JP3999425B2 - Transmitter for optical fiber transmission of high frequency signals - Google Patents

Transmitter for optical fiber transmission of high frequency signals Download PDF

Info

Publication number
JP3999425B2
JP3999425B2 JP33031199A JP33031199A JP3999425B2 JP 3999425 B2 JP3999425 B2 JP 3999425B2 JP 33031199 A JP33031199 A JP 33031199A JP 33031199 A JP33031199 A JP 33031199A JP 3999425 B2 JP3999425 B2 JP 3999425B2
Authority
JP
Japan
Prior art keywords
modulator
optical phase
optical
phase modulator
mach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33031199A
Other languages
Japanese (ja)
Other versions
JP2001147408A (en
Inventor
幹夫 前田
浩之 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP33031199A priority Critical patent/JP3999425B2/en
Publication of JP2001147408A publication Critical patent/JP2001147408A/en
Application granted granted Critical
Publication of JP3999425B2 publication Critical patent/JP3999425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバの分散の影響を受けにくい高周波信号の光ファイバ伝送技術に係り、特に搬送波を抑圧した両側波帯変調による高周波信号の光ファイバ伝送用送信機に関する。
【0002】
【従来の技術】
ミリ波長の高周波信号を光強度変調方式で光ファイバに伝送する場合、光ファイバに分散があると、上側波、搬送波、下側波に到着時間差が生じ、特定の伝送距離で受光すると光電力が大きくても干渉によりミリ波信号が得られないという問題がある。この問題を解決するために、干渉の原因となる側波帯の一方、あるいは搬送波を送信しない方法が考えられている。
【0003】
前者は単一側波帯変調(SSB:Single Side Band)と呼ばれており、後者は両側波帯抑圧搬送波変調(DSB−SC:Double Side Band−Suppressed Carrier)と呼ばれている。
【0004】
図2に示すようにMZ変調器10中の2つの光位相変調器11,12に逆位相の正弦波を加え、その出力光を光位相差πで合成するとDSB−SC変調波が得られることはよく知られている。DSB−SCは分散の影響を受けにくい別の方式であるSSBと比較すると、光変調器の動作周波数が半分でよいという長所がある(古田,前田,渋谷,小山田:“MZ型光変調器を用いた高周波信号の光ファイバ伝送方式”信学技報、OCS99−51、pp.57−62.)。
【0005】
その反面、DSB−SCは光伝送系が2逓倍器として動作するため、適用できる高周波信号方式がFSK(高周波FSK信号の光ファイバ伝送方式:特願平10−226166号)、ASK(ASK高周波信号の光ファイバ伝送用光送信機:特願平10−182411号)等に制限されるという短所がある。
【0006】
DSB−SCにおいて上記変調方式の制限をなくした光ファイバ伝送用送信機の一例を図3に示す。図3において、1つの光源の出射光を光位相差をπに設定した2個のMZ(マッハツェンダ)変調器10,20により分配し、MZ変調器10,20の対の光位相変調器11,12,21,22のそれぞれに、正弦波、すなわち、逆位相関係で、MZ変調器10,20でπ/2の光位相差となる周波数fmの正弦波(図3参照)を加え、それぞれの出射光を光位相差π/2で合成する。合成光は3台目のMZ変調器30に導かれる。MZ変調器30の上の光導波路には下側波が、下の導波路には上側波が分離されるので、一方に設けた電極31により,正弦波よりも十分低い搬送周波数fIFの変調信号で位相変調を行うと、不図示の受光器で2fm−fIFが得られることは上記のDSB−SC変調の原理から容易に類推が容易である。
【0007】
【発明が解決しようとする課題】
図3の光回路により生成した光変調信号を受信機側で受光すると、不要な成分α(周波数2fm)やβ(搬送周波数2fm+fIF)が発生する。αの正弦波は希望信号の近傍で、かつ、希望信号よりも強度が大きいため除去するには減衰特性の厳しいフィルタが必要となる。
【0008】
図3の光回路において、変調信号の代わりにベースバンド信号で位相変調すれば不要な成分は発生しなくなる。しかしながら、この場合には、受光後に得られる高周波信号は無線系で一般に用いられている直交変調波とは異なる。
【0009】
例えば、QPSK変調を行うには図3のMZ変調器30の光位相変調器31に加える信号は4値の振幅をとる必要がある。その振幅の値は信号が加えられていない光位相に対して−3π/4,−π/4,+π/4,+3π/4だけ移相するように選ばれる。位相の遷移は全て円周上で、電気の直交変調のように円の中心を通る遷移がない。結果として直交変調波に対して通常用いられるロールオフ特性の送受への均等(ルート)配分を適用とする、ビット誤り率特性が大きく劣化することが報告されている(山本他:“PSK光波多重における光波間隔の検討”映情メ学会98年次大会6−6)。
【0010】
そこで、本発明の目的は、不要な成分がなく、入力変調信号と同じスペクトラムが受信側で得られる高周波FSK信号の光ファイバ伝送用送信機を提供することにある。
【0012】
【課題を解決するための手段】
このような目的を達成するために、請求項1の発明は、光ファイバに伝送するための送信高周波変調信号を送信する光ファイバ伝送用送信機であって、光源と、該光源からの出射光を分配する分配器と、前記分配器により分配された光をそれぞれ変調する第1のマッハツェンダ変調器および第2のマッハツェンダ変調器と前記第1のマッハツェンダ変調器に設けられた第1の光位相変調器および第2の光位相変調器と、前記第2のマッハツェンダ変調器に設けられた第3の光位相変調器および第4の光位相変調器とを具え、前記送信高周波変調信号と高周波搬送波の周波数の正弦波が用意されており、前記第1の光位相変調器〜第4の光位相変調器に対して合成して加える前記送信高周波変調信号および高周波搬送波の正弦波の位相関係を
正弦波 送信高周波変調信号
第1の光位相変調器 0 0
第2の光位相変調器 π π
第3の光位相変調器 −0.5π 0.5π
第4の光位相変調器 0.5π −0.5π
となし、前記第1の光位相変調器と前記第2の光位相変調器の出力光をπの位相差で合成し、前記第3の光位相変調器と前記第4の光位相変調器の出力光をπの位相差で合成し、前記第1のマッハツェンダ変調器第2のマッハツェンダ変調器の出力光をπ/2の位相差で合成することを特徴とする。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を詳細に説明する。
【0014】
(第1の実施形態)
本願発明者は、「BPSK変調信号を伝送しようとすると、光伝送系が2逓倍器として動作するため,受光後の高周波信号から変調成分が失われ、この原因が側波帯が両方とも変調されるためである」ことに気が付き、一方の側波帯を無変調とする本実施形態を発明した。
【0015】
本発明第1の実施形態の回路構成を図1に示す。図1において、図2の従来例と同様の個所には同一の符号を付している。
【0016】
図1において、光位相変調器11には正弦波と不図示の高周波変調信号発生回路からの送信高周波変調信号を共に0(ゼロ)、光位相変調器12には正弦波と高周波変調信号を共にπの位相関係となるように合成して加える。光位相変調器21には正弦波を−π/2、高周波信号をπ/2の位相関係で合成し、光位相変調器22には正弦波をπ/2、高周波信号を−π/2の位相関係で合成して加える。以上の正弦波と高周波変調信号の関係を下記に示す。
【0017】

Figure 0003999425
MZ変調器10および20の出力光はπ/2の位相で合成される。これにより光出力のスペクトルから分るように受信機側では2fmの変調波が得られる。
【0018】
(第2の実施形態)
図1の電気移相器をハイブリッドで置き換えた回路構成を図4に示す。図4において、101は光周波数fcの光源、102は光2分配器である。103は搬送波周波数がfmの高周波変調信号(発生器)、104は周波数fmの正弦波105は90度のハイブリッドである。106は180度のハイブリッド、107はMZ変調器(図1のMZ変調器1)である。108は電極(図1の光位相変調器11)、109は電極(図1の光位相変調器12)である。110はMZ変調器(図1のMZ変調器20)、111は電極(図1の光位相変調器21)、112は電極(図1の光位相変調器22)である。113は光位相差π/2の光2合成器、114は出力光である。なお、上記2つのMZ変調器の光合成位相差は上記電極に重畳する直流電圧を調整することで容易にπ/2に設定可能である。
【0019】
回路動作は図1の回路と同じであり、詳細な説明を要しないであろう。
【0020】
【発明の効果】
以上、説明したように、本発明によれば、送信する高周波の変調方式に依存しないDSB−SC信号を簡易な光回路で実現できる。また、従来発生していた不要な光成分も発生しない。
【図面の簡単な説明】
【図1】本発明実施例の回路構成を示す回路図である。
【図2】従来の回路構成を示す回路図である。
【図3】従来の他の回路を示す回路図である。
【図4】本発明実施形態の他の回路構成を示す回路図である。
【符号の説明】
10、20,30 MZ変調器
11,12,21,22、31 光位相変調器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency signal optical fiber transmission technique that is not easily affected by optical fiber dispersion, and more particularly, to a high-frequency signal optical fiber transmission transmitter using double-sideband modulation with suppressed carrier waves.
[0002]
[Prior art]
When transmitting millimeter-wave high-frequency signals to an optical fiber using the optical intensity modulation method, if there is dispersion in the optical fiber, there will be a difference in arrival time between the upper wave, carrier wave, and lower wave. There is a problem that even if it is large, a millimeter wave signal cannot be obtained due to interference. In order to solve this problem, a method of not transmitting one of the sidebands causing interference or a carrier wave has been considered.
[0003]
The former is called single sideband modulation (SSB), and the latter is called double sideband suppressed carrier modulation (DSB-SC: Double Sideband Suppressed Carrier).
[0004]
As shown in FIG. 2, a DSB-SC modulated wave can be obtained by adding anti-phase sine waves to the two optical phase modulators 11 and 12 in the MZ modulator 10 and synthesizing the output light with an optical phase difference π. Is well known. DSB-SC has the advantage that the operating frequency of the optical modulator may be half compared to SSB, which is another system that is not easily affected by dispersion (Furuta, Maeda, Shibuya, Koyamada: “MZ type optical modulator High-frequency signal optical fiber transmission system used "Science Technical Report, OCS 99-51, pp. 57-62.).
[0005]
On the other hand, since the optical transmission system operates as a doubler in DSB-SC, applicable high frequency signal systems are FSK (optical fiber transmission system for high frequency FSK signals: Japanese Patent Application No. 10-226166), ASK (ASK high frequency signal). The optical transmitter for optical fiber transmission: Japanese Patent Application No. 10-182411) and the like.
[0006]
FIG. 3 shows an example of an optical fiber transmission transmitter in which the above-described modulation scheme restriction is eliminated in DSB-SC. In FIG. 3, the light emitted from one light source is distributed by two MZ (Mach-Zehnder) modulators 10 and 20 having an optical phase difference set to π, and a pair of optical phase modulators 11 and 20 of the MZ modulators 10 and 20 12, 21, and 22 are each added with a sine wave, that is, a sine wave having a frequency fm (see FIG. 3) having an optical phase difference of π / 2 in the MZ modulators 10 and 20 in an antiphase relationship. The emitted light is synthesized with an optical phase difference of π / 2. The combined light is guided to the third MZ modulator 30. Since the lower side wave is separated from the optical waveguide above the MZ modulator 30 and the upper side wave is separated from the lower waveguide, the electrode 31 provided on one side modulates the carrier frequency f IF sufficiently lower than the sine wave. When phase modulation is performed with a signal, it is easy to analogize from the principle of DSB-SC modulation that 2fm-f IF can be obtained with a light receiver (not shown).
[0007]
[Problems to be solved by the invention]
When the optical modulation signal generated by the optical circuit of FIG. 3 is received on the receiver side, unnecessary components α (frequency 2fm) and β (carrier frequency 2fm + f IF ) are generated. Since the α sine wave is in the vicinity of the desired signal and has a higher intensity than the desired signal, a filter with a strict attenuation characteristic is required to remove it.
[0008]
In the optical circuit of FIG. 3, unnecessary components are not generated if phase modulation is performed with a baseband signal instead of a modulation signal. However, in this case, the high-frequency signal obtained after light reception is different from the orthogonal modulation wave generally used in the radio system.
[0009]
For example, in order to perform QPSK modulation, a signal applied to the optical phase modulator 31 of the MZ modulator 30 in FIG. The value of the amplitude is selected so that the phase is shifted by −3π / 4, −π / 4, + π / 4, + 3π / 4 with respect to the optical phase to which no signal is added. All the phase transitions are on the circumference, and there is no transition through the center of the circle like the quadrature modulation of electricity. As a result, it has been reported that the bit error rate characteristic is greatly deteriorated by applying the equal distribution (root) distribution to the transmission and reception of the roll-off characteristic normally used for the orthogonal modulation wave (Yamamoto et al .: “PSK lightwave multiplexing”). Examination of Light Wave Intervals in the “The 98th Annual Conference 6-6)
[0010]
Accordingly, an object of the present invention is to provide a transmitter for transmitting an optical fiber of a high frequency FSK signal that has no unnecessary components and can obtain the same spectrum as an input modulation signal on the receiving side.
[0012]
[Means for Solving the Problems]
In order to achieve such an object, the invention of claim 1 is an optical fiber transmission transmitter for transmitting a transmission high-frequency modulation signal for transmission to an optical fiber, the light source and light emitted from the light source. a divider for dividing the said the first Mach-Zehnder modulator and the second Mach-Zehnder modulator for modulating the distributor by the distributed light, respectively, said first first optical phase provided in MZ modulator comprising a modulator and a second optical phase modulator, and a third optical phase modulator and the fourth optical phase modulator provided in said second Mach-Zehnder modulator, the transmission high-frequency modulation signal and high-frequency carrier A sine wave having a frequency of 1 is prepared, and the phase relationship between the transmission high frequency modulation signal and the sine wave of the high frequency carrier wave is synthesized and added to the first optical phase modulator to the fourth optical phase modulator.
Sine wave transmission high frequency modulation signal first optical phase modulator 0 0
Second optical phase modulator π π
Third optical phase modulator −0.5π 0.5π
Fourth optical phase modulator 0.5π−0.5π
The output light of the first optical phase modulator and the second optical phase modulator is synthesized with a phase difference of π, and the third optical phase modulator and the fourth optical phase modulator The output light is synthesized with a phase difference of π, and the output lights of the first Mach-Zehnder modulator and the second Mach-Zehnder modulator are synthesized with a phase difference of π / 2.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
(First embodiment)
The inventor of the present application stated, “When trying to transmit a BPSK modulated signal, the optical transmission system operates as a doubler, so that the modulation component is lost from the high-frequency signal after light reception, and this is because both sidebands are modulated. Therefore, the present embodiment has been invented in which one sideband is unmodulated.
[0015]
The circuit configuration of the first embodiment of the present invention is shown in FIG. In FIG. 1, the same parts as those in the conventional example of FIG.
[0016]
In FIG. 1, a sine wave and a transmission high-frequency modulation signal from a high-frequency modulation signal generation circuit (not shown) are both 0 (zero) in the optical phase modulator 11, and a sine wave and a high-frequency modulation signal are both in the optical phase modulator 12. It is synthesized and added so as to have a phase relationship of π. The optical phase modulator 21 combines a sine wave with a phase relationship of −π / 2 and a high frequency signal with a phase relationship of π / 2, and the optical phase modulator 22 has a sine wave of π / 2 and a high frequency signal of −π / 2. Add by phase relationship. The relationship between the above sine wave and the high frequency modulation signal is shown below.
[0017]
Figure 0003999425
The output lights of the MZ modulators 10 and 20 are combined with a phase of π / 2. As a result, a 2 fm modulated wave is obtained on the receiver side as can be seen from the spectrum of the optical output.
[0018]
(Second Embodiment)
FIG. 4 shows a circuit configuration in which the electric phase shifter of FIG. 1 is replaced with a hybrid. In FIG. 4, reference numeral 101 denotes a light source having an optical frequency fc, and reference numeral 102 denotes an optical two distributor. 103 is a high frequency modulation signal (generator) having a carrier frequency of fm, 104 is a sine wave of frequency fm, and 105 is a 90 degree hybrid. Reference numeral 106 denotes a 180-degree hybrid, and reference numeral 107 denotes an MZ modulator (MZ modulator 1 in FIG. 1). Reference numeral 108 denotes an electrode (optical phase modulator 11 in FIG. 1), and reference numeral 109 denotes an electrode (optical phase modulator 12 in FIG. 1). 110 is an MZ modulator (MZ modulator 20 in FIG. 1), 111 is an electrode (optical phase modulator 21 in FIG. 1), and 112 is an electrode (optical phase modulator 22 in FIG. 1). 113 is an optical 2 combiner having an optical phase difference of π / 2, and 114 is output light. Note that the photosynthesis phase difference between the two MZ modulators can be easily set to π / 2 by adjusting the DC voltage superimposed on the electrode.
[0019]
The circuit operation is the same as the circuit of FIG. 1 and will not require detailed description.
[0020]
【The invention's effect】
As described above, according to the present invention, a DSB-SC signal that does not depend on a high-frequency modulation scheme to be transmitted can be realized with a simple optical circuit. Further, unnecessary light components that have been generated conventionally are not generated.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a circuit configuration of an embodiment of the present invention.
FIG. 2 is a circuit diagram showing a conventional circuit configuration.
FIG. 3 is a circuit diagram showing another conventional circuit.
FIG. 4 is a circuit diagram showing another circuit configuration of the embodiment of the present invention.
[Explanation of symbols]
10, 20, 30 MZ modulator 11, 12, 21, 22, 31 Optical phase modulator

Claims (1)

光ファイバに伝送するための送信高周波変調信号を送信する光ファイバ伝送用送信機であって、
光源と、
該光源からの出射光を分配する分配器と、
前記分配器により分配された光をそれぞれ変調する第1のマッハツェンダ変調器および第2のマッハツェンダ変調器と
前記第1のマッハツェンダ変調器に設けられた第1の光位相変調器および第2の光位相変調器と、
前記第2のマッハツェンダ変調器に設けられた第3の光位相変調器および第4の光位相変調器とを具え、
前記送信高周調信号と高周波搬送波の周波数の正弦波が用意されており、前記第1の光位相変調器〜第4の光位相変調器に対して合成して加える前記送信高周波変調信号および高周波搬送波の正弦波の位相関係を
正弦波 送信高周波変調信号
第1の光位相変調器 0 0
第2の光位相変調器 π π
第3の光位相変調器 −0.5π 0.5π
第4の光位相変調器 0.5π −0.5π
となし、
前記第1の光位相変調器と前記第2の光位相変調器の出力光をπの位相差で合成し、前記第3の光位相変調器と前記第4の光位相変調器の出力光をπの位相差で合成し、
前記第1のマッハツェンダ変調器第2のマッハツェンダ変調器の出力光をπ/2の位相差で合成することを特徴とする光ファイバ伝送用送信機。
An optical fiber transmission transmitter for transmitting a transmission high-frequency modulation signal for transmission to an optical fiber,
A light source;
A distributor for distributing light emitted from the light source;
A first Mach-Zehnder modulator and a second Mach-Zehnder modulator for respectively modulating the light distributed by the distributor ;
A first optical phase modulator and a second optical phase modulator provided in the first Mach-Zehnder modulator;
A third optical phase modulator and a fourth optical phase modulator provided in the second Mach-Zehnder modulator,
Said transmission being high sinusoid of frequency of circumferential waves varying Choshin No. and high-frequency carrier is prepared, the transmission frequency modulation added synthesizing and relative to said first optical phase modulator to fourth optical phase modulators The phase relationship between the signal and the sine wave of the high-frequency carrier
Sine wave transmission high frequency modulation signal first optical phase modulator 0 0
Second optical phase modulator π π
Third optical phase modulator −0.5π 0.5π
Fourth optical phase modulator 0.5π−0.5π
And none,
The output lights of the first optical phase modulator and the second optical phase modulator are combined with a phase difference of π, and the output lights of the third optical phase modulator and the fourth optical phase modulator are combined. Combining with a phase difference of π,
An optical fiber transmission transmitter characterized by combining output lights of the first Mach-Zehnder modulator and the second Mach-Zehnder modulator with a phase difference of π / 2.
JP33031199A 1999-11-19 1999-11-19 Transmitter for optical fiber transmission of high frequency signals Expired - Fee Related JP3999425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33031199A JP3999425B2 (en) 1999-11-19 1999-11-19 Transmitter for optical fiber transmission of high frequency signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33031199A JP3999425B2 (en) 1999-11-19 1999-11-19 Transmitter for optical fiber transmission of high frequency signals

Publications (2)

Publication Number Publication Date
JP2001147408A JP2001147408A (en) 2001-05-29
JP3999425B2 true JP3999425B2 (en) 2007-10-31

Family

ID=18231228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33031199A Expired - Fee Related JP3999425B2 (en) 1999-11-19 1999-11-19 Transmitter for optical fiber transmission of high frequency signals

Country Status (1)

Country Link
JP (1) JP3999425B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273517B2 (en) 2003-03-25 2009-06-03 横河電機株式会社 Integrated circuit
JP4604162B2 (en) * 2004-08-25 2010-12-22 独立行政法人情報通信研究機構 RZ-FSK modulator and UWB signal generator
JP2006267201A (en) * 2005-03-22 2006-10-05 National Institute Of Information & Communication Technology Fsk modulation method and fsk modulator for phase continuous light
JP4665134B2 (en) 2005-08-08 2011-04-06 独立行政法人情報通信研究機構 Fourth harmonic generation system using optical carrier suppressed double sideband modulator
JP4793550B2 (en) * 2005-08-08 2011-10-12 独立行政法人情報通信研究機構 Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation
WO2007088636A1 (en) 2006-02-03 2007-08-09 Fujitsu Limited Light modulator driving circuit
JP5055968B2 (en) * 2006-11-14 2012-10-24 富士通株式会社 Differential quadrature phase shift modulator
US7912378B2 (en) * 2007-01-26 2011-03-22 Fujitsu Limited Modulating a signal using a fractional phase modulator

Also Published As

Publication number Publication date
JP2001147408A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
US8184988B2 (en) Optical modulating device with frequency multiplying technique for electrical signals
JP4646048B2 (en) Single sideband signal light generation method and single sideband signal light generation circuit
JP3609447B2 (en) System for dispersion compensation in optical fiber high-speed systems.
EP2197165A1 (en) Quadrature amplitude modulation signal generating device
US8301034B2 (en) Optical modulation device
US6384954B1 (en) Optical modulator
KR100809119B1 (en) Carrier modulator for use in a transmitter or transceiver
CN110178321B (en) Signal transmitting method and device, transmitter and signal transmission system
JP3999425B2 (en) Transmitter for optical fiber transmission of high frequency signals
US8594512B2 (en) Method and apparatus for transmission of two modulated signals via an optical channel
Wang et al. Photonic filterless scheme to generate V-band OFDM vector mm-wave signal without precoding
CN111917475B (en) System for simultaneously providing wired and single side band wireless services based on single modulator
JP2000056279A (en) Light transmitter for transmitting high frequency fsk signal through optical fiber
Wang et al. A scheme to generate 16QAM-OFDM vector mm-wave signal based on a single MZM without optical filter and precoding
EP1749357B1 (en) Method and apparatus for producing high extinction ratio data modulation formats
JP4002048B2 (en) Signal generating apparatus and up-conversion system for optical fiber transmission, and optical fiber transmission system for high-frequency signal
US20020080454A1 (en) Method, system and apparatus for optically transferring information
WO2022260749A3 (en) Constant envelope bi-phase shift keying (ce-bpsk) modulation for "mode s" and other communication applications
US5940365A (en) AM data multiplexing modulation apparatus
JP3730789B2 (en) Light modulator
US20220166517A1 (en) Optical transmitter and optical transmission method
WO2022001546A1 (en) Signal transmission method and apparatus, and network device
JP2000019470A (en) Light transmitter for sending ask high frequency signal by optical fiber
JP5182154B2 (en) Optical communication system
KR100246539B1 (en) A direct conversion rz ssb transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140817

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees