JP3573180B2 - Polling method for Mach-Zehnder interferometer arm - Google Patents

Polling method for Mach-Zehnder interferometer arm Download PDF

Info

Publication number
JP3573180B2
JP3573180B2 JP6296196A JP6296196A JP3573180B2 JP 3573180 B2 JP3573180 B2 JP 3573180B2 JP 6296196 A JP6296196 A JP 6296196A JP 6296196 A JP6296196 A JP 6296196A JP 3573180 B2 JP3573180 B2 JP 3573180B2
Authority
JP
Japan
Prior art keywords
waveguide
optical
silica
light
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6296196A
Other languages
Japanese (ja)
Other versions
JPH09258151A (en
Inventor
淳 阿部
毅 北川
邦典 服部
学 小熊
明 姫野
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6296196A priority Critical patent/JP3573180B2/en
Publication of JPH09258151A publication Critical patent/JPH09258151A/en
Application granted granted Critical
Publication of JP3573180B2 publication Critical patent/JP3573180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に光導波路を配置した集積光デバイス、詳しくは、光通信分野等で用いられる光スイッチ等の導波型光デバイスの製造方法に関するものである。
【0002】
【従来の技術】
平面基板上に作製された、石英系ガラスを主成分とする単一モード石英系光導波路としては、例えば「M.Kawachi“Silica waveguides on silicon and their application to integrated−optic component”J.Quatum.Electron.,vol.22,1990,pp.391〜416(文献1)」等に記載されたものがある。
【0003】
このような埋め込み型石英系光導波路は、石英系ガラスの優れた被加工性により、設計値通りの導波路を作製することができ、量産性にも優れている。また、石英系光導波路は損失が低く、しかも一般に使用されている石英系単一モード光ファイバとの接続整合性も優れているため、実用的な集積光デバイスの実現手段として期待され、現在までに波長合分波器や光スイッチ等の数多くの光デバイスの開発が行われてきている。
【0004】
石英系光導波路を用いて実現された光スイッチとしては、例えば「N.Takato, et al.“Silica−Based Single−ModeWaveguides on Silicon and their Application to Guided−Wave Optical Interferometers”J.Light Technol.,VOL.6,1988,pp.1003〜1010(文献2)」等に記載されているような熱光学効果を利用した「熱光学スイッチ(TΟスイッチ)」がある。
【0005】
石英系光導波路によるTOスイッチでは、低損失で集積性に優れた良好なスイッチを実現できるが、その応答速度はおよそ1ms程度であり、より高速応答可能な石英系光スイッチが求められている。.
一方、最近、ポーリング処理を施した石英系ファイバにおいて、電圧印加により生じる屈折率変化(電気光学効果)が報告されている。
【0006】
通常、石英系ガラスはランダム系であり、擬似的に中心対称性を有すると考えられ、1次の電気光学効果(ポッケルス効果:印加電場強度に比例した屈折率変化)は原理的にみることができない。
【0007】
しかしながら、このようなガラス系に対し、「電場を印加した状態で温度を上げ、電場を印加したまま温度を下げる」という「熱ポーリング」処理を行うことにより、ポッケルス効果を誘起することができる。このポーリング処理によるポッケルス効果の誘起は石英系ガラスを主成分とする光ファイバにおいてもみられ、最近、ポーリング処理を行った石英系ファイバにおいて、電圧印加により生じる屈折率変化(電気光学効果)が報告されている(例えば「P.G.Kazansky,et al.“Pockels effect in thermally poled silica optical fibers”Electronics Lett.,vol.31,1995,pp.62〜63(文献3)」参照)。
【0008】
このポーリング処理によって誘起された石英系ガラス中のポッケルス効果による応答速度は非常に高速であり、10ns以下の応答速度を有している。即ち、このポッケルス効果を石英系ガラス導波路中に誘起することにより、導波路の屈折率を電圧印加によって、10ns以下(100MHz以上)の高速で制御できることを示している。
【0009】
この電気光学効果を利用して、高消光比を有する高速な光スイッチや光強度変調器を実現するには、マッハ・ツェンダ干渉計(MZI)等の干渉計を構成することが有用であるが、石英系ファイバやバルク光部品等で構成するマッハ・ツェンダ干渉計は温度変動等の外部擾乱に弱く、不安定であり、実用的な光デバイスにならないという問題を有している。
【0010】
これに対し、先に述べた文献1に記載されている、Si基板上に石英系導波路で構成されたMZIは光ファイバやバルク光部品で構成されたMZIに比べて外部擾乱に強く、透過光強度等の光学特性が安定している。さらに、この石英系導波路の干渉計は石英系ガラスの加工が容易なため、高精度な加工を行うことができ、設計値通りの作製が可能であるという利点を有している。
【0011】
この石英系導波路で構成したマッハ・ツェンダ干渉計のアーム導波路の部分に熱ポーリング処理を行い、電気光学効果の誘起を行えば、石英系導波路による電気光学効果を利用した、高速応答性を有する実用的な光スイッチや光強度変調器を実現することができる。
【0012】
しかしながら、先に述べた文献3に示されているように「熱ポーリング」によって誘起されるポッケルス効果の効率は、電気光学定数rの値で約0.05pm/Vであり、あまり大きな値ではなかった。
【0013】
このポッケルス効果の効率を改善する手段として、Ge添加石英系光ファイバに対し、電場を印加しながら紫外レーザ光(波長193nm)を外部より照射すること、即ち「光ポーリング」(「光励起ポーリング;optically induced poling」あるいは「光補助ポーリング;optically asisted poling」ともいう。)を行うことにより、電気光学定数r=6pm/Vという、大きな電気光学効果が誘起されたことが報告されている(例えば「T.Fujiwara,D.Wong,Y.Zhao,S.Fleming,S.Poole and M.Sceats,Electron.Lett.,31,1995,573(文献4)」参照)。
【0014】
【発明が解決しようとする課題】
しかしながら、前述したポーリング方法を平面基板上に作製された導波路に対して適用しようとする場合、外部から照射される光が、しばしば導波路近傍に作製された電極に損傷を与えるという問題があった。また、光を外部からコア部分に照射するため、基板に対して垂直な方向に電場を印加する、コアの垂直方向の上部に電極を配置することはできないという電極作製上の問題があった。
【0015】
本発明の日的は、低損失で加工性及び集積性に優れ且つ高速応答性を有する石英系の導波型光デバイスを製造し得る光導波路のポーリング方法を提供することにある。
【0016】
【課題を解決するための手段】
前記課題を解決するため、本発明では、基板上に石英系ガラスよりなるコアを石英系ガラスよりなり且つコアより屈折率が低いクラッドで囲んで作製した光導波路であり、2つの方向性結合器と前記2つの方向性結合器を結ぶ2本のアーム導波路からなる光導波路にポーリング処理を行う方法であって、前記光導波路に紫外光または可視光を伝播させながら、前記ポーリング処理が完了した前記アーム導波路の屈折率を制御するオーバークラッド上に配置された電極によって、前記アーム導波路に外部電場を印加して前記アーム導波路の電気光学定数を増大させるマッハツェンダ干渉計アームのポーリング方法を提案する。
【0017】
光導波路に紫外光または可視光を「伝播照射」しながら電場を印加する「伝播照射光ポーリング」は、コア部分に閉じ込められた高強度な光によって、10数cm以上に及ぶ光導波路に対し、一度に光照射することができる。また、「外部照射」を行う時には、しばしばコア近傍に設けられた電圧印加用の電極やクラッド部分に損傷を与えることがあったが、「伝播照射」によれば、電極に損傷を与えることなく光照射することができる。また、コア部分を伝播させて光を照射するため、基板に対して垂直な方向(TM方向)に電場を印加する、コアの垂直方向の上部に電極を配置することも可能であり、電極作製上の制約が少ない。
【0018】
この「光ポーリング処理」を施したMZIのアーム導波路の部分に電気光学効果が誘起され、電場印加に対し屈折率変化を生じる。
【0019】
例えば、TM方向に外部電場Eexを印加した時に生じる屈折率変化の大きさΔnは、
ΔnTE=(1/2)rTE ex
ΔnTM=(1/2)rTM ex ……(1)
と表すことができる(例えば、「西原 他“光集積回路”(オーム杜)」参照)。ここで、r,rはTM方向に外部電場を印加した場合に対応したTE,TM方向の電気光学定数、nTE,nTMはそれぞれTE,TM方向の屈折率を示す。
【0020】
従って、外部電場強度が強ければ強いほど大きな屈折率変化を得ることができる。
【0021】
この電場印加は、ポーリング時に用いた電極にそのまま電圧を印加することにより可能である。アーム導波路の部分でこの電場印加により生じる屈折率変化(電気光学効果)を利用し、MZIを光スイッチや光強度変調器として動作させることが可能である。この時、MZIは基板上に作製されているため、光ファイバやバルク光部品で構成されたMZIに比べて、温度変動等の外部擾乱に対して安定な動作を示す実用的な光部品となる。
【0022】
【発明の実施の形態】
