JPH01136395A - Manufacture of flexible wiring board integral with reinforcing plate - Google Patents

Manufacture of flexible wiring board integral with reinforcing plate

Info

Publication number
JPH01136395A
JPH01136395A JP29497487A JP29497487A JPH01136395A JP H01136395 A JPH01136395 A JP H01136395A JP 29497487 A JP29497487 A JP 29497487A JP 29497487 A JP29497487 A JP 29497487A JP H01136395 A JPH01136395 A JP H01136395A
Authority
JP
Japan
Prior art keywords
film
wiring board
flexible wiring
engineering plastics
reinforcing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29497487A
Other languages
Japanese (ja)
Other versions
JPH0724326B2 (en
Inventor
Yutaka Hibino
豊 日比野
Toshihide Kimura
寿秀 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP29497487A priority Critical patent/JPH0724326B2/en
Publication of JPH01136395A publication Critical patent/JPH01136395A/en
Publication of JPH0724326B2 publication Critical patent/JPH0724326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

PURPOSE:To form the title wiring board having an arbitrary thickness and shape easily, and to improve a function and reduce cost by sticking an irradiated crosslinking type engineering plastic film at a position required for reinforcing a flexible base board and conducting injection molding onto the film. CONSTITUTION:A conductor circuit 3 is formed onto one surface of a flexible base board 2, and an insulating layer 4 is executed and shaped onto the circuit 3 by a cover-lay material with the exception of a terminal section and a land section. An irradiated crosslinking type engineering plastic film 5 previously coated with adhesives is stuck onto the rear of the flexible base board 2. The formation of the insulating layer 4 and the sticking of the film 5 may be conducted separately, and it is preferable that a cover-lay film is pasted while being contact-bonded by a hot press on processes. Irradiated crosslinking type engineering plastics melted at a high temperature are injection molded onto the engineering plastic film 5, and a reinforcing section 6 is shaped and unified while being thermally welded. Electron rays are applied and plastics are crosslinked for improve solder heat resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はフレキシブル配線板に補強部を形成し一体化し
た補強板一体化フレキシブル配線板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a reinforcing plate-integrated flexible wiring board in which a reinforcing portion is formed and integrated on a flexible wiring board.

(従来技術及び解決しようとする問題点)近年電子工業
の発展に伴い、産業用、民生用機器の実装方式が簡略化
され、小型化、高信頼性、高性能化が要求される印刷配
線板が望まれている。
(Prior art and problems to be solved) With the development of the electronics industry in recent years, the mounting method of industrial and consumer equipment has been simplified, and printed wiring boards are required to be smaller, more reliable, and higher performance. is desired.

特に軽量で立体的に実装できるプラスチックスフィルム
をベース基板としたフレキシブル配線板が注目されてい
る。
In particular, flexible wiring boards based on plastic films that are lightweight and can be mounted three-dimensionally are attracting attention.

しかし、フレキシブル配線板は50〜200μm厚さの
配線板であるため、部品を自動実装するには、フレキシ
ブル性がありすぎて実装がやりにくいこと、又機器への
取り付けがやりにくい等から0.5〜2.0■■の補強
板が部分的に貼り付けられる。
However, since flexible wiring boards are wiring boards with a thickness of 50 to 200 μm, they are too flexible to automatically mount components, making it difficult to mount them, and also making it difficult to attach them to equipment. A reinforcing plate of 5 to 2.0 ■■ is partially pasted.

第3図は従来の補強化付フレキシブル配線板の−例の断
面図で、ベース基板(2)の片面に導体回路(3)を形
成し、その上にカバーレイ材料で絶縁層(4)を施した
フレキシブル配線板(1)に、あらかじめ孔開けした補
強板(6′)を接着剤層(5′)を介して貼着し、上記
接着剤1!l(5’)を硬化させて形成していた。
Figure 3 is a cross-sectional view of an example of a conventional reinforced flexible wiring board, in which a conductor circuit (3) is formed on one side of a base substrate (2), and an insulating layer (4) is formed on it using a coverlay material. A reinforcing plate (6') with pre-drilled holes is attached to the flexible wiring board (1) with the adhesive layer (5') interposed therebetween, and the adhesive 1! It was formed by curing l(5').

フレキシブルなベース基板(2)としては耐熱性のある
ポリイミド系フィルムをベースとしたものが多く用いら
れ、補強板(B′)は紙フエノール板やガラス・エポキ
シ積層板等半田付は時に変形したり、収縮しない材料が
用いられ、接着剤(5′)としてはエポキシ系、ウレタ
ン系、アクリル系、フェノール系、トリアジン系の樹脂
等から成る接着剤が用いられる。
The flexible base board (2) is often made of a heat-resistant polyimide film, and the reinforcing board (B') is a paper phenol board or glass/epoxy laminate, which may sometimes deform when soldered. A material that does not shrink is used, and the adhesive (5') is an adhesive made of epoxy, urethane, acrylic, phenol, triazine, or the like.

しかし、前記接着剤をフレキシブル配線板(1)あるい
は補強板(8′)に塗布したものを貼合せ、高温、高圧
でプレス接着して一体に形成していた。それら補強板(
6′)はあらかじめ打抜き成形したりNC加工成形した
ものを、一つの製品に接着剤で1個1個接着しなければ
ならず、多い場合は4〜5個も貼合せねばならなかった
。このため多くの手間と費用がかかるばかりでなく、接
着剤中に気泡が入ったり、位置ずれを起こしたり、性能
上問題があった。又所定の位置に貼合せるためには、フ
レキンプル配線板(1)と補強板(8′)に位置合せ穴
をあけ、ピン治具を用いて貼合せたり、又仮接着したも
のをずれないようにセットして接着剤を硬化させる等多
大の手間を要した。
However, the adhesive was applied to the flexible wiring board (1) or the reinforcing board (8'), which was pasted together and then press-bonded at high temperature and pressure to form an integral body. Those reinforcement plates (
6') had to be pre-punched or NC-processed and bonded one by one to one product using an adhesive, and in some cases, as many as 4 to 5 pieces had to be bonded together. This not only requires a lot of effort and expense, but also causes performance problems such as air bubbles entering the adhesive and misalignment. In addition, in order to bond them in the specified positions, make alignment holes in the flexible wiring board (1) and reinforcing plate (8'), and use a pin jig to bond them together, or make sure that the temporarily bonded items do not shift. It took a lot of effort to set it in place and let the adhesive harden.

(問題点を解決するための手段) 本発明は上述の問題点を解消した補強板一体型フレキシ
ブル配線板の製造方法を提供するもので、その特徴は、
フレキシブルベース基板上に・所要の導体回路を形成し
た後、端子部、ランド部を除き半田耐熱性を存する絶縁
層と、フレキシブルベース基板の補強を必要とする位置
に照射架橋型エンジニアリングプラスチしクスフイルム
をそれぞれ貼着し、その後高温に溶融した照射架橋型エ
ンジニアリングプラスチックスを前記フィルム上に射出
成形してエンジニアリングプラスチックス同志を熱融着
せしめて一体化し、しかる後、電子線を照射して架橋せ
しめることにある。
(Means for Solving the Problems) The present invention provides a method for manufacturing a reinforcing plate-integrated flexible wiring board that solves the above-mentioned problems, and has the following characteristics:
After forming the required conductor circuits on the flexible base board, an insulating layer with soldering heat resistance is applied except for the terminals and lands, and an irradiated cross-linked engineering plastic film is applied to the positions where reinforcement of the flexible base board is required. After that, irradiated cross-linked engineering plastics melted at high temperature are injection molded onto the film, the engineering plastics are heat-fused and integrated, and then electron beams are irradiated to cross-link them. There is a particular thing.

第1図は本発明の製造方法により得られた補強板一体フ
レキシブル配線板の一例の断面図である。
FIG. 1 is a sectional view of an example of a reinforcing plate-integrated flexible wiring board obtained by the manufacturing method of the present invention.

図面において、(1)はフレキシブル配線板で、フレキ
シブルベース基板(2)の片面に導体回路(3)を形成
し、その上に端子部、ランド部を除いてカバーレイ材料
で絶縁7i!(4)を施して形成されている。
In the drawing, (1) is a flexible wiring board, which has a conductor circuit (3) formed on one side of a flexible base board (2), and is insulated with coverlay material on top of it with the exception of terminals and lands. (4).

上記フレキシブルベース基板(2)の裏面には接着剤を
あらかじめ塗布した照射架橋型エンジニアリン個に行な
ってもよいが、工程上カバーレイフィルムを貼着すると
同時に熱プレスにより圧着するのが好ましい。
The back surface of the flexible base substrate (2) may be irradiated and cross-linked with an adhesive coated in advance, but from the viewpoint of the process, it is preferable to bond the coverlay film simultaneously with a hot press.

その後、高温に溶融した照射架橋型エンジニアングプラ
スチックスを前記エンジニアリングプラスチックフィル
ム(5)上に射出成形して熱溶着しながら補強部(6)
を形成し一体化する。さらにその後、半田耐熱性を向上
させるために、電子線を照射して前記エンジニアリング
プラスチックを架橋せしめる。
Thereafter, irradiation cross-linked engineering plastics melted at high temperature is injection molded onto the engineering plastic film (5) and thermally welded to form the reinforcing portion (6).
form and integrate. Furthermore, in order to improve the soldering heat resistance, the engineering plastic is crosslinked by irradiation with an electron beam.

第2図は第1図のフレキシブル配Ii板の裏面図で、任
意の形状及び厚さををするエンジニアリングプラスチッ
クスによる補強部(6)が容易に形成できる。このよう
にして、従来は平面的であった配線板が、配線板の取付
は方法や場所に応じて、又部品の形状や機能に応じて任
意の厚さや形状のものを容易に形成でき、機能アップと
コストダウンを図ることができる。
FIG. 2 is a back view of the flexible distribution board Ii shown in FIG. 1, and a reinforcing portion (6) made of engineering plastics having an arbitrary shape and thickness can be easily formed. In this way, wiring boards, which were conventionally flat, can be easily formed into any thickness and shape depending on the mounting method and location of the wiring board, and the shape and function of the parts. It is possible to improve functionality and reduce costs.

このようなフレキシブル配線板はベース基板の片面のみ
ならず、両面配線板においても可能であり、又補強部の
形成も片面のみならず、両面同時に形成することも可能
である。又補強部の数は1ケ所から10ケ所位まで可能
であり、実装される部品形状に合せて任意に選定するこ
とができる。
Such a flexible wiring board can be formed not only on one side of the base substrate but also as a double-sided wiring board, and the reinforcing portion can be formed not only on one side but also on both sides at the same time. Further, the number of reinforcing parts can be from 1 to 10, and can be arbitrarily selected according to the shape of the component to be mounted.

フレキシブル配線板と補強部を形成するエンジニアリン
グプラスチックスを一体化する手段としては、従来はあ
らかじめBステージ状態の接着性フィルムをフレキシブ
ルベース基板側に貼合せておくことにより、射出された
エンジニアリングプラスチックスの熱により溶融硬化し
、一体化することが考えられていた。硬化速度は射出温
度によって接着性フィルムを選定するか、−旦熱融着の
みで一体化し、その後恒温槽等の加熱によりアフターキ
ュアーする等していた。
Conventionally, the method for integrating the flexible wiring board and the engineering plastics that form the reinforcing part has been to attach an adhesive film in a B-stage state to the flexible base board in advance, thereby making it possible to integrate the injected engineering plastics. It was thought that the material would be melted and hardened by heat to form a single piece. The curing speed has been determined by selecting an adhesive film depending on the injection temperature, or by integrating only by thermal fusion, and then performing after-curing by heating in a thermostatic oven or the like.

しかしながら、Bステージ状態の接着フィルム上に40
0℃前後の高温のエンジニアリングプラスチックスをl
000kg/cJ前後の高圧で射出成形すると、接着フ
ィルムは押し流され、ゲート付近と型周辺で厚みが不均
一になり、気泡を巻き込んだり、接着力が不均一になう
たりした。又恒温槽でアフターキュアーを実施すると、
射出成形時の歪や樹脂の硬化収縮歪が生じ補強板のそり
が増大した。
However, on the adhesive film in the B-stage state, 40
Engineering plastics at a high temperature of around 0℃
When injection molding was performed at a high pressure of around 1,000 kg/cJ, the adhesive film was washed away, resulting in uneven thickness near the gate and around the mold, entrapment of air bubbles, and uneven adhesive strength. Also, if you perform after-cure in a constant temperature bath,
Warpage of the reinforcing plate increased due to distortion during injection molding and distortion due to curing shrinkage of the resin.

本発明は上述に鑑みなされたもので、射出成形する材料
と類似の照射架橋型エンジニアリングプラスチックスを
あらかじめフィルム状に加工し、これをフレキシブル基
板の裏面に貼着することによって上記の問題点を解消し
た。
The present invention was developed in view of the above, and solves the above problems by processing radiation-crosslinked engineering plastics similar to the material to be injection molded into a film in advance and pasting this onto the back side of a flexible substrate. did.

照射架橋型エンジニアリングプラスチックスフィルムに
は、導体回路を保護するカバーレイフィルムと同様の接
着剤を塗布し、カバーレイ絶縁層を施す時に、所定の形
状に打抜いたフィルムを同峙プレス接むすることにより
形成される。これらは400℃前後の高温やI 000
 kg/cJ前後の高圧で射出形成しても5、該フィル
ムが流されたり、変形したりすることなく形状が保持さ
れていることが確認された。
The irradiation cross-linked engineering plastics film is coated with the same adhesive as the coverlay film that protects the conductor circuits, and when applying the coverlay insulation layer, the film is punched into a predetermined shape and pressed together face-to-face. It is formed by These temperatures are around 400℃ and I 000℃.
It was confirmed that the film maintained its shape without being washed away or deformed even when injection molding was performed at a high pressure of around kg/cJ5.

又補強板として射出成形する照射架橋型エンジニアリン
グプラスチックスは、前記フィルムと400℃前後の温
度で相溶性があり溶普することが必要である。好ましく
は前記フィルムと同一材質がよい。
Furthermore, the irradiation cross-linked engineering plastics to be injection molded as the reinforcing plate must be compatible with the film and melt at a temperature of around 400°C. Preferably, it is made of the same material as the film.

[J架橋型エンジニアリングプラスチックスとは、トリ
アリルイソシアネート、トリメチロールプロパン、トリ
アリルアクリレート等の多官能モノマーを1種もしくは
2種以上1.0〜20重量%含有したもので、γ線、β
線等の電子線を数Mradから数+Mrad照射して三
次元架橋せしめるプラスチックスをいい、それらは半田
耐熱性のあることを必要とし、少くともJISK720
)によって評価される熱変形温度が180℃以上である
こ七が必要である。ここでいう半田耐熱性とは、IC,
抵抗、コンデンサー等の電子部品を190〜250℃で
、手半田付け、半田デイツプ付け、半田リフロー付は等
で半田付は出来る耐熱度をいい、補強部が大幅に収縮し
たり、そったりしないものをいう。
[J Crosslinked engineering plastics are those containing 1.0 to 20% by weight of one or more types of polyfunctional monomers such as triallyl isocyanate, trimethylolpropane, triallyl acrylate, etc., and are resistant to γ rays, β
Plastics are three-dimensionally cross-linked by irradiation with electron beams such as a few Mrads to several + Mrads, and they must be resistant to soldering heat and meet at least JISK720.
) is required to have a heat distortion temperature of 180°C or higher. Soldering heat resistance here refers to IC,
Electronic components such as resistors and capacitors can be soldered at 190 to 250℃ by hand, solder dip, solder reflow, etc., and the reinforced parts do not shrink or warp significantly. means.

このように、フレキシブル配線板と補強部を射出成形に
より一体化して形成することは、単に個別貼合せしてい
たものを自動貼゛合するメリットのみならず、エレクト
ロニクス機器への組立てを容易にし、場合によっては、
機器のケースと一体化することも可能となり、大幅な生
産性及び機能性の向上を図るもので、今後ますます必要
とされる軽量化、小型化、機能付加へ向けて欠(ことの
出来ない配線材料となる。
In this way, integrally forming the flexible wiring board and the reinforcing part by injection molding not only has the advantage of automatically pasting together items that were previously pasted together, but also facilitates assembly into electronic devices. In some cases,
It is also possible to integrate it with the case of the equipment, which significantly improves productivity and functionality. Used as wiring material.

(実施例) フレキシブル配線板のベース基板として、半田耐熱性の
あるポリイミドフィルム、ポリパラバン酸フィルム、ポ
リフェニレンサルファイドフィルム、ポリエーテルフィ
ルム等を用い、これにエポキシ系、フェノール系、アク
リル系、シリコン系、イミド系等の接着剤を塗布し、電
解鋼箔、圧MtR箔を貼合せ、銅箔にはエツチングレジ
ストを印刷あるいは感光性フィルムをラミネートして塩
化鉄、又は塩化鋼等でエツチングとして導体回路を形成
した。
(Example) As a base substrate of a flexible wiring board, polyimide film, polyparabanic acid film, polyphenylene sulfide film, polyether film, etc., which are resistant to soldering heat, are used, and epoxy, phenol, acrylic, silicone, and imide films are used. Apply a type of adhesive such as a chloride-based adhesive, laminate electrolytic steel foil and pressure MtR foil, print an etching resist on the copper foil, or laminate a photosensitive film and form a conductor circuit by etching with iron chloride or chloride steel, etc. did.

回路形成後、部品実装する端子部やランド部は露出する
ようソルダーレジスト又は耐熱性フィルムによりカバー
レイを行なって絶縁層を形成する。
After the circuit is formed, a coverlay is performed using a solder resist or a heat-resistant film so that the terminal portions and land portions where components are mounted are exposed, and an insulating layer is formed.

この時、ソルダーレジストは裏面のエンジニアリングプ
ラスチックスフィルムを貼着する前に形成しておくが、
ポリイミド、ポリパラバン酸等の絶縁フィルムは所定の
形状に打抜いたものを位置決めし、仮止め状態にしてお
く。
At this time, the solder resist is formed before attaching the engineering plastic film on the back side.
An insulating film made of polyimide, polyparabanic acid, or the like is punched out into a predetermined shape, positioned, and temporarily fixed.

その後、ポエチレンテレフタレート、ポリブチレンテレ
フタレート、ナイロン8、ナイロン6−6、ナイロン1
2、ポリアセタール、ボリアリレート、ポリカーボネー
ト、スチレン・アクリロニトリル共重合体、アクリロニ
トリルブタジェン・スチレン共重合体等のエンジニアリ
ングプラスチックスに、トリアリルイソシアネート、ト
リメチロ−ルプロパン、トリアリルアクリレート等の多
官能モノマーを1.0〜20重量%混線した照射架橋型
エンジニアリングプラスチックスを10〜50μmの厚
さに押出し成形してフィルム杖にする。これに、エポキ
シ系、アクリル系、ウレタン系、シリコーン系、イミド
系等の熱硬化型接着剤を5〜20μm厚さに片面に塗布
し、半硬化杖態に乾燥し、フレキシブル配線板の所定の
位置に仮止めする。
After that, polyethylene terephthalate, polybutylene terephthalate, nylon 8, nylon 6-6, nylon 1
2. Polyfunctional monomers such as triallyl isocyanate, trimethylolpropane, triallyl acrylate, etc. are added to engineering plastics such as polyacetal, polyarylate, polycarbonate, styrene/acrylonitrile copolymer, acrylonitrile butadiene/styrene copolymer, etc. 1. Irradiation-crosslinked engineering plastics mixed with 0 to 20% by weight are extruded to a thickness of 10 to 50 μm to form a film cane. A thermosetting adhesive such as epoxy, acrylic, urethane, silicone, imide, etc. is applied to one side to a thickness of 5 to 20 μm, dried to a semi-cured form, and then fixed to the specified area of the flexible wiring board. Temporarily fix it in position.

そして、前記カバーレイ絶縁フィルムの高温、高圧プレ
ス接着時に前記エンジニアリングプラスチックスフィル
ムを同時に貼着する。フレキシブル配線板の構造あるい
は形状によっては、カバーレイ絶縁フィルムとエンジニ
アリングプラスチックスフィルムは別個の工程を経て貼
着してもよい。
Then, the engineering plastics film is attached at the same time as the coverlay insulating film is bonded by high-temperature, high-pressure press. Depending on the structure or shape of the flexible wiring board, the coverlay insulating film and the engineering plastics film may be attached through separate processes.

前記フレキシブル配線板は、その後、射出成形金型内に
セットする。この時フレキシブル配線板のエンジニアリ
ングプラスチックフィルム面は、射出されるゲートに対
して直角に向いているのが好ましい。
The flexible wiring board is then set in an injection mold. At this time, it is preferable that the engineering plastic film surface of the flexible wiring board faces perpendicularly to the gate to be injected.

射出する照射架橋型エンジニアリングプラスチックスは
、前記補強部の裏打ちとして用いたフィルムの樹脂と同
一もしくは同等のもので、熱によって溶融し、電子線照
射によって架橋するものである。このようなプラスチッ
クスは250〜400℃の高温下で金型内に注入される
。この時多官能上ツマ−は熱によって反応せず、熱分解
しないことが必要である。
The radiation-crosslinked engineering plastics to be injected are the same or equivalent to the resin of the film used as the lining for the reinforcing portion, and are melted by heat and crosslinked by electron beam irradiation. Such plastics are injected into molds at high temperatures of 250-400°C. At this time, it is necessary that the polyfunctional additives do not react with heat and do not thermally decompose.

多官能モノマーの含育量が1.0i1fi%未填では熱
変形温度を180℃以上にすることが困難で、半田耐熱
性が得られず、20重量%を超えると、樹脂と七ツマ−
が分離し易く、成形品が不均一になったり、架橋後に脆
くなり実用性が得られない。
If the polyfunctional monomer content is less than 1.0% by weight, it will be difficult to raise the heat distortion temperature to 180°C or higher, and soldering heat resistance will not be obtained, and if the content exceeds 20% by weight, the resin and
It is easy to separate, the molded product becomes non-uniform, and it becomes brittle after crosslinking, making it impractical.

エンジニアリングプラスチックスには多官能上ツマー以
外に、樹脂改質剤としてエラストマーやホモポリマー、
無機充填剤、顔料等を添加したものを用いることができ
る。
In addition to polyfunctional materials, engineering plastics also use elastomers, homopolymers, and resin modifiers.
Those to which inorganic fillers, pigments, etc. are added can be used.

照射架橋型エンジニアリングプラスチックスは、少なく
ともフレキシブルベース基板の耐熱温度よりやや低めの
温度で金型内に射出成形される。圧力は導体回路の変形
をきたさない圧力でなければならない。又エンジニアリ
ングプラスチックスは任意の形状に成形できるが、その
形状は配線板に応力が残らないようにすると共に、補強
板に成形歪が残り、半田付けの際の温度で、板がそった
り、収縮しないようにする必要がある。
Irradiation-crosslinked engineering plastics are injection molded into a mold at a temperature that is at least slightly lower than the heat-resistant temperature of the flexible base substrate. The pressure must be such that it does not cause deformation of the conductor circuit. Also, engineering plastics can be molded into any shape, but the shape should be designed so that stress does not remain on the wiring board, and molding distortion will remain on the reinforcing board, causing the board to warp or shrink due to the temperature during soldering. It is necessary to avoid this.

ベース基板の補強部に射出成形した照射架橋型エンジニ
アリングプラスチックスは常温に冷却後、2 Nrad
〜40Mradの電子線を照射して架橋させる。
The irradiation cross-linked engineering plastics injection molded into the reinforcing part of the base substrate has a temperature of 2 Nrad after being cooled to room temperature.
Crosslinking is carried out by irradiation with an electron beam of ~40 Mrad.

照射量は多官能モノマーの添加量とエンジニアリングプ
ラスチックスの種類によって最適架橋度を選定して決定
される。又補強板の厚みによって、電子線照射電圧や時
間が決定される。
The irradiation amount is determined by selecting the optimum degree of crosslinking depending on the amount of polyfunctional monomer added and the type of engineering plastics. Further, the electron beam irradiation voltage and time are determined depending on the thickness of the reinforcing plate.

照射架橋型エンジニアリングプラスチックスの半田耐熱
特性は架橋ゲル分率と熱変形温度によって決る。
The solder heat resistance properties of irradiation crosslinked engineering plastics are determined by the crosslinked gel fraction and heat distortion temperature.

架橋は電子線照射機によって連続的に行われ、あらかじ
め貼着したエンジニアリングプラスチックスフィルムと
、射出成形したエンジニアリングプラスチックスが化学
的に一体化され、これにより本発明の優位性が・得られ
る。
Crosslinking is carried out continuously using an electron beam irradiation machine, and the pre-applied engineering plastic film and the injection molded engineering plastic are chemically integrated, thereby providing the advantages of the present invention.

(発明の効果) 上述したように、本発明の補強板一体型フレキシブル配
線板の製造方法によれば、フレキシブル配線板に補強部
を射出成形により一体化形成するので、従来の個々の貼
合せによる多くの手間と費用を著しく軽減すると共に、
得られたフレキシブル配線板の性能も著しく向上する。
(Effects of the Invention) As described above, according to the method of manufacturing a reinforcing plate-integrated flexible wiring board of the present invention, the reinforcing portion is integrally formed on the flexible wiring board by injection molding. In addition to significantly reducing the amount of effort and expense,
The performance of the obtained flexible wiring board is also significantly improved.

従って、今後袋々必要とされる軽量化、小型化及び機能
付加が要求される電子機器において、極めてを効なもの
となる。
Therefore, it will be extremely effective in electronic equipment that will be required to be lighter in weight, smaller in size, and more functional in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法により得られた補強板一体型
フレキシブル配線板の一例の断面図、第2図は第1図の
フレキシブル配線板の裏面図である。 第3図は従来の補強板一体型フレキシブル配線板の一例
の断面図である。 1・・・フレキシブル配線板、2・・・ベース基[,3
・・・導体回路、4・・・絶縁属、5・・・照射架橋型
エンジニアリングプラスチックスフィルム、6・・・補
強部。
FIG. 1 is a sectional view of an example of a reinforcing plate-integrated flexible wiring board obtained by the manufacturing method of the present invention, and FIG. 2 is a back view of the flexible wiring board of FIG. 1. FIG. 3 is a sectional view of an example of a conventional reinforcing plate-integrated flexible wiring board. 1...Flexible wiring board, 2...Base group [,3
... Conductor circuit, 4... Insulating metal, 5... Irradiation cross-linked engineering plastic film, 6... Reinforcement part.

Claims (2)

【特許請求の範囲】[Claims] (1)フレキシブルベース基板上に所要の導体回路を形
成した後、端子部、ランド部を除き半田耐熱性を有する
絶縁層と、フレキシブルベース基板の補強を必要とする
位置に照射架橋型エンジニアリングプラスチックスフイ
ルムをそれぞれ貼着し、その後高温に溶融した照射架橋
型エンジニアリングプラスチックスを前記フィルム上に
射出成形してエンジニアリングプラスチックス同志を熱
溶着せしめて一体化し、しかる後電子線を照射して架橋
せしめることを特徴とする補強板一体型フレキシブル配
線板の製造方法。
(1) After forming the required conductor circuit on the flexible base board, apply an insulating layer that is resistant to soldering heat, except for terminals and lands, and apply irradiation cross-linked engineering plastics to the positions where reinforcement of the flexible base board is required. Each film is pasted, and then irradiated cross-linked engineering plastics melted at high temperature are injection-molded onto the films, the engineering plastics are thermally welded and integrated, and then electron beams are irradiated to cross-link them. A method for manufacturing a reinforcing plate-integrated flexible wiring board, characterized by:
(2)照射架橋型エンジニアリングプラスチックスがト
リアリルイソシアヌレート、トリメチロールプロパン、
トリアリルアクリレート等の多官能モノマーを1.0〜
20重量%含有したエンジニアリングプラスチックスで
あることを特徴とする特許請求の範囲第1項記載の補強
板一体型フレキシブル配線板の製造方法。
(2) Irradiation-crosslinked engineering plastics include triallyl isocyanurate, trimethylolpropane,
Polyfunctional monomers such as triallyl acrylate from 1.0 to
2. The method for manufacturing a reinforcing plate-integrated flexible wiring board according to claim 1, wherein the reinforcing plate-integrated flexible wiring board is an engineering plastic containing 20% by weight.
JP29497487A 1987-11-20 1987-11-20 Manufacturing method of flexible wiring board integrated with reinforcing plate Expired - Fee Related JPH0724326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29497487A JPH0724326B2 (en) 1987-11-20 1987-11-20 Manufacturing method of flexible wiring board integrated with reinforcing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29497487A JPH0724326B2 (en) 1987-11-20 1987-11-20 Manufacturing method of flexible wiring board integrated with reinforcing plate

Publications (2)

Publication Number Publication Date
JPH01136395A true JPH01136395A (en) 1989-05-29
JPH0724326B2 JPH0724326B2 (en) 1995-03-15

Family

ID=17814716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29497487A Expired - Fee Related JPH0724326B2 (en) 1987-11-20 1987-11-20 Manufacturing method of flexible wiring board integrated with reinforcing plate

Country Status (1)

Country Link
JP (1) JPH0724326B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352134A (en) * 2000-06-05 2001-12-21 Alpine Electronics Inc Movable mechanism being connected by flexible wiring board
CN1303646C (en) * 2003-03-12 2007-03-07 夏普株式会社 Sticking device and method for reinforcing plate
KR100830227B1 (en) * 2004-07-29 2008-05-16 구로사키 하리마 코포레이션 Discharging hole for molten metal in molten metal container, method of operating converter with the discharging hole, and sleeve exchanging device at discharging hole of molten metal container
CN110958763A (en) * 2019-11-22 2020-04-03 盐城维信电子有限公司 Reinforcing automatic laminating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352134A (en) * 2000-06-05 2001-12-21 Alpine Electronics Inc Movable mechanism being connected by flexible wiring board
CN1303646C (en) * 2003-03-12 2007-03-07 夏普株式会社 Sticking device and method for reinforcing plate
KR100830227B1 (en) * 2004-07-29 2008-05-16 구로사키 하리마 코포레이션 Discharging hole for molten metal in molten metal container, method of operating converter with the discharging hole, and sleeve exchanging device at discharging hole of molten metal container
CN110958763A (en) * 2019-11-22 2020-04-03 盐城维信电子有限公司 Reinforcing automatic laminating method
CN110958763B (en) * 2019-11-22 2021-09-21 盐城维信电子有限公司 Reinforcing automatic laminating method

Also Published As

Publication number Publication date
JPH0724326B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JPH01136395A (en) Manufacture of flexible wiring board integral with reinforcing plate
EP0253892B1 (en) Transfer material for printed circuit board and printed circuit board prepared using said transfer material and process for preparation thereof
JPH0787263B2 (en) Manufacturing method of reinforced flexible wiring board
JPH011292A (en) Manufacturing method of reinforced flexible wiring board
JPH0439011A (en) Composite printed wiring board and its manufacture
JPH01130585A (en) Manufacture of flexible wiring board formed in a unified body with reinforcing sheet
JPH07142817A (en) One-piece printed wiring board molded product
JPS63292690A (en) Manufacture of flexible wiring board integral with reinforcing plate
US4959116A (en) Production of metal base laminate plate including applying an insulator film by powder coating
JPS6225090B2 (en)
JPH0286189A (en) Manufacture of large current substrate
JPH0719972B2 (en) Copper foil with resin for multilayer printed boards
JPH02272793A (en) Manufacture of metallic base printed wiring board
JP2865241B2 (en) How to connect electronic components
JP3058045B2 (en) Manufacturing method of multilayer printed wiring board
JPS5875884A (en) Method of producing printed circuit board
JP3365281B2 (en) Chip type capacitors
JPH02137293A (en) Multilayer circuit board
JPH01241892A (en) Manufacture of metal base laminated board
JP2002299526A (en) Method of manufacturing heat-conductive substrate
JPS641955B2 (en)
JPH0554249B2 (en)
JPS5811114B2 (en) Mounting method of micro parts on printed circuit board
JP2001036201A (en) Circuit board for large current and manufacture thereof
JPH0427021B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees