JPS6225090B2 - - Google Patents

Info

Publication number
JPS6225090B2
JPS6225090B2 JP55084912A JP8491280A JPS6225090B2 JP S6225090 B2 JPS6225090 B2 JP S6225090B2 JP 55084912 A JP55084912 A JP 55084912A JP 8491280 A JP8491280 A JP 8491280A JP S6225090 B2 JPS6225090 B2 JP S6225090B2
Authority
JP
Japan
Prior art keywords
adhesive
roll
temperature
printed circuit
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55084912A
Other languages
Japanese (ja)
Other versions
JPS5710294A (en
Inventor
Hisako Hori
Tadaaki Shiina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8491280A priority Critical patent/JPS5710294A/en
Publication of JPS5710294A publication Critical patent/JPS5710294A/en
Publication of JPS6225090B2 publication Critical patent/JPS6225090B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はプラスチツクフイルムと金属箔とを熱
硬化性接着剤を用いて接着してなるフレキシブル
印刷回路用基板の連続製造方法に関するものであ
る。 近年電子機器工業の発展に伴い、いわゆるプリ
ント配線に用いる印刷回路板が多方面に利用され
ている。それも硬質(リジツド)な銅張基板から
薄く可撓性を有するフレキシブル印刷回路板まで
多種利用されている。 フレキシブル印刷回路板は薄く可撓性を有する
為スペースの節減、重量の軽量化等リジツドな銅
張基板とは又異なつた利点から電話機、産業用計
器、カメラなどの内部配線材、コンピユーターの
メモリー搭載などに使用されている。このフレキ
シブル印刷回路の製造にはハンダ付け等の際優れ
た耐熱性を発揮する熱硬化性樹脂を含む接着剤の
使用が好適である。ところでこの耐熱硬化性樹脂
は加熱温度が高い程短時間で硬化を完了するが無
加圧で一定温度以上に加熱すると軟化流動状態と
なり被着体と接着剤との間に空隙や気泡が発生す
るおそれがあり、これを避ける為には低温で長時
間徐々に加熱硬化させなければならない。 ところが熱硬化性樹脂を含む接着剤の軟化ない
しは融解温度は硬化反応の進行に従つて時々刻々
上昇していくため低温で硬化させると硬化に長時
間を要し、場合によつては硬化完了に達しないこ
とがあり、しかも接着剤の耐熱性、機械的物性を
最適なものにするには最終的にある程度高温での
熱履歴を必要とする。 こういつた熱硬化性樹脂の硬化条件から密着性
のよいフレキシブル印刷回路の製造には従来のリ
ジツドな印刷回路板の製造と同様に、この熱硬化
反応を完了させるため加熱と共に適度の加圧が必
要であり、このような理由から従来においてはプ
レス方式によつてバツチ処理されて製造していた
が1バツチに30分から2時間を要するものであつ
た。 このような従来のフレキシブル印刷回路の製造
においては接着剤の加熱処理方法が連続生産の為
のネツクとなつて生産速度をあげることが出来ず
生産性が低いものであつた。 本発明者等は従来のリジツドな印刷回路板に比
べてフレキシブル印刷回路板の基材は柔軟で可撓
性を有する点に着目し、鋭意研究の結果この可撓
性を応用して連続的にかつ長尺のものを製造し得
る方法を見いだし、フレキシブル印刷回路基板の
生産性を著しく向上させ得る本発明方法を確立し
たものである。 即ち本発明方法は、まず熱硬化性樹脂を含む接
着剤を用いてプラスチツクフイルムと金属箔とを
接着ラミネート加工し、その後この貼合体をロー
ル状に巻回した状態のまま熱風恒温槽内で一定の
昇温条件にコントロールしながら該接着剤の加熱
硬化を行うことを特徴とするものである。 以下に本方法を更に詳細に説明する。 まず基板となる長尺のプラスチツクフイルム及
び長尺の金属箔の一方または両方に未硬化ないし
は半硬化の熱硬化性樹脂を含む接着剤で塗布し、
これをラミネート工程により両者を接合させ、こ
れを連続的にロール状に巻取つて適宜の太さの複
合物のロール体を製作する。このロール体の周囲
に巾約10cmの綿テープを巻回して綿テープの端末
を結び合わせロール状態が弛緩しないようにロー
ル体を固定する。 ロール体が弛緩すると加熱処理時にロール体層
間の熱膨張率の差により生ずる加圧状態が形成し
なくなり初期の効果が得られなくなるためであ
る。 次に而して得られた複合のロール体を熱風恒温
槽などの加熱炉に入れて加熱する。加熱の初期温
度は熱硬化性樹脂を含む接着剤によつて異なるが
加熱によつて該接着剤の流動と含まれている揮発
成分による気泡の発生とがなくしかも硬化反応が
出来るだけ速かに進行する温度とする。最終温度
は接着剤の最適物性を得るのに必要な温度とし、
この初期温度から最終温度まで連続的にないしは
平均昇温速度0.5〜5℃/分以下で階段状に昇温
加熱処理を行いフレキシブル印刷回路用基板とす
る。 本方法でプラスチツクフイルムと金属箔との複
合のロール体の状態で接着剤の加熱硬化を行うの
は複合物が加熱温度の上昇と共にプラスチツク及
び金属箔は互に熱膨脹するがその熱膨脹率の相違
から両者間に加圧状態が形成され、これにより接
着剤から発生する揮発ガス等による気泡等の生起
を抑制することに加えてプラスチツクフイルムと
金属箔との接着を強固となすためと、更に複数の
加熱工程を通過させる場合のような金属箔表面の
酸化を極力抑制するためである。 又、本方法において接着剤の加熱硬化に連続昇
温方式をとるのは加熱中接着剤から発生すること
のある微量の揮発分を徐々にフイルムを通して外
部へ放散して接着剤層に気泡を残さないようにす
るためである。 尚、本発明で用いられる金属箔としてはアルミ
箔、銅箔、ニツケルクロム箔等導電体となりうる
金属箔であればよい。又、プラスチツクフイルム
としてはポリイミドフイルム、ポリパラバン酸フ
イルム、ポリオキサジアゾールフイルム、ポリア
ミドイミドフイルム、ポリアミドフイルム、ポリ
エステルフイルム等耐熱性を備えたものであれば
よい。又、熱硬化性樹脂を含む接着剤は被着体の
種類によつて組成が異なるが例えばエポキシ、ナ
イロシ−エポキシ、エポキシ−アクリル、アクリ
ロニトリルブダジエンゴム−フエノール、メラミ
ン−アクリル、フエノール等の樹脂系の中の一成
分又は二成分以上を含む樹脂を用いることができ
る。 次に本発明の実施例を示す。 実施例 1 熱硬化型アクリル樹脂(Du Pont
Adhesives6850 固型分35±10/0)100重量部
とエポキシ樹脂(シエル化学(株)エピコート
100160%MEK溶液)75重量部からなる接着剤を
リバースロールコーターを用いて250mm巾50μの
ポリイミドフイルム(Du Pont社製カプトン)の
片面に20μの塗膜厚(乾燥後)となるよう連続塗
布したのち、3mの風乾ゾーンを経て炉長5m炉
温入口75℃出口85℃に炉温調整した熱風炉中を走
行させ、引き続きロール温度130℃にコントロー
ルしたロールラミネーターを使用して得られた接
着剤付きポリイミドフイルムと電解銅箔(40μ)
とを80Kg/cm2G圧で圧着しつつ冷却ロールを経て
外径96mmの紙管にロール状に巻き取つた。 尚上記一連の作業はラインスピード0.4m/分
で連続的に行つた。次に外径約30cmの太さに巻き
取つたラミネート品のロール体をそのまま熱風恒
温槽に入れ100℃で30分、150℃で30分、200℃で
30分の加熱硬化処理を順次行つて銅張りポリイミ
ド基板を得た。 また加熱条件を100℃から昇温速度1℃/分で
200℃まで昇温する方法で同様の銅張りポリイミ
ド基板を作つた。 而して得た銅張りポリイミド基板の性能は以下
の通りであつた。
The present invention relates to a method for continuously manufacturing a flexible printed circuit board by bonding a plastic film and a metal foil using a thermosetting adhesive. In recent years, with the development of the electronic equipment industry, printed circuit boards used for so-called printed wiring have been used in a wide variety of ways. Various types of circuit boards are used, ranging from rigid copper-clad boards to thin and flexible printed circuit boards. Because flexible printed circuit boards are thin and flexible, they save space and are lighter in weight, which is different from rigid copper-clad boards, so they are used as internal wiring materials for telephones, industrial instruments, cameras, etc., and for computer memory. etc. is used. For manufacturing this flexible printed circuit, it is preferable to use an adhesive containing a thermosetting resin that exhibits excellent heat resistance during soldering and the like. By the way, this heat-resistant curing resin completes curing in a shorter time as the heating temperature is higher, but if it is heated above a certain temperature without applying pressure, it becomes soft and fluid and voids and bubbles are generated between the adherend and the adhesive. In order to avoid this, it is necessary to gradually heat and harden the material at a low temperature for a long period of time. However, the softening or melting temperature of adhesives containing thermosetting resins rises moment by moment as the curing reaction progresses, so if they are cured at low temperatures, it takes a long time to cure, and in some cases it may not be possible to complete curing. Furthermore, in order to optimize the heat resistance and mechanical properties of the adhesive, a certain degree of high-temperature thermal history is ultimately required. Due to the curing conditions of these thermosetting resins, in order to produce flexible printed circuits with good adhesion, as in the production of conventional rigid printed circuit boards, heating and appropriate pressure are required to complete the thermosetting reaction. For this reason, it has conventionally been produced in batches using a press method, but each batch takes 30 minutes to 2 hours. In the production of such conventional flexible printed circuits, the heat treatment method of the adhesive has been the bottleneck for continuous production, making it impossible to increase production speed and resulting in low productivity. The present inventors focused on the fact that the base material of flexible printed circuit boards is softer and more flexible than conventional rigid printed circuit boards, and as a result of intensive research, they applied this flexibility to continuously In addition, we have found a method that can produce long lengths of printed circuit boards, and established the method of the present invention that can significantly improve the productivity of flexible printed circuit boards. That is, in the method of the present invention, first, a plastic film and a metal foil are adhesively laminated using an adhesive containing a thermosetting resin, and then this laminated body is rolled up into a roll and kept at a certain temperature in a hot air constant temperature oven. This method is characterized in that the adhesive is heated and cured while controlling the temperature increasing conditions. The method will be explained in more detail below. First, an adhesive containing an uncured or semi-cured thermosetting resin is applied to one or both of a long plastic film and a long metal foil, which will serve as the substrate.
The two are bonded together through a lamination process, and this is continuously wound into a roll to produce a composite roll of an appropriate thickness. A cotton tape having a width of about 10 cm is wound around this roll body, and the ends of the cotton tape are tied together to fix the roll body so that the rolled state does not loosen. This is because if the roll body is loosened, the pressurized state caused by the difference in thermal expansion coefficient between the roll body layers during heat treatment will not be formed, and the initial effect will not be obtained. Next, the composite roll body thus obtained is placed in a heating furnace such as a hot air constant temperature oven and heated. Although the initial temperature of heating varies depending on the adhesive containing the thermosetting resin, heating eliminates the flow of the adhesive and the generation of bubbles due to the volatile components contained, and the curing reaction is performed as quickly as possible. Let the temperature progress. The final temperature is the temperature necessary to obtain the optimum physical properties of the adhesive.
A heating treatment is carried out to raise the temperature from this initial temperature to the final temperature continuously or stepwise at an average heating rate of 0.5 to 5° C./min or less to obtain a flexible printed circuit board. In this method, the adhesive is heat-cured in a roll of a composite of plastic film and metal foil because the plastic and metal foil both thermally expand as the heating temperature of the composite increases, but their coefficients of thermal expansion are different. A pressurized state is formed between the two, which not only suppresses the formation of bubbles due to volatile gas generated from the adhesive, but also strengthens the bond between the plastic film and the metal foil. This is to suppress oxidation of the surface of the metal foil as much as possible when the metal foil is passed through a heating process. In addition, in this method, the continuous temperature increase method is used for heating and curing the adhesive, so that the trace amount of volatile matter that may be generated from the adhesive during heating is gradually diffused to the outside through the film, leaving air bubbles in the adhesive layer. This is to ensure that there is no such thing. The metal foil used in the present invention may be any metal foil that can be a conductor, such as aluminum foil, copper foil, or nickel chrome foil. Further, as the plastic film, any film having heat resistance such as polyimide film, polyparabanic acid film, polyoxadiazole film, polyamideimide film, polyamide film, polyester film, etc. may be used. Adhesives containing thermosetting resins have different compositions depending on the type of adherend, but examples include resin-based adhesives such as epoxy, nylon-epoxy, epoxy-acrylic, acrylonitrile butadiene rubber-phenol, melamine-acrylic, and phenol. A resin containing one or more of these components can be used. Next, examples of the present invention will be shown. Example 1 Thermosetting acrylic resin (Du Pont
Adhesives6850 solid content 35±10/0) 100 parts by weight and epoxy resin (Ciel Chemical Co., Ltd. Epicote)
An adhesive consisting of 75 parts by weight (100160% MEK solution) was continuously applied to one side of a 250 mm wide 50 μm polyimide film (Kapton, manufactured by Du Pont) using a reverse roll coater to give a coating thickness of 20 μm (after drying). Afterwards, the adhesive was passed through a 3 m air-drying zone, passed through a hot air oven with a furnace length of 5 m, and the furnace temperature was adjusted to 75°C at the inlet and 85°C at the outlet, and then a roll laminator was used in which the roll temperature was controlled at 130°C. Polyimide film and electrolytic copper foil (40μ)
While pressing with a pressure of 80 kg/cm 2 G, the material was passed through a cooling roll and wound into a roll onto a paper tube having an outer diameter of 96 mm. The above series of operations were performed continuously at a line speed of 0.4 m/min. Next, the rolled laminate product with an outer diameter of approximately 30 cm was placed in a hot air constant temperature oven for 30 minutes at 100℃, 30 minutes at 150℃, and 200℃ for 30 minutes.
A copper-clad polyimide substrate was obtained by sequentially carrying out heat curing treatment for 30 minutes. In addition, the heating conditions were set at a heating rate of 1°C/min from 100°C.
A similar copper-clad polyimide substrate was made by raising the temperature to 200℃. The performance of the copper-clad polyimide substrate thus obtained was as follows.

【表】 実施例 2 アクリルニトリルブタジエンゴム(日本ゼオン
(株)製ニポール1041)およびフエノール樹脂
(住友デユレツ(株)製バーカムTD2645)を重量
比5:1となるよう秤量し素練りロールで良く混
練して後メチルエチルケトン−メチルイソブチル
ケトンの混合溶媒に溶解し固形分30%の溶液とし
た。 得られたニトリルゴム−フエノール溶液100部
とエポキシ樹脂(エピコート1001 メチルエチル
ケトン80%溶液)25部とからなる接着剤をリバー
スロールコーターを用いて250mm巾、50μのポリ
オキサジアゾールフイルム(古河電工製)の片面
に乾燥後20μの塗膜厚となるよう連続塗布したの
ち、3mの風乾ゾーンを経て熱風炉中を走行さ
せ、引き続きロール温度120℃にコントロールし
たロールラミネーターを使用して得られた接着剤
につきポリオキサジアゾールフイルムと電解銅箔
(40μ)とを、50Kg/cm2G圧で圧着し冷却ロール
を経て外径96mmの紙管にロール状に巻き取つた。
尚上記一連の作業はラインスピード0.4m/分で
連続的に行つた。 次に外径約40cmの太さに巻き取つたラミネート
品のロール体を80℃の熱風恒温槽に入れた後、
0.6℃/分の速度で昇温し2.5時間後170℃に到達
した時点から更に170℃で20分熱処理を行つて銅
張りポリオキサジアゾール基板を得た。得られた
銅張りポリオキサジアゾール基板の外観は全く異
常なく、剥離強度(T型剥離)は常温で1.0Kg/
cmであり、260℃の1分のハンダ浴浸漬後も1.0
Kg/cmであつた。また耐ハンダ性も260℃×2分
に合格した。 以上説明した如く本発明方法によるフレキシブ
ル印刷回路用基板の製造方法はプラスチツクフイ
ルムと金属箔の複合ロール体をロール状のまま接
着剤の加熱硬化処理を行うので従来のプレス加熱
方式に比べその生産性は数段と高く、また、その
加熱処理も幾つもの加熱炉を通過させ該複合体の
接着剤の加熱硬化を行う必要がなく、通常の熱風
恒温槽などにロール体を許容量だけ入れまた加熱
条件の昇温プログラムをセツトすれば無人で好適
な接着剤加熱硬化状態とすることが出来るなど、
プレス方式に比較して製造コスト生産性共に非常
に有利であり、その工業的価値は高い。
[Table] Example 2 Acrylic nitrile butadiene rubber (Nipole 1041 manufactured by Nippon Zeon Co., Ltd.) and phenol resin (Barcam TD2645 manufactured by Sumitomo Durez Co., Ltd.) were weighed so that the weight ratio was 5:1 and kneaded well with a masticating roll. After that, it was dissolved in a mixed solvent of methyl ethyl ketone and methyl isobutyl ketone to obtain a solution with a solid content of 30%. An adhesive consisting of 100 parts of the obtained nitrile rubber-phenol solution and 25 parts of epoxy resin (Epicoat 1001 80% methyl ethyl ketone solution) was applied to a 250 mm wide, 50 μ polyoxadiazole film (manufactured by Furukawa Electric) using a reverse roll coater. The adhesive was coated continuously on one side to a coating thickness of 20μ after drying, passed through a 3m air-drying zone, ran through a hot air oven, and was then coated using a roll laminator with a controlled roll temperature of 120°C. A polyoxadiazole film and an electrolytic copper foil (40μ) were crimped together at a pressure of 50 kg/cm 2 G, passed through a cooling roll, and then wound into a roll around a paper tube with an outer diameter of 96 mm.
The above series of operations were performed continuously at a line speed of 0.4 m/min. Next, the rolled laminate product with an outer diameter of about 40 cm was placed in a hot air constant temperature oven at 80°C.
The temperature was increased at a rate of 0.6°C/min, and after reaching 170°C after 2.5 hours, heat treatment was further performed at 170°C for 20 minutes to obtain a copper-clad polyoxadiazole substrate. The appearance of the obtained copper-clad polyoxadiazole board was completely normal, and the peel strength (T-type peel) was 1.0 kg/
cm, and even after being immersed in a solder bath for 1 minute at 260°C, it is still 1.0
It was Kg/cm. It also passed solder resistance at 260°C for 2 minutes. As explained above, in the method of manufacturing a flexible printed circuit board according to the method of the present invention, the adhesive is heated and hardened while the composite roll of plastic film and metal foil is in the roll form, so the productivity is higher than that of the conventional press heating method. In addition, the heat treatment does not require passing through multiple heating furnaces to heat and harden the adhesive of the composite. Instead, the roll body can be placed in an ordinary hot air constant temperature oven, etc. in the allowable amount and then heated. By setting a temperature increase program for the conditions, it is possible to bring the adhesive to a suitable heating and curing state unattended.
Compared to the press method, it is very advantageous in terms of manufacturing cost and productivity, and its industrial value is high.

Claims (1)

【特許請求の範囲】 1 プラスチツクフイルムと金属箔とを未硬化な
いしは半硬化の熱硬化性樹脂を含む接着剤を用い
て貼合せ、ロール状に巻取つた状態でこれを加熱
し接着剤を硬化させることを特徴とするフレキシ
ブル印刷回路用基板の製造方法。 2 上記加熱硬化処理を、平均昇温速度0.5〜5
℃/分の範囲内にて、所定の最終温度まで昇温加
熱して、接着剤を硬化せしめることにより行なう
ことを特徴とする特許請求の範囲第1項記載のフ
レキシブル印刷回路用基板の製造方法。
[Claims] 1. A plastic film and a metal foil are bonded together using an adhesive containing an uncured or semi-cured thermosetting resin, and the film is heated while being wound into a roll to harden the adhesive. A method for manufacturing a flexible printed circuit board, characterized by: 2 The above heat curing treatment is carried out at an average temperature increase rate of 0.5 to 5.
The method for manufacturing a flexible printed circuit board according to claim 1, characterized in that the adhesive is cured by heating to a predetermined final temperature within the range of °C/min. .
JP8491280A 1980-06-23 1980-06-23 Method of producing flexible printed circuit board Granted JPS5710294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8491280A JPS5710294A (en) 1980-06-23 1980-06-23 Method of producing flexible printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8491280A JPS5710294A (en) 1980-06-23 1980-06-23 Method of producing flexible printed circuit board

Publications (2)

Publication Number Publication Date
JPS5710294A JPS5710294A (en) 1982-01-19
JPS6225090B2 true JPS6225090B2 (en) 1987-06-01

Family

ID=13843930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8491280A Granted JPS5710294A (en) 1980-06-23 1980-06-23 Method of producing flexible printed circuit board

Country Status (1)

Country Link
JP (1) JPS5710294A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166342U (en) * 1986-04-10 1987-10-22
JPS6353015A (en) * 1986-08-22 1988-03-07 Mitsubishi Plastics Ind Ltd Preparation of single-sided copper-clad plastic film
JPH079682Y2 (en) * 1988-09-21 1995-03-08 株式会社シヨーワ Hydraulic shock absorber for vehicle shock absorber
JP2014075253A (en) * 2012-10-04 2014-04-24 Nitto Denko Corp Method for manufacturing organic electroluminescent device
JP6213254B2 (en) * 2014-01-20 2017-10-18 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853257A (en) * 1971-11-09 1973-07-26
JPS52121776A (en) * 1976-04-06 1977-10-13 Toray Industries Polyimide film stack and printed circuit board* flat cable or integrated circuit carrier tape using same
JPS5414296A (en) * 1977-07-05 1979-02-02 Mitsubishi Chem Ind Apparatus for separating gas and liquid
JPS54125284A (en) * 1978-03-23 1979-09-28 Hitachi Chem Co Ltd Production of flexible printed circuit
JPS54125283A (en) * 1978-03-23 1979-09-28 Hitachi Chem Co Ltd Manufacturing of flexible printed circuit board
JPS54163359A (en) * 1978-06-16 1979-12-25 Hitachi Ltd Method of producing multiilayer printed circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853257A (en) * 1971-11-09 1973-07-26
JPS52121776A (en) * 1976-04-06 1977-10-13 Toray Industries Polyimide film stack and printed circuit board* flat cable or integrated circuit carrier tape using same
JPS5414296A (en) * 1977-07-05 1979-02-02 Mitsubishi Chem Ind Apparatus for separating gas and liquid
JPS54125284A (en) * 1978-03-23 1979-09-28 Hitachi Chem Co Ltd Production of flexible printed circuit
JPS54125283A (en) * 1978-03-23 1979-09-28 Hitachi Chem Co Ltd Manufacturing of flexible printed circuit board
JPS54163359A (en) * 1978-06-16 1979-12-25 Hitachi Ltd Method of producing multiilayer printed circuit board

Also Published As

Publication number Publication date
JPS5710294A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
US5156710A (en) Method of laminating polyimide to thin sheet metal
JPS6225090B2 (en)
JPH0735106B2 (en) Method of manufacturing polyimide film type flexible printed circuit board
JPH03164241A (en) Preparation of metal foil-laminated continuous length
JPH09148695A (en) Flexible printed circuit board and its manufacture
JP3356560B2 (en) Flexible copper-clad laminated film and method for producing the same
TW486430B (en) Method of making low Dk, high Tg copper-clad laminate having enhanced peel strength and circuit boardstock material
JP4174676B2 (en) Method for producing flexible copper-clad laminate
JPH10209583A (en) Flexible metal foil polyimide laminate
JP3698863B2 (en) Bonding material for single-sided metal-clad laminate production
JPH02122697A (en) Flexible metal foil lamination board and manufacture thereof
JPH07216111A (en) Preparation of prepreg
JPH03222444A (en) Manufacture of two layer film carrier for tab
JPS59232845A (en) Manufacture of metallic foil lined metallic substrate
JPS5875884A (en) Method of producing printed circuit board
JPH01136395A (en) Manufacture of flexible wiring board integral with reinforcing plate
JPH0225779B2 (en)
JPS587345A (en) Manufacture of metallic foil lined laminate
JPH0479292A (en) Manufacture of flexible printed circuit board
JPH0416038B2 (en)
JPH01173687A (en) Flexible printed-circuit board
JPS58165391A (en) Substrate for printed circuit board
JPS5890796A (en) Method of producing multilayer printed circuit board
JPH08250856A (en) Manufacture of copper-clad board for printed circuit board
JP3132588B2 (en) Evaluation method for heat resistance of cloth composite