図1は本発明方法で製造する導波路型光デバイスの一例、ここではマッハ・ツェンダ干渉計を有する光スイッチを示すもので、同図(a) は全体斜視図、同図(b) は要部断面図である。図中、11はSi基板、12,13は導波路(GeO添加石英系ガラスコア)、14はアンダークラッド、15はオーバークラッド、16は薄膜電極、17,18は導波路12,13を近接させて構成した方向性結合器である。
【0023】
ここで、光導波路の作製は、例えば前述した文献2に示された方法と同様に行った。即ち、Si基板11上にアンダークラッド14及びコア12,13となる石英系ガラスを主成分とするガラス膜層を火炎堆積(FHD)法により形成し、その後、反応性イオンエッチング(RIE)によりコア部分のリッジ構造を形成し、再びFHD法により石英系ガラスを主成分とするオーバークラッド15による埋め込みを行い、光導波路の作製を行った。ここで、コアはGe添加石英系ガラスで形成し、コアとクラッドとの比屈折率差Δを0.7%とし、コアの構造は矩形で7μm×7μmとした。
【0024】
前述した2つの方向性結合器17,18と、導波路12,13のうちの方向性結合器17,18間を結ぶアーム導波路とにより、マッハ・ツェンダ干渉計が構成される。
【0025】
導波路作製後、一方のアーム導波路のコア近傍にクロムCr及び金Auを蒸着し、所望の形状にパターン化加工して電極16を形成した。ここで、コアに平行な電極部分の長さL=6.5cm、電極間隔d=45μmとした。電極形成に用いる材料は、Pt,NiCr,TaN,Al等、導電性の高いものであれば、どのようなものでも良い。
【0026】
前述した如くして作製した光スイッチ、例えば10に対し、図2に示すように、モード同期(ML)Qスイッチ(Qsw)動作Nd3+:YAGレーザ(ML−Qsw−Nd3+:YAGレーザ)21からの波長1064nmの光の第二高調波(SH)光(波長532nm)をKTP結晶22により発生させ、このSH光を波長1064nmの光は通過させ、波長532nmの光は反射するダイクロイックミラー23、波長532nmの反射率が100%のミラー24及びレンズ25を介してポートP1に導き、導波路12を伝播させながら、電圧源26より5kVの電圧印加を30分間行った。
【0027】
ポートP1から導入された光は方向性結合器17,18が図3に示す波長特性を有するため、導波路13に結合せず、全て導波路12を伝播した。30分後にSH光を遮断し、電圧を0Vに下げた。モード同期を行ったレーザ光のパルス時間幅は約100ps、モード同期周波数は82MHz、Qswの繰り返し周波数は800Hzであった。
【0028】
このポーリング処理後、波長λ=1.3μmの半導体レーザの光を偏波保持ファイバを用いて、TM偏波でポートP1から入射した。ポートP3,P4からの出力光強度をレンズ27を介して感熱式パワーメータ(Thermal P.M.)28で検知しながら、電極16とSi基板11との間に電圧を印加し、その出力光強度の変化を測定した(なお、感熱式パワーメータの代わりにフォトダイオードを用いても良い)。
【0029】
図4にこの時の印加電圧に対する規格化した出力光強度の変化を示す。印加電圧Vにほぼ比例して位相が変化していることが示されている。即ち、印加した電場強度に比例した屈折率変化Δnを示している。
【0030】
位相変化量Δφは、
Δφ=2πη(1/λ)(n /2)r(ΔV/d)L ……(2)
で表すことができる。ここで、ηは結合係数、nはコアの屈折率、dは電極間間隔、Lは相互作用長(外部電場がコア部分にかかっている長さ)、ΔVは印加電圧、λは測定波長、rは電気光学定数である。
【0031】
本例においては、λ=1.3μm、n=1.454、d=45μm、L=6.5cmとした。位相がπ変化する電圧Vπ=180(V)であり、この時の電気光学定数r=1.6pm/Vと評価される。この電気光学スイッチの消光比は35dB、損失は1dBであった。
【0032】
以上述べたように、低損失且つ高消光比で、高速応答性を有する光スイッチを実現するための方法として、本発明は非常に優れている。
【0033】
図5は本発明方法で製造する導波路型光デバイスの他の例、ここではマッハ・ツェンダ干渉計を有する光強度変調器を示すものである。図中、31はSi基板、32,33は導波路(GeO添加石英系ガラスコア)、34,35は薄膜電極、36は薄膜ヒータ、37,38は導波路32,33を近接させて構成した方向性結合器である。
【0034】
ここで、光導波路の作製は、例えば前述した文献2に示された方法と同様に行った。即ち、Si基板31上に、アンダークラッド(図示せず)及びコア32,33となる石英系ガラスを主成分とするガラス膜層を火炎堆積(FHD)法により形成し、その後、反応性イオンエッチング(RIE)によりコア部分のリッジ構造を形成し、再びFHD法により石英系ガラスを主成分とするオーバークラッド(図示せず)による埋め込みを行い、光導波路の作製を行った。コアはGe添加石英系ガラスで形成し、コアとクラッドとの比屈折率差Δを0.3%とし、コアの構造は矩形で8μm×8μmとした。
【0035】
前述した2つの方向性結合器37,38と、導波路32,33のうちの方向性結合器37,38間を結ぶアーム導波路とにより、マッハ・ツェンダ干渉計が構成される。
【0036】
導波路作製後、一方のアーム導波路のコア近傍にクロムCr及び金Auを蒸着し、所望の形状にパターン化加工して電極34,35を形成した。ここで、コアに平行な電極部分の長さL=8cm、電極間隔d=40μmとした。電極形成に用いる材料は、Pt,NiCr,TaN,Al等、導電性の高いものであれば、どのようなものでも良い。
【0037】
さらに、電極34,35を形成したアーム導波路とは反対側のアーム導波路にクロム薄膜ヒータ36をパターン化し、熱光学効果を利用したMZIの位相を調整することを可能とした。
【0038】
前述した如くして作製した光強度変調器に対し、前記同様なQスイッチ動作Nd3+:YAGレーザからの光の第二高調波(SH)光をKTP結晶により発生させ、このSH光をポートP1に導き、導波路32を伝播させながら、5kVの電圧印加を30分間行った。30分後に第二高調波光を遮断し、電圧を0Vに下げた。Qswの繰り返し周波数は1kHzであった。
【0039】
このポーリング処理後、波長1.55μmの半導体レーザの光を偏波保持ファイバを用いて、TE偏波でポートP1から入射した。ポートP3からの出力光強度を感熱式パワーメータで検知しながら、電極34,35間に1GHzの変調電圧を印加し、波長1.55μmの半導体レーザの光の強度変調を行った。変調強度が最も大きくなるように薄膜ヒータ36でアーム導波路の一部分を加熱し、熱光学効果を利用したMZIの位相調整を行った。
【0040】
図7にこの時の変調光強度特性を示す。波長1.55μmの半導体レーザの光が1GHzに変調されていることが示されている。本光強度変調器の損失は1dB、消光比は30dBであった。
【0041】
以上述べたように、低損失且つ高消光比で、高速応答性を有する光強度変調器を実現するための方法として、本発明は非常に優れている。なお、ポーリング効率向上のため、本発明と熱ポーリングを併用することも有用である。
【0042】
【発明の効果】
以上説明したように本発明によれば、光導波路に紫外光または可視光を伝播させながら外部電場を印加するというポーリング方法であるので、外部電場を加えるための電極を光導波路の直上に設けることが可能である等、電極構造に関する設計自由度が大きいという利点があり、また、従来の「熱ポーリング」によるポーリング処理を行った場合に比べて、大きな電気光学効果を誘起し得るという利点がある。従って、本発明では、光通信分野等において実用的な、高速応答性を有する光スイッチや光変調器の実現を可能とする。
【図面の簡単な説明】
【図1】本発明方法で製造する導波路型光デバイスの一例を示す構成図
【図2】本発明方法を実施する装置の構成図
【図3】図1中の方向性結合器の結合率の波長特性図
【図4】図1に示した光スイッチのスイッチング特性図
【図5】本発明方法で製造する導波路型光デバイスの他の例を示す構成図
【図6】図6に示した光強度変調器の変調光強度特性図
【符号の説明】
10…光スイッチ、11,31…Si基板、12,13,32,33…導波路、14…アンダークラッド、15…オーバークラッド、16,34,35…薄膜電極、17,18,37,38…方向性結合器、21…モード同期Qスイッチ動作Nd3+:YAGレーザ、22…KTP結晶、23,24…ミラー、25,27…レンズ、26…電圧源、28…感熱式パワーメータ、36…薄膜ヒータ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an integrated optical device having an optical waveguide disposed on a substrate, and more particularly, to a method for manufacturing a waveguide type optical device such as an optical switch used in the field of optical communication and the like.
[0002]
[Prior art]
As a single-mode silica-based optical waveguide mainly made of silica-based glass manufactured on a planar substrate, for example, “M. Kawachi“ Silica waveguides on silicon and their application to integrated-optical component ”J. Electronic Materials. , Vol. 22, 1990, pp. 391-416 (Literature 1).
[0003]
Such an embedded quartz optical waveguide can produce a waveguide as designed, due to the excellent workability of the quartz glass, and is excellent in mass productivity. In addition, since the silica-based optical waveguide has low loss and excellent connection matching with commonly used silica-based single-mode optical fibers, it is expected as a means for realizing practical integrated optical devices. Many optical devices such as a wavelength multiplexer / demultiplexer and an optical switch have been developed.
[0004]
Examples of an optical switch realized using a silica-based optical waveguide include, for example, “N. Takato, et al.,“ Silica-Based Single-Mode Waveguides on Silicon and their Application Application to Guide-Opt. 6, 1988, pp. 1003 to 1010 (Reference 2) ”and the like, there is a“ thermo-optic switch (TΟ switch) ”utilizing the thermo-optic effect.
[0005]
In a TO switch using a silica-based optical waveguide, a good switch with low loss and excellent integration can be realized, but its response speed is about 1 ms, and a silica-based optical switch capable of higher-speed response is required. .
On the other hand, recently, a refractive index change (electro-optic effect) caused by applying a voltage has been reported for a silica-based fiber that has been subjected to a poling treatment.
[0006]
Usually, quartz-based glass is a random glass and is considered to have pseudo-central symmetry, and the first-order electro-optic effect (Pockels effect: change in refractive index in proportion to the applied electric field intensity) can be viewed in principle. Can not.
[0007]
However, the Pockels effect can be induced by performing a “thermal polling” process on such a glass system such as “increase the temperature while applying an electric field and decrease the temperature while applying the electric field”. Induction of the Pockels effect by this poling treatment is also observed in optical fibers containing silica-based glass as a main component, and recently, a refractive index change (electro-optic effect) caused by voltage application has been reported for a silica-based fiber subjected to poling treatment. (See, for example, "PG Kazansky, et al." Pockels effects in thermally polled silica optical fibers ", Electronics Lett., Vol. 31, 1995, pp. 62-63.).
[0008]
The response speed due to the Pockels effect in the quartz glass induced by the poling process is very high, and has a response speed of 10 ns or less. That is, it is shown that, by inducing the Pockels effect in the silica glass waveguide, the refractive index of the waveguide can be controlled at a high speed of 10 ns or less (100 MHz or more) by applying a voltage.
[0009]
In order to realize a high-speed optical switch or a light intensity modulator having a high extinction ratio by using the electro-optic effect, it is useful to configure an interferometer such as a Mach-Zehnder interferometer (MZI). A Mach-Zehnder interferometer composed of a silica-based fiber, a bulk optical component, or the like is susceptible to external disturbances such as temperature fluctuations, is unstable, and has a problem that it cannot be a practical optical device.
[0010]
On the other hand, the MZI composed of a quartz-based waveguide on a Si substrate described in Document 1 described above is more resistant to external disturbances than the MZI composed of an optical fiber or a bulk optical component, and has a higher transmission. Optical characteristics such as light intensity are stable. Further, the interferometer of the silica-based waveguide has an advantage that the processing of the silica-based glass is easy, so that high-precision processing can be performed, and the fabrication according to the design value is possible.
[0011]
A thermal poling process is applied to the arm waveguide part of the Mach-Zehnder interferometer composed of this silica-based waveguide to induce the electro-optic effect. And a practical optical switch and an optical intensity modulator having the above.
[0012]
However, the efficiency of the Pockels effect induced by "thermal poling" as shown in the aforementioned document 3 is about 0.05 pm / V in terms of the electro-optical constant r, which is not a very large value. Was.
[0013]
As means for improving the efficiency of the Pockels effect, a Ge-doped silica-based optical fiber is externally irradiated with an ultraviolet laser beam (wavelength: 193 nm) while applying an electric field, that is, "optical poling"("optically-excitedpoling"). It has been reported that a large electro-optical effect of an electro-optical constant r = 6 pm / V was induced by performing “induced polling” or “optically assisted polling” (for example, “T”). Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Pool and M. Seats, Electron. Lett., 31, 1995, 573 (Reference 4)).
[0014]
[Problems to be solved by the invention]
However, when the above-described poling method is applied to a waveguide manufactured on a flat substrate, there is a problem that light emitted from the outside often damages an electrode manufactured near the waveguide. Was. In addition, since the core portion is irradiated with light from the outside, an electric field is applied in a direction perpendicular to the substrate, and there is a problem in electrode fabrication that an electrode cannot be arranged above the core in the vertical direction.
[0015]
An object of the present invention is to provide an optical waveguide polling method capable of manufacturing a silica-based waveguide optical device having low loss, excellent workability and integration, and high-speed response.
[0016]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides an optical waveguide formed by surrounding a core made of silica-based glass on a substrate with a clad made of silica-based glass and having a lower refractive index than the core . And a method of performing a polling process on an optical waveguide including two arm waveguides connecting the two directional couplers , wherein the polling process is completed while propagating ultraviolet light or visible light to the optical waveguide . A poling method for a Mach-Zehnder interferometer arm that increases an electro-optic constant of the arm waveguide by applying an external electric field to the arm waveguide by an electrode disposed on an over clad that controls the refractive index of the arm waveguide. suggest.
[0017]
`` Propagation irradiation light polling, '' which applies an electric field while `` propagating irradiation '' of ultraviolet light or visible light to an optical waveguide, is an optical waveguide that extends over 10 cm or more by high intensity light confined in the core part, Light irradiation can be performed at once. Also, when performing "external irradiation", the electrode for voltage application and the clad portion provided near the core were often damaged, but according to "propagation irradiation", the electrode was not damaged. Light irradiation can be performed. In addition, since the light is emitted by propagating through the core portion, an electric field can be applied in a direction perpendicular to the substrate (TM direction), and an electrode can be arranged above the core in the vertical direction. There are few restrictions on the above.
[0018]
An electro-optic effect is induced in the portion of the MZI arm waveguide that has been subjected to the “optical poling process”, and the refractive index changes when an electric field is applied.
[0019]
For example, the magnitude Δn of the refractive index change that occurs when an external electric field E ex is applied in the TM direction is:
Δn TE = (1 /) r 1 n TE 3 E ex
Δn TM = (1 /) r 2 n TM 3 E ex (1)
(For example, see “Nishihara et al.“ Optical Integrated Circuit ”(Ohm Du))”. Here, r 1 and r 2 indicate the electro-optic constants in the TE and TM directions corresponding to the case where an external electric field is applied in the TM direction, and n TE and n TM indicate the refractive indexes in the TE and TM directions, respectively.
[0020]
Therefore, the greater the external electric field intensity, the greater the change in the refractive index can be obtained.
[0021]
This electric field can be applied by directly applying a voltage to the electrode used at the time of polling. The MZI can be operated as an optical switch or an optical intensity modulator by utilizing the change in the refractive index (electro-optic effect) caused by the application of the electric field in the arm waveguide. At this time, since the MZI is manufactured on the substrate, it is a practical optical component that operates more stably against external disturbances such as temperature fluctuations than the MZI composed of optical fibers and bulk optical components. .
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
1A and 1B show an example of a waveguide type optical device manufactured by the method of the present invention, in which an optical switch having a Mach-Zehnder interferometer is shown. FIG. 1A is an overall perspective view, and FIG. It is a fragmentary sectional view. In the figure, 11 is a Si substrate, 12 and 13 are waveguides (GeO 2 -doped silica glass core), 14 is under cladding, 15 is over cladding, 16 is a thin film electrode, and 17 and 18 are waveguides 12 and 13 in proximity. This is a directional coupler configured by the above.
[0023]
Here, the fabrication of the optical waveguide was performed in the same manner as in, for example, the method described in the above-mentioned document 2. That is, a glass film layer mainly composed of silica-based glass to be the under clad 14 and the cores 12 and 13 is formed on the Si substrate 11 by a flame deposition (FHD) method, and then the core is formed by reactive ion etching (RIE). A ridge structure was formed in a portion, and the ridge structure was buried again by the FHD method with the over clad 15 mainly composed of quartz glass to produce an optical waveguide. Here, the core was formed of Ge-added quartz glass, the relative refractive index difference Δ between the core and the clad was 0.7%, and the core structure was rectangular and 7 μm × 7 μm.
[0024]
The Mach-Zehnder interferometer is constituted by the two directional couplers 17 and 18 described above and the arm waveguide that connects between the directional couplers 17 and 18 of the waveguides 12 and 13.
[0025]
After fabrication of the waveguide, chromium Cr and gold Au were deposited near the core of one of the arm waveguides and patterned into a desired shape to form the electrode 16. Here, the length L of the electrode part parallel to the core was 6.5 cm, and the electrode interval d was 45 μm. The material used for forming the electrode may be any material having high conductivity, such as Pt, NiCr, Ta 2 N, and Al.
[0026]
As shown in FIG. 2, a mode-locked (ML) Q-switch (Qsw) operation Nd 3+ : YAG laser (ML-Qsw-Nd 3+ : YAG laser) 21 for the optical switch manufactured as described above, for example, 10 A second harmonic (SH) light (wavelength: 532 nm) of light having a wavelength of 1064 nm is generated by the KTP crystal 22, and the SH light passes through the light having a wavelength of 1064 nm, and the dichroic mirror 23 reflects the light having a wavelength of 532 nm. A voltage of 5 kV was applied from the voltage source 26 for 30 minutes while being guided to the port P1 via the mirror 24 and the lens 25 having a wavelength of 532 nm and having a reflectance of 100% and propagating through the waveguide 12.
[0027]
Since the directional couplers 17 and 18 have the wavelength characteristics shown in FIG. 3, the light introduced from the port P1 is not coupled to the waveguide 13 but all propagates through the waveguide 12. After 30 minutes, the SH light was shut off and the voltage was reduced to 0V. The pulse time width of the mode-locked laser light was about 100 ps, the mode locking frequency was 82 MHz, and the Qsw repetition frequency was 800 Hz.
[0028]
After this poling process, light from a semiconductor laser having a wavelength of λ = 1.3 μm was input from the port P1 with TM polarization using a polarization maintaining fiber. A voltage is applied between the electrode 16 and the Si substrate 11 while the intensity of the output light from the ports P3 and P4 is detected by a thermal power meter (Thermal PM) 28 through the lens 27, and the output light is output. The change in intensity was measured (a photodiode may be used instead of the thermal power meter).
[0029]
FIG. 4 shows a change in the output light intensity normalized with respect to the applied voltage at this time. It is shown that the phase changes almost in proportion to the applied voltage V. That is, the refractive index change Δn is proportional to the applied electric field strength.
[0030]
The amount of phase change Δφ is
Δφ = 2πη (1 / λ) (n e 3/2) r (ΔV / d) L ...... (2)
Can be represented by Here, η is the coupling coefficient, ne is the refractive index of the core, d is the distance between the electrodes, L is the interaction length (the length of the external electric field applied to the core), ΔV is the applied voltage, and λ is the measurement wavelength. , R are electro-optic constants.
[0031]
In this example, λ = 1.3μm, n e = 1.454, and d = 45 [mu] m, and L = 6.5cm. The voltage V π at which the phase changes by π is 180 (V), and the electro-optical constant r at this time is evaluated to be 1.6 pm / V. The extinction ratio of this electro-optical switch was 35 dB, and the loss was 1 dB.
[0032]
As described above, the present invention is very excellent as a method for realizing an optical switch having low loss, high extinction ratio, and high-speed response.
[0033]
FIG. 5 shows another example of a waveguide type optical device manufactured by the method of the present invention, here an optical intensity modulator having a Mach-Zehnder interferometer. In the figure, 31 is an Si substrate, 32 and 33 are waveguides (GeO 2 -added quartz glass core), 34 and 35 are thin film electrodes, 36 is a thin film heater, and 37 and 38 are waveguides 32 and 33 arranged close to each other. This is a directional coupler.
[0034]
Here, the fabrication of the optical waveguide was performed in the same manner as in, for example, the method described in the above-mentioned document 2. That is, a glass film layer mainly composed of quartz-based glass to be an under clad (not shown) and cores 32 and 33 is formed on a Si substrate 31 by a flame deposition (FHD) method, and thereafter, reactive ion etching is performed. The ridge structure of the core portion was formed by (RIE), and burying was performed again by the FHD method with an over clad (not shown) mainly composed of silica glass to produce an optical waveguide. The core was formed of Ge-added quartz glass, the relative refractive index difference Δ between the core and the clad was 0.3%, and the core structure was rectangular and 8 μm × 8 μm.
[0035]
The Mach-Zehnder interferometer is constituted by the two directional couplers 37 and 38 described above and the arm waveguide connecting between the directional couplers 37 and 38 of the waveguides 32 and 33.
[0036]
After the fabrication of the waveguide, chromium Cr and gold Au were deposited near the core of one of the arm waveguides and patterned into desired shapes to form electrodes 34 and 35. Here, the length L of the electrode portion parallel to the core was 8 cm, and the electrode interval d was 40 μm. The material used for forming the electrode may be any material having high conductivity, such as Pt, NiCr, Ta 2 N, and Al.
[0037]
Further, the chromium thin film heater 36 is patterned on the arm waveguide opposite to the arm waveguide on which the electrodes 34 and 35 are formed, and the phase of the MZI using the thermo-optic effect can be adjusted.
[0038]
For the light intensity modulator manufactured as described above, the second harmonic (SH) light of the light from the Q switch operation Nd 3+ : YAG laser is generated by the KTP crystal, and the SH light is output to the port P1. Then, while propagating through the waveguide 32, a voltage of 5 kV was applied for 30 minutes. After 30 minutes, the second harmonic light was cut off, and the voltage was reduced to 0V. The repetition frequency of Qsw was 1 kHz.
[0039]
After this poling process, light from a semiconductor laser having a wavelength of 1.55 μm was input from the port P1 with TE polarization using a polarization maintaining fiber. While detecting the output light intensity from the port P3 with a thermal power meter, a modulation voltage of 1 GHz was applied between the electrodes 34 and 35 to modulate the intensity of the light of the semiconductor laser having a wavelength of 1.55 μm. A part of the arm waveguide was heated by the thin film heater 36 so that the modulation intensity was maximized, and the phase of the MZI was adjusted using the thermo-optic effect.
[0040]
FIG. 7 shows the modulated light intensity characteristics at this time. It is shown that the light of a semiconductor laser having a wavelength of 1.55 μm is modulated to 1 GHz. The loss of the present light intensity modulator was 1 dB, and the extinction ratio was 30 dB.
[0041]
As described above, the present invention is very excellent as a method for realizing a light intensity modulator having a low loss, a high extinction ratio, and a high-speed response. It is also useful to use the present invention in combination with thermal poling to improve the poling efficiency.
[0042]
【The invention's effect】
As described above, according to the present invention, since the polling method of applying an external electric field while propagating ultraviolet light or visible light to the optical waveguide, an electrode for applying an external electric field is provided directly above the optical waveguide. Has the advantage that the degree of freedom in the design of the electrode structure is large, and that a large electro-optical effect can be induced as compared with the case where the conventional "thermal poling" is performed. . Therefore, the present invention makes it possible to realize an optical switch and an optical modulator having high-speed response that are practical in the field of optical communication and the like.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of a waveguide type optical device manufactured by the method of the present invention. FIG. 2 is a configuration diagram of an apparatus for performing the method of the present invention. FIG. 3 is a coupling ratio of the directional coupler in FIG. FIG. 4 is a switching characteristic diagram of the optical switch shown in FIG. 1. FIG. 5 is a configuration diagram showing another example of the waveguide type optical device manufactured by the method of the present invention. FIG. 6 is shown in FIG. Of the modulated light intensity of the modulated light intensity modulator [Explanation of symbols]
10 optical switch, 11, 31 Si substrate, 12, 13, 32, 33 waveguide, 14 under cladding, 15 over cladding, 16, 34, 35 thin film electrode, 17, 18, 37, 38 ... Directional coupler, 21: mode-locked Q-switch operation Nd 3+ : YAG laser, 22: KTP crystal, 23, 24: mirror, 25, 27: lens, 26: voltage source, 28: thermal power meter, 36: thin film heater.

Claims (1)

基板上に石英系ガラスよりなるコアを石英系ガラスよりなり且つコアより屈折率が低いクラッドで囲んで作製した光導波路であり、2つの方向性結合器と前記2つの方向性結合器を結ぶ2本のアーム導波路からなる光導波路にポーリング処理を行う方法であって、
前記光導波路に紫外光または可視光を伝播させながら、前記ポーリング処理が完了した前記アーム導波路の屈折率を制御するオーバークラッド上に配置された電極によって、前記アーム導波路に外部電場を印加して前記アーム導波路の電気光学定数を増大させることを特徴とするマッハツェンダ干渉計アームのポーリング方法。
An optical waveguide produced by surrounding a core made of silica-based glass on a substrate with a clad made of silica-based glass and having a lower refractive index than the core , and connecting two directional couplers and the two directional couplers. A method of performing a polling process on an optical waveguide composed of a plurality of arm waveguides ,
While propagating ultraviolet light or visible light to the optical waveguide , by applying an external electric field to the arm waveguide by an electrode disposed on an over clad that controls the refractive index of the arm waveguide after the poling process is completed. polling method of the Mach-Zehnder interferometer arm, characterized in that to increase the electro-optic constant of the arm waveguide Te.
JP6296196A 1996-03-19 1996-03-19 Polling method for Mach-Zehnder interferometer arm Expired - Fee Related JP3573180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6296196A JP3573180B2 (en) 1996-03-19 1996-03-19 Polling method for Mach-Zehnder interferometer arm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6296196A JP3573180B2 (en) 1996-03-19 1996-03-19 Polling method for Mach-Zehnder interferometer arm

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002118920A Division JP3418391B2 (en) 2002-04-22 2002-04-22 Method for manufacturing waveguide type optical device

Publications (2)

Publication Number Publication Date
JPH09258151A JPH09258151A (en) 1997-10-03
JP3573180B2 true JP3573180B2 (en) 2004-10-06

Family

ID=13215436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6296196A Expired - Fee Related JP3573180B2 (en) 1996-03-19 1996-03-19 Polling method for Mach-Zehnder interferometer arm

Country Status (1)

Country Link
JP (1) JP3573180B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337302A (en) 2000-05-26 2001-12-07 Nec Corp Optical waveguide element and method for manufacturing the same as well as optical polling method
CA2324419A1 (en) * 2000-10-25 2002-04-25 Tellamon Photonic Networks Inc. Method and apparatus for frequency tuning of an unbalanced mach-zehnder interferometer
US6937811B2 (en) * 2002-11-19 2005-08-30 Lumera Corporation Polymer waveguide devices incorporating electro-optically active polymer clads
US7241394B2 (en) 2004-01-21 2007-07-10 Lumera Corporation Process of fabricating polymer sustained microelectrodes
US6852563B1 (en) 2004-01-21 2005-02-08 Lumera Corporation Process of fabricating electro-optic polymer devices with polymer sustained microelectrodes
US7125949B2 (en) 2004-01-21 2006-10-24 Lumera Corporation Fluorinated sol-gel electro-optic materials, process for producing same, and devices therefrom
US7250712B2 (en) 2004-01-21 2007-07-31 Lumera Corporation Polymer sustained microelectrodes
US8442360B2 (en) 2008-11-05 2013-05-14 Gigoptix, Inc. Intrinsically low resistivity hybrid sol-gel polymer clads and electro-optic devices made therefrom

Also Published As

Publication number Publication date
JPH09258151A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
US4984861A (en) Low-loss proton exchanged waveguides for active integrated optic devices and method of making same
Ohmachi et al. Electro‐optic light modulator with branched ridge waveguide
US5617499A (en) Technique for fabrication of a poled electrooptic fiber segment
JP2679570B2 (en) Polarization separation element
JPH0718964B2 (en) Integrated optical device and manufacturing method thereof
Inoue et al. Polarization sensitivity of a silica waveguide thermooptic phase shifter for planar lightwave circuits
JP2007212787A (en) Optical control element, optical switching unit, and optical modulator
JP3573180B2 (en) Polling method for Mach-Zehnder interferometer arm
Chen et al. Coupling-controlled multiport thermo-optic switch using polymer waveguide array
US6385377B1 (en) Technique for fabrication of a poled electro-optic fiber segment
Chen et al. Highly efficient thermal tuning interferometer in lithium niobate thin film using air bridge
Sun et al. Experimental investigation on the unbalanced Mach–Zehnder interferometer on lithium niobate thin film
US20070147725A1 (en) Coupled-waveguide electro-optic switch based on polarisation conversion
Cross et al. Polymeric integrated electro-optic modulators
Enami et al. Polarization-insensitive transition between sol-gel waveguide and electrooptic polymer and intensity modulation for all-optical networks
AU757486B2 (en) Electrostrictive fiber modulators
JP3418391B2 (en) Method for manufacturing waveguide type optical device
WO2004023177A2 (en) Long range surface plasmon polariton modulator
US6684013B2 (en) Optical waveguide device to be optically poled, method of manufacturing optical waveguide device to be optically poled, and method of optically poling optical waveguide device
US20030133647A1 (en) Polarization independent electro-optical device for modulation of light
JP2739405B2 (en) Electric field sensor
Liu et al. Silicon rich nitride-lithium niobate on insulator platform for photonics integrated circuits
JP2812974B2 (en) Polarization independent optical switch
JPH0954291A (en) Optical phase shifter and optical switch using the same
Becker 10.3 Circuits

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees