロメートル〜50マイクロメートル程度になるように形成することができる。   The electrode can be manufactured in the same manner as described above. For example, in order to form electrodes, the gap between the electrodes is set to about 1 to 50 micrometers with respect to both sides of many waveguides formed with the same width by photolithography technology in the same manner as the formation of the optical waveguide. Can be formed.

なお,シリコン基板を用いる場合は,たとえば以下のようにして,導波路及び電極を製造できる。シリコン(Si)基板上に火炎堆積法によって二酸化シリコン(SiO2)を主成分とする下部クラッド層を堆積し,次に,二酸化ゲルマニウム(GeO2)をドーパントとして添加した二酸化シリコン(SiO2)を主成分とするコア層を堆積する。その後,電気炉で透明ガラス化する。次に,エッチングして光導波路部分を作製し,再び二酸化シリコン(SiO2)を主成分とする上部クラッド層を堆積する。そして,薄膜ヒータ型熱光学強度変調器及び薄膜ヒータ型熱光学位相変調器を上部クラッド層に形成する。 When a silicon substrate is used, for example, the waveguide and the electrode can be manufactured as follows. A lower cladding layer mainly composed of silicon dioxide (SiO 2 ) is deposited on a silicon (Si) substrate by flame deposition, and then silicon dioxide (SiO 2 ) doped with germanium dioxide (GeO 2 ) as a dopant is deposited. A core layer as a main component is deposited. After that, it is made into transparent glass in an electric furnace. Next, an optical waveguide portion is fabricated by etching, and an upper clad layer mainly composed of silicon dioxide (SiO 2 ) is deposited again. Then, a thin film heater type thermo-optic intensity modulator and a thin film heater type thermo-optic phase modulator are formed on the upper cladding layer.

本発明は,光情報通信などの分野で好適に利用されうる。   The present invention can be suitably used in fields such as optical information communication.

図1は,本発明の光搬送波抑圧両側波帯変調システムのブロック図である。FIG. 1 is a block diagram of an optical carrier suppressed double sideband modulation system of the present invention. 図2は,光DSB-SC変調器から出力される理想的な光DSB-SC変調信号を示す概念図である。FIG. 2 is a conceptual diagram showing an ideal optical DSB-SC modulated signal output from the optical DSB-SC modulator. 図3は,光DSB-SC変調器から出力される実際のDSB-SC変調信号を示す概念図である。FIG. 3 is a conceptual diagram showing an actual DSB-SC modulated signal output from the optical DSB-SC modulator. 図4は,位相変調器から出力される変調信号の例を示す概念図である。FIG. 4 is a conceptual diagram illustrating an example of a modulation signal output from the phase modulator. 図5は,強度変調器から出力される変調信号を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining a modulation signal output from the intensity modulator. 図6は,強度変調器から出力される変調信号を示す概念図である。FIG. 6 is a conceptual diagram showing a modulation signal output from the intensity modulator. 図7は,光DSB-SC変調器の例を示す概略図である。FIG. 7 is a schematic diagram illustrating an example of an optical DSB-SC modulator. 図8は,光DSB-SC変調器の別の例を示す概略図である。FIG. 8 is a schematic diagram showing another example of the optical DSB-SC modulator.

符号の説明Explanation of symbols

1 光搬送波抑圧両側波帯変調システム
2 光搬送波抑圧両側波帯変調器
3 光変調器;3a 位相変調器;3b 強度変調器
4 制御部
5 信号源;5a〜5c
1 Optical carrier suppressed double sideband modulation system
2 Optical carrier suppressed double sideband modulator
3 Optical modulator; 3a phase modulator; 3b intensity modulator
4 Control unit
5 Signal source; 5a ~ 5c

Claims (1)

光搬送波抑圧両側波帯変調器(2)と,
前記光搬送波抑圧両側波帯変調器(2)の出力光に変調を加えるための位相変調器(3a)及び強度変調器(3b)と,
前記光搬送波抑圧両側波帯変調器(2),前記位相変調器(3a)及び前記強度変調器(3b)にそれぞれ印加する変調信号を制御するための制御部(4)と,を具備し,
前記位相変調器(3a)は,前記光搬送波抑圧両側波帯変調器(2)からの出力光に含まれる第1の両側波帯信号である第1の下側波帯信号及び第1の上側波帯信号のいずれか又は両方の位相を調整し,
前記強度変調器(3b)は,前記位相変調器(3a)が位相を調整した第1の下側波帯信号及び第1の上側波帯信号のいずれか又は両方に由来する第2の両側波帯信号を発生し,
前記制御部(4)は,
前記光搬送波抑圧両側波帯変調器(2),前記位相変調器(3a)及び前記強度変調器(3b)にそれぞれ印加する変調信号の印加タイミングを制御するとともに,
前記第2の両側波帯信号に含まれる第2の下側波帯信号及び第2の上側波帯信号のいずれかの周波数を,前記光搬送波抑圧両側波帯変調器の出力光のうち光搬送波信号又は高次光信号の周波数と一致させ,
前記第2の両側波帯信号に含まれる第2の下側波帯信号及び第2の上側波帯信号のいずれかの位相が,前記光搬送波抑圧両側波帯変調器の出力光のうち光搬送波信号又は高次光信号の位相と逆位相となるように調整するようにし,
これにより,前記第2の両側波帯信号に含まれる第2の下側波帯信号及び第2の上側波帯信号のいずれかが,前記光搬送波抑圧両側波帯変調器の出力光に含まれる光搬送波信号又は高次光信号を打ち消すように,制御する
光搬送波抑圧両側波帯変調システム。
Optical carrier suppressed double sideband modulator (2) ,
A phase modulator (3a) and an intensity modulator (3b) for modulating the output light of the optical carrier-suppressed double sideband modulator (2) ;
A control unit (4) for controlling modulation signals applied to the optical carrier suppressed double sideband modulator (2), the phase modulator (3a) and the intensity modulator (3b) ,
The phase modulator (3a) includes a first lower sideband signal and a first upper sideband signal which are first double sideband signals included in the output light from the optical carrier suppressed double sideband modulator (2). Adjust the phase of either or both of the waveband signals,
The intensity modulator (3b) includes a second double side wave derived from one or both of the first lower sideband signal and the first upper sideband signal whose phase is adjusted by the phase modulator (3a). A band signal,
The control unit (4)
Controlling the application timing of modulation signals applied to the optical carrier suppressed double sideband modulator (2), the phase modulator (3a) and the intensity modulator (3b), respectively;
The frequency of one of the second lower sideband signal and the second upper sideband signal included in the second double sideband signal is set to an optical carrier wave of the output light of the optical carrier suppression double sideband modulator. Match the frequency of the signal or higher-order optical signal,
The phase of one of the second lower sideband signal and the second upper sideband signal included in the second double sideband signal is an optical carrier of the output light of the optical carrier suppression double sideband modulator. Adjust the signal or the higher-order optical signal so that it is opposite in phase,
Thus, either the second lower sideband signal or the second upper sideband signal included in the second double sideband signal is included in the output light of the optical carrier suppressed double sideband modulator. Optical carrier- suppressed double-sideband modulation system that controls to cancel optical carrier signals or higher-order optical signals .
JP2005228964A 2005-08-08 2005-08-08 Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation Expired - Fee Related JP4793550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228964A JP4793550B2 (en) 2005-08-08 2005-08-08 Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228964A JP4793550B2 (en) 2005-08-08 2005-08-08 Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation

Publications (2)

Publication Number Publication Date
JP2007047230A JP2007047230A (en) 2007-02-22
JP4793550B2 true JP4793550B2 (en) 2011-10-12

Family

ID=37850131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228964A Expired - Fee Related JP4793550B2 (en) 2005-08-08 2005-08-08 Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation

Country Status (1)

Country Link
JP (1) JP4793550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI431951B (en) * 2010-01-08 2014-03-21 Ind Tech Res Inst System and method for frequency up-conversion
KR20120072214A (en) 2010-12-23 2012-07-03 한국전자통신연구원 Terahertz continuous wave generator
JP5640195B2 (en) * 2012-04-04 2014-12-17 独立行政法人情報通信研究機構 Evaluation method of optical modulator with multiple Mach-Zehnder interferometers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3999425B2 (en) * 1999-11-19 2007-10-31 日本放送協会 Transmitter for optical fiber transmission of high frequency signals
JP3845606B2 (en) * 2001-09-26 2006-11-15 株式会社東芝 Light modulation apparatus and light modulation method
JP4092378B2 (en) * 2003-02-21 2008-05-28 独立行政法人科学技術振興機構 Optical millimeter-wave / microwave signal generation method and apparatus

Also Published As

Publication number Publication date
JP2007047230A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4631006B2 (en) Automatic adjustment system for FSK modulator
JP4552032B2 (en) Optical amplitude modulation system capable of eliminating higher-order components
JP4696264B2 (en) Optical FSK / SSB modulator with intensity balance function
JP4547552B2 (en) DSB-SC modulation system capable of erasing carriers and secondary components
JP4771216B2 (en) Ultra-flat optical frequency comb signal generator
JP4665134B2 (en) Fourth harmonic generation system using optical carrier suppressed double sideband modulator
JP4241622B2 (en) Light modulator
US20080031564A1 (en) Optical modulator
JP3957217B2 (en) Light modulator
JP5299859B2 (en) Ultra-flat optical frequency comb signal generator
JP4798338B2 (en) Ultra high extinction ratio modulation method
JP4793550B2 (en) Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation
JP2004302238A (en) Optical ssb modulating device
JP2014066737A (en) Control method for optical modulation device
JP2006267201A (en) Fsk modulation method and fsk modulator for phase continuous light
JP4649581B2 (en) Phase continuous optical frequency shift keying modulator and phase continuous optical frequency shift keying method
JPH09288255A (en) Optical wave guide element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees